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Mechanisations of programming language specifications are now increasingly common, providing machine-

checked modelling of the specification and verification of desired properties such as type safety. However it is

challenging to maintain these mechanisations, particularly in the face of an evolving specification. Existing

mechanisations of the W3C WebAssembly (Wasm) standard have so far been able to keep pace as the standard

evolves, helped enormously by theW3CWasm standard’s choice to state the language’s semantics in terms of a

fully formal specification. However a substantial incoming extension toWasm, the 2.0 feature set, motivates the

investigation of strategies for more efficient production of the core verification artefacts currently associated

with the WasmCert-Coq mechanisation of Wasm.

In the classic formalisation of a typed operational semantics as followed by the W3C Wasm standard, both

the type system and runtime operational semantics are defined as inductive relations, with associated type

soundness properties (progress and preservation) and an independent sound interpreter. We investigate two

more efficient strategies for producing these artefacts, which are currently all separately defined by WasmCert-

Coq. First, the approach of Kokke, Siek, and Wadler for deriving a sound interpreter from a constructive

progress proof — we show that this approach scales to the W3CWasm 1.0 standard, but results in an inefficient

interpreter in our setting. Second, inspired by results from intrinsically-typed languages, we define a progressful
interpreter which uses Coq’s dependent types to certify not only its own soundness, but also the progress

property. We show that this interpreter can implement several performance optimisations while maintaining

these certifications, which are fully erasable when the interpreter is extracted from Coq. Using this approach,

we extend the WasmCert-Coq mechanisation to the significantly larger Wasm 2.0 feature set, discovering and

correcting several errors in the expanded specification’s type system.
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1 Introduction
There is a growing body of work on themechanisation of programming language specifications, such

as C [7, 14, 26, 27, 32], JavaScript [8, 17, 35], Java [9, 19, 22], Standard ML [24, 25, 41], OCaml [33],

Haskell [47], WebAssembly [44]. These mechanisations provide a machine checked model of the

specification, and often verification of desired properties such as type safety. These efforts have

been effective in providing assurance that the specifications are correctly defined, and satisfy their

intended correctness properties, often revealing bugs and ambiguities.

However, mechanisation is an onerous process, to the point that many mechanised semantics

cover only a fragment of their language’s full feature set, especially if the language continues

to evolve and expand with new versions. Mechanisations of the W3C WebAssembly (Wasm)

standard [18] have so far been able to keep pace as the standard has evolved through various

drafts to the 1.0 release [45], helped enormously by the standard’s unusual decision to give the

definition of WebAssembly entirely as a classic inductively defined formal semantics, complete with

a statement of its type system’s intended correctness properties. Several complete mechanisations

of its 1.0 feature set have been developed, providing the artefacts listed above, while discovering

and correcting errors in the language’s type system [44, 45]. However the jump from Wasm 1.0 to

the forthcoming Wasm 2.0 standard is particularly large, almost doubling the instruction set of

the language. This work addresses the problem of producing Wasm’s mechanisation artefacts in a

sustainable and tractable way as the Wasm language expands, in order to ensure that Wasm’s new

features continue to enjoy the same verification guarantees as the 1.0 feature set.

In the classic formalisation of a typed operational semantics, as followed by the W3C Wasm

standard, both the type system and runtime operational semantics are defined as inductive relations,

and a statement is made of the desired syntactic type soundness properties (progress and preservation)
which relate them [48]. This leads to a natural set of core artefacts which a mechanisation of such

a semantics will aim to support:

• the mechanisation of the language definitions themselves;

• a proof of the type system’s progress and preservation properties;

• a definition of a simple executable interpreter, since the inductive operational semantics is

not directly executable;

• a proof that the interpreter is sound with respect to the operational semantics.

Each of these items must be separately defined and maintained — as they are in existing mechani-

sations of Wasm 1.0 [45].

For a small language related to System F, Kokke et al. [23] observed that a constructive proof of

progress over a small-step semantics essentially embodies a sound one-step interpreter, since given

a well-typed input configuration it represents a computational “recipe” for obtaining an output

configuration that is allowed by the language’s small-step reduction relation. By composing this

step with a constructive proof of preservation and iterating, a simple verified interpreter is obtained

“for free”. Since Wasm mechanisations already commit to maintaining an analogous type soundness

proof, the idea that a sound interpreter may be derived “for free” from this proof, without needing

to maintain a separate definition (and verification of this definition), is enticing.

In this work, we push the techniques of Kokke et al. [23] to their limits by applying their

approach to the WasmCert-Coq mechanisation of the W3C Wasm 1.0 standard, converting its

type soundness proofs to be fully constructive, successfully deriving an interpreter from these

proofs, and evaluating its performance. This approach allows us to eliminate WasmCert-Coq’s

separate interpreter definition and correctness proof. Going beyond Kokke et al. [23], we execute

this interpreter end-to-end by composing it with WasmCert-Coq’s verified type checker and parser,
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identifying multiple ways in which innocuous choices in constructing the type soundness proofs

can severely degrade its runtime performance.

We observe that one major limitation of this approach is that we lose direct control over the

structure and internal representation of the interpreter, and therefore can only indirectly optimise

its performance. Moreover, the proof tree of the input term’s typing judgement needs to be explicitly

represented in the interpreter’s memory and manipulated at each step, since the interpreter is

only allowed to take repeated steps by constructing a proof that each successor term is well-typed.

Ideally we would like a solution which maintains our proof maintenance benefits, and does not

require runtime manipulation of any typing proofs.

To accomplish this, we show in Coq that a formalised one-step interpreter over untyped Wasm

terms can, with only modest effort, be augmented with a dependent type certifying the contrapositive
of the progress property (“if the interpreter fails to step soundly according to the operational

semantics, the input must be ill-typed”), which not only eliminates the need for a separate proof

of progress, but also the need for a separate proof of the interpreter’s soundness with respect to

Wasm’s operational semantics. We refer to such an interpreter as a progressful interpreter. The
interwoven parts of the one-step interpreter which prove this contrapositive property can be erased

during its extraction to executable code, since subsequent iterations of the interpreter do not require

this property as input. This approach allows us more fine-grained control over the interpreter’s

internal state, which we exploit to implement several optimisations to Wasm’s representation of

evaluation contexts based on Watt et al. [46] while still significantly reducing the proof burden in

comparison to the more traditional approach of separate type soundness and interpreter correctness

proofs. We report on our experiences of extending WasmCert-Coq to Wasm 2.0, using this approach

to save effort in updating what were previously separate definitions and correctness proofs.

Our approach is deeply resonant with previous work that focusses on the proof maintenance

benefits that stem from defining the semantics of an intrinsically-typed language in terms of a

dependently-typed definitional interpreter [5, 6, 38, 42]. We show that many of these benefits are

still achievable in WasmCert-Coq, despite the fact that Wasm is not intrinsically typed, and our

interpreter is not definitional — due to the design choices of the official formal specification.

All of our extensions to WasmCert-Coq are available publicly [43]. In summary, this work

establishes the following takeaways.

• Kokke et al. [23]’s approach for deriving a sound interpreter from a constructive progress

proof scales to the industrial W3CWasm 1.0 standard, but optimising the performance of this

interpreter is challenging. Moreover, the requirement that the derived interpreter traverses a

proof of well-typedness of the input term at runtime represents an unavoidable performance

penalty. (§2)

• Our progressful interpreter similarly allows multiple verification artefacts to be produced

from a single definition, but gives us more control over performance. Our approach is related

to formal properties most often discussed in the context of intrinsically-typed languages, but

we realise them in Wasm, which is extrinsically typed. (§3, 4)

• We extend WasmCert-Coq [45] to the substantially larger Wasm 2.0 feature set, updating all

related verification artefacts smoothly with the aid of our progressful interpreter. Through the

process, several errors in the Wasm 2.0 specification have also been uncovered and reported

to the specification editor, reinforcing the value of language mechanisations in improving

industrial language standards. (§5)
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2 Interpreter from Progress
We describe the method given by Kokke et al. [23] for constructing a sound interpreter from a proof

of progress for a general language with a small-step, inductively-defined reduction semantics and

type system. We apply this method to the W3C Wasm 1.0 standard, by adapting the mechanised

progress proof in WasmCert-Coq [45], thus demonstrating that this method can scale to a full

industrial language definition. While the automatic generation of this interpreter saves significant

proof effort, we report on fundamental limitations on its performance that arise from the natural

structure of the type soundness proofs, motivating our new approach in §3.

2.1 Type soundness
Consider a language with its execution specified by an inductively defined small-step operational

semantics, given by the reduction relation cfg ↩→ cfg for configurations cfg and a typing relation

⊢ cfg : 𝑡 between configurations and configuration types.

The type soundness property is formulated using the traditional progress and preservation

properties [48]:

Proposition 2.1 (Progress). A typed configuration can either do a reduction or is a terminal
configuration:

∀cfg, 𝑡 . ⊢ cfg : 𝑡 =⇒ (∃cfg′ .cfg ↩→ cfg′) ∨ terminal(cfg) (1)

Proposition 2.2 (Preservation). The reduction relation preserves the typing relation:

∀cfg, cfg′, 𝑡 . (⊢ cfg : 𝑡) ∧ (cfg ↩→ cfg′) =⇒ (⊢ cfg′ : 𝑡). (2)

2.2 Interpreter from Progress
Kokke et al. [23] report that a constructive proof of the progress property (2.1) can be used as a

one-step interpreter, also noting that this correspondance has appeared in scattered folklore. The

progress proof takes a configuration cfg and a proof of the configuration’s well-typedness as input,

and concludes that either some cfg′ must exist such that cfg ↩→ cfg′ is allowed by the semantics,

or cfg is terminal. In a constructive setting, the progress proof therefore computes some cfg′ as a
witness which, together with its conclusion that cfg ↩→ cfg′ is allowed by the semantics, represents

a sound one-step interpreter for the language.

One complication to using a constructively-proven progress theorem as a one-step interpreter is

the requirement that a proof of well-typedness of the initial configuration must be additionally

provided as input. Moreover to iterate the one-step interpreter, a constructive proof of preservation

must be used to re-establish the well-typedness of intermediate configurations before each step.

To emphasize the computable nature of these constructive proofs, we present the shapes of the

required statements in the WasmCert-Coq mechanisation in Figure 1, where we implemented the

above method for Wasm. The progress function acts as described above, taking a configuration cfg,
a configuration type 𝑡 , and a proof term HType which associates cfg with the type 𝑡 . It produces

either a new configuration along with a proof term cfg ↩→ cfg′ representing the soundness of the

reduction step, or a proof that the configuration is terminal. Similarly, the preservation function

takes the old and new configurations, a proof term representing that a sound reduction was carried

out, and a proof term representing the well-typedness of the old configuration, producing a proof

term representing the well-typedness of the new configuration. The verified type inference function,

infer_type, takes a configuration as input and, if the type inference was successful, returns a

configuration type along with a proof term representing the correctness of the returned type with

respect to Wasm’s type system.
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Definition progress (cfg: config) (t: config_type) (HType: (|- cfg: t)):
{cfg': config & (cfg --> cfg')} + (terminal cfg).

Definition preservation (cfg cfg': config) (t: config_type)
(HReduce: cfg --> cfg') (HType: (|- cfg: t)) :

|- cfg' : t.

Definition infer_type (cfg: config) : option {t: config_type & (|- cfg : t)}.

Fig. 1. Definitions of progress, preservation, and type inference as computable functions

With the above definitions, we can describe the algorithm for creating a one-step and multi-step

interpreter from the type soundness proofs, with the aid of the verified type inference function.

The interpreter begins with a type inference on the input cfg and returns an error if it fails.

If typing succeeds, the interpreter alternates between applying the progress and preservation

functions as follows:

• Apply the progress property to the configuration cfg and the associated proof term ⊢ cfg : 𝑡 ,

obtaining either a new configuration cfg′ and a proof term representing cfg ↩→ cfg′, or a
termination result;

• If applying progress does not result in termination, apply the preservation property to the

old and new configurations, the reduction proof term, and the old configuration typing proof

term to produce a proof term ⊢ cfg′ : 𝑡 for the new configuration, allowing iteration to

continue.

To concretely define the above interpreter in Coq, we added an additional argument as the fuel
for the interpreter, ensuring it terminates when it runs out of fuel. This is a standard practice to

satisfy Coq’s termination check.

This method demonstrates that, given a constructive proof of type soundness and a verified

type inference function, a sound interpreter can be directly extracted with minimal effort. This is

particularly valuable for maintaining mechanized artefacts, as it eliminates the need to maintain a

separate interpreter and its soundness proof, leading to a smaller overall codebase to maintain.

In Chapman et al. [10], this approach is used to generate an interpreter for a small core language

based on System F. However the interpreter cannot be run end-to-end due to the lack of a verified

type checker. In this work, we apply the above approach to the full definition of Wasm 1.0, reusing

the existing progress and preservation proofs ofWasmCert-Coq [45] (an existing Coqmechanisation

of Wasm 1.0) with only minor changes to make them fully computable. In addition, the verified

type checker and parser of WasmCert-Coq allows our interpreter to be executed end-to-end, once

extracted via standard Coq mechanisms [28, 29] to OCaml. WasmCert-Coq originally included its

own separately-verified interpreter in addition to its type soundness proofs, which we are therefore

able to make redundant.

However, there are several downsides to using this method for a real-world language like Wasm.

The primary concerns are the inefficient performance of the interpreter and the difficulty of

implementing optimizations.

Inefficient performance. Because the interpreter relies on the constructive progress proof as

a one-step evaluation function, the proof term representing the well-typedness of the current

configuration must be included in the runtime representation of the interpreter’s state. This leads to
a severe performance penalty as the progress and preservation functions may need to traverse

substantial portions of this proof term to produce the next configuration. Additionally, certain proof
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constructions, which may seem innocuous, have surprising knock-on effects on the performance of

the derived interpreter. In particular all of the above is true in Coq’s setting even after the interpreter
is extracted to OCaml — the proof term remains concretely represented in memory, and is traversed

by the code of the extracted interpreter.

Difficulty in optimizations. It is challenging to directly control the computational behaviour of

the interpreter extracted from type soundness, as any structural changes to the interpreter can

only be indirectly effected by changing the underlying proof structure.

To explain the above in more detail, we introduce a small fragment of the concrete semantics

and type system of Wasm and describe wide-ranging performance issues that arise from re-using

the existing proof of type soundness from WasmCert-Coq [45].

(value type) 𝑡 ::= i32 | i64 | f32 | f64
(value) v ::= 𝑡 .const 𝑐

(function type) ft ::= 𝑡∗ → 𝑡∗

(immediate) 𝑖, 𝑛,min,max ::= nat

(instruction) 𝑒 ::= v | 𝑡 .add | local.{get/set} 𝑖 | label𝑛{𝑒cont} e∗ end | ...

(frame) 𝐹 ::= {local :: v∗, inst :: ...}

(evaluation context)E[_] ::= [_] | 𝑣∗ ++ E[_] ++ 𝑒∗ | label𝑛{𝑒∗} (E[_]) end
(configuration tuple) cfg ::= {store :: 𝑆, frame :: 𝐹, instructions :: 𝑒∗}

Fig. 2. Selected abstract syntax of Wasm 1.0

2.3 Wasm 1.0 Semantics
We begin with a brief introduction to the abstract syntax and runtime representation of Wasm.

Wasm is a stack-based language with execution specified by a small-step operational semantics

on configuration tuples cfg of the form (𝑆 ; 𝐹 ; 𝑒∗)1. Here, 𝑆 is the store, which contains all the global

states created during execution. 𝐹 is the frame, which holds the local variables and a record 𝑖𝑛𝑠𝑡

that tracks the components of the store 𝑆 accessible from the current function. The list 𝑒∗ consists of
instructions representing the combined instruction value stack, where the value stack is represented

as a leading list of const instructions in the instruction stack.

We present a selected subset of the abstract syntax of Wasm 1.0 in Fig 2, eliding the details of

some parts by leaving them in gray.

For the purpose of type soundness, the terminal configurations of Wasm are defined as config-

urations (𝑆 ; 𝐹 ; 𝑒∗) where 𝑒∗ is a list consisting entirely of values, at which points the values are

returned as the result of the Wasm program.

Execution takes place at the top of the instruction stack, consuming an appropriate number of

values from the value stack as arguments and pushing some values back onto it. For example, the

reduction rule for the numeric addition instruction is

(𝑆 ; 𝐹 ; [𝑡 .const 𝑐1; 𝑡 .const 𝑐2; 𝑡 .add]) ↩→ (𝑆 ; 𝐹 ; [𝑡 .const (𝑐1 + 𝑐2)]) (3)

This rule describes that upon consuming two values of type 𝑡 from the value stack, the instruction

𝑡 .add executes by producing a value representing their sum and pushing it back onto the value

stack.

1
We follow the conventions used by the Wasm standard, where 𝑋 ∗

represents a list of 𝑋 s, and 𝑋𝑛
represents a list of 𝑋 s of

length 𝑛.
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Figure 3 includes a selected set of reduction rules from the Wasm 1.0 operational semantics
2
.

[𝑡 .const 𝑐1; 𝑡 .const 𝑐2; 𝑡 .add] ↩→ [𝑡 .const (𝑐1 + 𝑐2)]
add

𝐹 .local[𝑘] = 𝑣

(𝑆 ; 𝐹 ; [local.get 𝑘]) ↩→ (𝑆 ; 𝐹 ; [𝑣]) local.get

(𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗)
(𝑆 ; 𝐹 ; E[𝑒∗]) ↩→ (𝑆 ′; 𝐹 ′;E[𝑒′∗]) context

Fig. 3. Selected Reduction Rules of Wasm 1.0

Wasm’s type system is based on the typing relation for code fragments in the shape of𝐶 ⊢ 𝑒∗ : ft,
assigning the instruction list 𝑒∗ with a function type ft that describes the effect of executing 𝑒∗ on
the value stack. For example, the typing rule for the numeric addition instruction is

𝐶 ⊢ 𝑡 .add : [𝑡 ; 𝑡] → [𝑡] add
(4)

which specifies that the instruction 𝑡 .add consumes two values of type 𝑡 from the value stack and

pushes one value of type 𝑡 back to the value stack as a result.

The typing context 𝐶 contains information regarding the types of global states in the scope of

the current function execution, the types of local variables of the current function, and the types

of the runtime control flow targets that are currently in scope. For example, the typing rule for

local.get 𝑘 instruction, which fetches the value of the 𝑘th local variable in the current function

frame 𝐹 and pushes it to the stack, requires access to the corresponding field in the context:

𝐶.local[𝑘] = 𝑡

𝐶 ⊢ local.get 𝑘 : [] → [𝑡] local.get
(5)

Fig 4 includes the full shape of the typing context (details of individual fields omitted) and a

selected set of typing rules from the Wasm 1.0 type system.

(typing context) 𝐶 ::=

{ type :: ft∗, func :: ft∗, table :: tt∗, memory :: mt∗, global :: gt∗,
local :: 𝑡∗, label :: (𝑡∗)∗, return :: (𝑡∗)?

𝐶 ⊢ [] : [] → []
empty

𝐶 ⊢ [𝑡 .const 𝑐] : [] → [𝑡] const

𝐶 ⊢ [𝑡 .add] : [𝑡 ; 𝑡] → [𝑡] add
𝐶.local[𝑘] = 𝑡

𝐶 ⊢ [local.get 𝑘] : [] → [𝑡] local.get

𝐶 ⊢ 𝑒∗ : 𝑡∗
1
→ 𝑡∗

3
𝐶 ⊢ [𝑒] : 𝑡∗

3
→ 𝑡∗

2

𝐶 ⊢ 𝑒∗ ++ [𝑒] : 𝑡∗
1
→ 𝑡∗

2

composition

𝐶 ⊢ 𝑒∗ : 𝑡∗
1
→ 𝑡∗

2

𝐶 ⊢ 𝑒∗ : 𝑡∗
3
++ 𝑡∗

1
→ 𝑡∗

3
++ 𝑡∗

2

subsumption

Fig. 4. Selected Typing Rules of WebAssembly 1.0

2
The Wasm standard uses a convention that omits the store 𝑆 and frame 𝐹 from the configuration tuples in the reduction

rules where they are irrelevant; we adopt this convention in the figure.
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Having defined the above typing rules for code fragments, WebAssembly defines its configuration

typing relation by

⊢s 𝑆 : ok 𝑆 ⊢f 𝐹 : 𝐶 𝑆 ;𝐶 ⊢ 𝑒∗ : [] → 𝑡∗

⊢cfg (𝑆 ; 𝐹 ; 𝑒∗) : 𝑡∗ config
(6)

The above typing rule uses a generalised version of the code fragment typing relation that includes

the store 𝑆 for the purposes of typing certain intermediate representations
3
. In addition, it asserts

a well-formedness condition ⊢s of the store 𝑆 and a frame validity relation ⊢f that produces an
associated typing context for each frame 𝐹 and store 𝑆 , the details of which are omitted here.

With the above definitions, we describe the concrete statements of progress and preservation for

Wasm semantics as we defined abstractly in Propositions 2.1 and 2.2.

Proposition 2.3 (Progress for Wasm).

∀𝑆, 𝐹, 𝑒∗, 𝑡∗ .
(
(⊢cfg (𝑆 ; 𝐹 ; 𝑒∗) : 𝑡∗) =⇒ (∃𝑆 ′, 𝐹 ′, 𝑒′∗, (𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗)) ∨ terminal((𝑆 ; 𝐹 ; 𝑒∗))

)
However, a more fine-grained progress statement on fragment typing relations is required to

prove the above progress property for Wasm configurations:

Proposition 2.4 (Fragment Progress for Wasm).

∀𝑆, 𝐹,𝐶, 𝑒∗, 𝑡∗
1
, 𝑡∗
2
.
(
(𝑆 ⊢f 𝐹 : 𝐶) ∧ (⊢s 𝑆 : ok)∧(𝑆 ;𝐶 ⊢ 𝑒∗ : 𝑡∗

1
→ 𝑡∗

2
)
)

=⇒
[
∀𝑣∗ .(typeof (𝑣∗) = 𝑡∗

1
) =⇒ (∃𝑆 ′, 𝐹 ′, 𝑒′∗, (𝑆 ; 𝐹 ; 𝑣∗ ++ 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗) ∨ terminal(𝑒∗))

]
The fragment version of progress states that, for any Wasm program fragment with instructions

𝑒∗, if ⊢ 𝑒∗ : 𝑡∗
1
→ 𝑡∗

2
, then although 𝑒∗ might not have a reduction on its own (when 𝑡∗

1
is non-

empty) due to missing values on the stack, it can always execute further with the correct types of

values on the value stack. This stronger statement, which implies the “top-level” progress property,

is necessary to construct a proper inductive hypothesis over Wasm’s evaluation contexts when

proving progress by way of induction on the definition of Wasm’s typing judgement.

The preservation statement is straightforward :

Proposition 2.5 (Preservation for Wasm).

∀𝑆, 𝐹, 𝑒∗, 𝑆 ′, 𝐹 ′, 𝑒′∗, 𝑡∗ . (((⊢ (𝑆 ; 𝐹 ; 𝑒∗) : 𝑡∗) ∧ ((𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗))) =⇒ (⊢ (𝑆 ′; 𝐹 ′; 𝑒′∗) : 𝑡∗)) .

The proof of the preservation property is established by induction over the reduction relation.

As discussed above, we make minor adaptations to the existing Wasm type soundness proof

of Watt et al. [45] in order to make the proofs fully constructive and executable. The proofs were

already almost in the right form — the main change involved replacing occurrences of Coq’s regular

existential quantification (in Prop) with Sigma-type existential quantification (in Type) throughout
the proof. This adjustment was minimally-invasive and completed within a handful of hours.

With the above foundation, we can now discuss in detail the causes of inefficiency of the

interpreter extracted from type soundness, and the extent to which they can be addressed through

changes in the structure of the proofs. Ultimately, some performance issues are fundamental to this

approach, motivating the alternative approach we describe in Section 3.

3
For example, the label typing rule in Fig 4 is, in fact, defined using this generalised version in the WebAssembly standard,

thereby including the store 𝑆 ; however, it is not accessed in the rule at all. We therefore omitted it from the rule in Fig 4 to

avoid confusion.
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2.4 Inefficient proof tree traversals
As mentioned, the extracted interpreter relies on the progress proof to provide one-step execution

results and the preservation proof to provide an associated typing term. At each iteration step, the

progress and preservation proofs may need to traverse large portions of the typing or reduction

proof trees in order to produce their results. As a result, the performance of the extracted interpreter

is significantly impacted by the large sizes of these proof trees.

This issue is particularly pronounced for industrial languages like Wasm, which have complex

structural typing rules. For instance, the reduction and typing rules for label, a structural instruction
that models blocks of code on the stack, illustrate this complexity. Figure 5 displays some of the

reduction and typing rules for label.

(𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗)
(𝑆 ; 𝐹 ; label𝑛{𝑒∗cont} e∗ end) ↩→ (𝑆 ′; 𝐹 ′; label𝑛{𝑒∗cont} e′∗ end)

label_reduction

[label𝑛{𝑒∗cont} v∗ end] ↩→ v∗
label_exit

𝐶 ⊢ 𝑒∗cont : 𝑡𝑛1 → 𝑡∗
2

𝐶′ = 𝐶
[
label := [𝑡𝑛

1
] ++ 𝐶.label

]
𝐶′ ⊢ 𝑒∗ : [] → 𝑡∗

2

𝐶 ⊢ label𝑛{𝑒∗cont} e∗ end : [] → 𝑡∗
2

label_typing

Fig. 5. Selected reduction and typing rules for label

The label_reduction rule states that a label instruction can be reduced if its body can be reduced,

while the label_exit rule states that if the body is already a list of values, the label can be reduced

to that value list. The typing rule specifies that for a label instruction to be well-typed, its body

must be typeable with the same type — the slightly different context is used to type control flow

instructions which we do not describe in detail here.

Recall that the progress proof proceeds by induction over the typing of the configuration. In

the label case, we must apply the induction hypothesis that, since the body of the label is also
well-typed, it must either take a step or be terminal. if 𝑒∗ takes a step, then the original label takes
a step according to the label_reduction rule; if 𝑒∗ is terminal, then the label takes a step by exiting

the label according to the label_exit rule 4
. To see the way that this proof structure gives rise to

inefficiency of the interpreter, consider the typing term of the following small program in Figure 6

involving multiple nested labels.

...

⊢ [i32.const 𝑐1; i32.const 𝑐2] : [] → [i32; i32]
composition

⊢ [i32.add] : [i32; i32] → [i32] add

⊢ [i32.const 𝑐1; i32.const 𝑐2; i32.add] : [] → [i32]
composition

⊢ [label0{} [i32.const c1; i32.const c2 ; i32.add] end] : [] → [i32]
label_typing

⊢ [label0{} [label0{} [i32.const c1; i32.const c2 ; i32.add] end] end] : [] → [i32]
label_typing

Fig. 6. Typing term of a program with deeply nested labels

As part of “executing” the progress definition, the application of the induction hypothesis in the

label typing case translates to a recursive invocation on the label’s body. The progress definitionmust

4
Special treatment is required when the body 𝑒∗ contains a control flow instruction br at its hole, in which case the

continuation is targeted. The corresponding case in the progress proof requires a decision process on decomposing the label

body 𝑒∗ at every step, which is also inefficient. We omit these details in the paper due to space constraints.
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be recursively invoked over each nested label body to produce one step of execution, backtracking

through all nested levels to construct the execution result and the corresponding reduction proof

tree. Similarly, the preservation function must traverse the reduction tree composed of nested

label_reduction rules to form the typing tree of the result configuration. Each time the interpreter

steps, this recursion and reconstruction process is repeated. This process is highly inefficient and

does not scale well to larger Wasm programs.

Improving the performance of this case is challenging — it arises directly due to the inductive

structure of the progress proof over label. As we will discuss in Section 3.3, we instead want direct

control over the interpreter’s representation of the evaluation context, rather than relying on the

structure inherent in the naturally-arranged proof of progress.

2.5 Proof tree explosion
Another cause of inefficiency in the type soundness interpreter is the explosion in the size of proof

trees, resulting from unexpected interactions between the proofs and some of Wasm’s typing rules.

Recall that our automatically-derived interpreter, even when extracted to OCaml, must explicitly

represent the proof term of well-typedness of the configuration in memory as a full proof tree, and

traverse large portions of it at each step. This means that a larger proof tree directly translates to

lower performance of the interpreter. We encountered this issue while benchmarking the extracted

interpreter and observed a super-linear complexity for a program that computes the 𝑛th Fibonacci

number using a loop, which should theoretically have𝑂 (𝑛) time complexity. Importantly, this issue

is orthogonal to the above issue with label contexts, as the iterative Fibonacci algorithm does not

introduce deeply-nested labels.

Figure 7a shows the execution of an 𝑂 (𝑛) iterative Fibonacci Wasm program
5
that computes

the 𝑛th Fibonacci number. By graphing the maximum and average size of the proof tree
6
during

execution against different values of the input size 𝑛, we can observe how the proof tree size grows

linearly with the number of loop iterations. Since each execution step of the type-safety interpreter

involves traversing a large part of the proof tree, we expect the time complexity of the execution

per step to be 𝑂 (𝑛). On the other hand, 𝑂 (𝑛) steps are required to compute the 𝑛th Fibonacci

number. This results in an overall time complexity of 𝑂 (𝑛2), which agrees with our observation in

Figure 7b
7
.

The proof of Watt et al. [45], from which we automatically derive the interpreter, was not

structured so as to minimise the size of the generated proof term. In particular, we identify that

subtle choices in the use of the composition and subsumption typing rules can have massive impact

on the size of the proof term.

To illustrate this problem, we revisit the composition typing rule, which describes how a sequence

of instructions is typed. We currently formulate Wasm’s composition rule by allowing the splitting

of one element at the end of the sequence each time as follows:

𝐶 ⊢ 𝑒∗ : 𝑡∗
1
→ 𝑡∗

3
𝐶 ⊢ [𝑒] : 𝑡∗

3
→ 𝑡∗

2

𝐶 ⊢ 𝑒∗ ++ [𝑒] : 𝑡∗
1
→ 𝑡∗

2

composition

There are various other formulations that are equivalent to this choice from the perspective of the

type system. For example, the composition rule could also be stated to split one element from the

head of the list each time, or to simply allow general list concatenations. The formulation given

above most closely follows the structure of industrial type checking algorithms for Wasm, which

5
That is, a for-loop style program that calculates all the values in one pass.

6
We define the size of the proof tree to be the number of basic and administrative typing rule constructors that appear in

the typing derivation tree. The average and maximum sizes are calculated from the sizes at every step of execution.

7
Further benchmarks and information regarding the benchmarks are later described in § 4.
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Fig. 7. Benchmark: 𝑂 (𝑛) iterative Fibonacci with input 𝑛

operate in a single linear and incremental pass of the program. Note though our discussion in §5.1,

where we report our discovery that the latest official Wasm specification includes a flatly incorrect

version of this rule.

However, this seemingly innocuous typing rule is a major contributor to the proof tree explosion

problem. Consider the following typing inversion lemma:

Lemma 2.6.

∀𝑒∗
1
, 𝑒∗

2
, 𝑡∗
1
, 𝑡∗
2
.(⊢ 𝑒∗

1
++ 𝑒∗

2
: 𝑡∗

1
→ 𝑡∗

2
) =⇒ (∃𝑡∗

3
. ⊢ 𝑒∗

1
: 𝑡∗

1
→ 𝑡∗

3
∧ ⊢ 𝑒∗

2
: 𝑡∗

3
→ 𝑡∗

2
).

The above lemma states that if a concatenation of two program fragments 𝑒∗
1
and 𝑒∗

2
has a

function type 𝑡∗
1
→ 𝑡∗

2
, then it must be the case where 𝑒∗

1
and 𝑒∗

2
are separately well-typed with

some appropriate function types that match.

The proof is naturally conducted by (snoc) induction on 𝑒∗
2
from the end. If 𝑒∗

2
is empty, the

desired typing term for 𝑒∗
2
is obtained by the empty typing rule, and the desired typing term for 𝑒∗

1

is simply the original typing term given in the premise. Otherwise, let 𝑒∗
2
= 𝑒′∗ ++ [𝑒]. The original

premise can be rearranged to

⊢ (𝑒∗
1
++ 𝑒′∗) ++ [𝑒] : 𝑣∗

1
→ 𝑣∗

2

We apply an auxiliary lemma, which is a special case of the original lemma to be proved when the

second instruction list 𝑒∗
2
is a singleton list (proof omitted) to the above and obtain

∃𝑡∗
3
. ⊢ 𝑒∗

1
++ 𝑒′∗ : 𝑡∗

1
→ 𝑡∗

3
∧ ⊢ [𝑒] : 𝑡∗

3
→ 𝑡∗

2

Now, by the induction hypothesis on 𝑒′∗ we have

∃𝑡∗
4
. ⊢ 𝑒∗

1
: 𝑡∗

1
→ 𝑡∗

4
∧ ⊢ 𝑒′∗ : 𝑡∗

4
→ 𝑡∗

3

The first part of the conjunction provides the typing term for 𝑒∗
1
, and the typing term for 𝑒∗

2
=

𝑒′∗ ++ [𝑒] can be applied by applying the composition typing rule with the typing terms for 𝑒′∗ and
[𝑒] we’ve obtained.
While the above proof is valid from the perspective of proving the lemma, and is in some sense

the most “generic” formulation of the proof, the key observation is that it generates a typing tree

with 𝑛 composition rules for 𝑒∗
2
when |𝑒∗

2
| = 𝑛, instead of the 𝑛 − 1 required. This is because the
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induction’s base case is 𝑒∗
2
= [], leading to a redundant application of the composition typing rule

when the induction hypothesis is applied when 𝑒′ = [] in the inductive case to construct a typing

term for ⊢ [] ++ [𝑒] from that of ⊢ [] and ⊢ [𝑒].
While a redundancy of 1 can seem negligible, the above lemma is important in proving the

preservation property, specifically in the case of the proof (done by induction on the reduction

relation) where the top of the reduction term is a context reduction rule, and specifically the

sequential context which is described by the following reduction rule

(𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗)
(𝑆 ; 𝐹 ; 𝑣∗𝑐 ++ 𝑒∗ ++ 𝑒∗𝑐 ) ↩→ (𝑆 ′; 𝐹 ′; 𝑣∗𝑐 ++ 𝑒′∗ ++ 𝑒∗𝑐 )

context_sequence

The preservation proof for this assumes a reduction term (𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ′; 𝑒′∗), along with

a typing term for the previous configuration (𝑆 ; 𝐹 ; 𝑣∗𝑐 ++ 𝑒∗ ++ 𝑒∗𝑐 ), and must construct a typing

term for the result configuration (𝑆 ′; 𝐹 ′; 𝑣∗𝑐 ++ 𝑒′∗ ++ 𝑒∗𝑐 ). The proof starts by first applying the

typing inversion lemma 2.6 twice to obtain the typing terms for 𝑣∗𝑐 , 𝑒
∗
, and 𝑒∗𝑐 individually from

the original typing term, introducing a redundancy of 1 to the size of the typing terms of 𝑒′∗ and
𝑒∗𝑐 . The proof then applies its inductive hypothesis to obtain a typing term for 𝑒′∗ from the typing

term of 𝑒∗ and the reduction term; this means that the redundancy of 1 is inherited in this step for

each application of the context_sequence rule in the reduction term. As a result, the preservation

proof in fact introduces a redundancy equal to at least the number of times that context_sequence
appears in the reduction term.

Exacerbating the problem, the reduction term produced by the progress proof contains the same

number of context_sequence rule as the length of the program, as the natural induction over the

typing term applies the context_sequence rule once per instruction (details omitted). Therefore,

for larger programs, the typing term is quickly inundated with an insurmountable number of

redundant composition rules for the interpreter to deal with.

In fact, when we modify the inductive case of Lemma (2.6) to specifically test for and avoid

applying the induction hypothesis in the case where 𝑒′ = [], an additional case split which is

irrelevant from the point of view of completing the proof, the observed size of the proof tree in

memory shrinks by two orders of magnitude. We report in §4 the performance of an “optimised”

automatically-derived interpreter with as many of these lemma fixups as possible. The sensitivity of

the size of the proof tree to these small changes, which are at odds with the most uniform approach

to stating the relevant inductive proofs, creates an unfortunate tension between the performance

of the interpreter and the natural structure of the proof. This observation, combined with our

observation about the inefficiency of label execution above, motivates a converse approach where

the interpreter is directly defined, and the proof follows the structure of the interpreter, which we

will now detail.

3 Progress from Progressful Interpreter
In this section, we present an alternative approach that augments a one-step interpreter with

dependently-typed certifications, enabling direct control over the interpreter’s structure. We are

motivated by the following high-level observation: in the approach of §2, the constructive progress

proof gives rise to an interpreter and its soundness proof because of obvious structural similarities

between their natural definitions. In fact, as we discuss in §3.1, in certain intrinsically-typed

settings there is no distinction between the three. Our approach in this section seeks to invert

this relationship between the progress proof and the interpreter — showing that, even in an

extrinsically-typed setting, a dependently-typed interpreter can give rise to a proof of the classic

progress property. That is, §2 focuses on getting a sound but inefficient interpreter “for free” from
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a proof of the progress property. Now, our progressful interpreter approach provides a proof of

progress and more “for cheap” from the dependently-typed definition of an efficient interpreter.

By selecting the appropriate certifying proposition as part of the interpreter’s type, this method

allows us to combine the definition of the interpreter, the proof of the interpreter’s soundness,

and the proof of progress into a single definition — maintaining many of the proof maintenance

benefits of the previous section’s approach with two distinct advantages. First, we can arrange the

interpreter so that these proof terms are erased upon extraction from Coq, and second, we can

directly optimise the interpreter’s internal state in order to improve its performance. As we discuss

in §3.1, we make the decision to keep preservation as a separate lemma, for reasons related to the

non-determinism of Wasm’s inductive operational semantics.

Consider the standard version of the one-step interpreter, which takes an input configuration cfg
and either returns a new configuration cfg′ as a successful one-step execution result or produces

an error (for example, in the case that the input configuration is ill-typed). Now consider extending

the one-step interpreter to a dependently-typed function such that, in the successful case where

a result configuration cfg′ is produced, a proof term representing cfg ↩→ cfg′ is also produced.

Such an approach would mean that the implementation and successful typing of the function

itself proves that the interpreter is sound. This approach of using dependently-typed functions to

simultaneously build certification along with the definition is well-understood in previous work as

shown by Chlipala [11].

Now, we additionally augment the error case with a proof term explaining why the interpreter

failed to take a step given its input configuration cfg. For Wasm, this would appear as follows:

terminal(cfg) ∨ (∀𝑡 . ⊢ cfg : 𝑡 =⇒ False)
Our key observation is that this proof term (together with the already established proof term in the

mutually-exclusive successful case) represents the contrapositive of the progress property - “if the

interpreter fails to step soundly according to the operational semantics, the input must be ill-typed”.

This certification establishes that the interpreter is a sufficient witness for a constructive proof of

the progress property, and therefore by extending our interpreter with these proof terms, we have

established the progress property of Wasm’s original inductive semantics while certifying not just

the soundness of the interpreter, but a stronger property that it will always successfully take a step

if its input is well-typed. Throughout this paper, we will describe an interpreter carrying such a

certification of the progress property as progressful. In contrast to the more traditional approach of

Watt et al. [45], which requires a separate interpreter definition, soundness proof of the interpreter,

and proof of progress, in our setting all of these definitions and proofs are combined into a single

dependently-typed interpreter definition. Since the proof term components of the interpreter are

not required as input, they can be fully erased when extracting the interpreter to OCaml, in contrast

to Kokke et al. [23] which requires a runtime representation of the typing term. Moreover, in

contrast to §2, we demonstrate that we can directly optimise the internal representation of the

interpreter while maintaining the benefits of having a unified definition. In this section we first

present a fairly naïve interpreter design, before describing our optimisations in §3.3.

3.1 Connection to intrinsically typed languages
Previous work by Bach Poulsen et al. [6] has described a deeply-related approach, centred around an

intrinsically typed language definition combined with a dependently-typed definitional interpreter.
This approach avoids the need for a separate type soundness proof, as the successful definition and

typing of the interpreter itself in the host metatheory (e.g. Agda) embodies guarantees equivalent to

progress and preservation. If the interpreter’s (host) type signature guarantees that an intrinsically-

typed input will result in a well-formed output (as opposed to some distinguished error value), this
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embodies progress. If the input and output configurations of the interpreter are specified in the

interpreter’s (host) type signature as having the same (language-level) intrinsic type, this embodies

preservation. Similarly, since there is no separate inductive operational semantics, it is meaningless

to ask whether the interpreter is sound or complete — it is simply the normative definition of the

language’s semantics. Their work argues that for a deterministic language there seems to be no

inherent drawback in presenting a small-step semantics as a definitional interpreter rather than as

an inductive relation.

We are able to capture much of the spirit of this intrinsically-typed setting in our work. In both

settings, the computational structure of the interpreter itself is used to “share work” with proofs of

a similar structure — the term manipulation performed by an interpreter in the intrinsic setting in

order to successfully establish its host type certifying that its (intrinsically well-typed) input results

in a non-erroneous output closely parallels the reasoning necessary for our progressful interpreter

to establish the contrapositive certification in our error case. Moreover, since the structure of

this computation and reasoning closely parallels the structure of both an interpreter soundness

proof and a progress proof (as exploited in the other direction by §2), we can cheaply establish the

necessary certification in the non-erroneous step case such that our interpreter’s certification as a

whole not only implies its own soundness with respect to Wasm’s operational semantics, but also

the progress property. As one distinction, all of our type-level reasoning can be erased during Coq

extraction, which helps us make our interpreter as efficient as possible.

IfWasmwas deterministic, we could also incorporate preservation into this certificationwith little

effort, again paralleling Bach Poulsen et al. [6]. Non-deterministic language semantics present some-

what of a challenge to approaches based on a definitional interpreter, which must directly represent

every outcome that is intended to be allowed, potentially requiring fiddly or computationally-

inefficient manipulation of constructs such as choice monads. In particular Wasm, despite its design

aiming for determinism wherever possible, is non-deterministic and non-confluent in several edge-

cases, which perhaps explains the official specification’s decision to define its operational semantics

in terms of an inductive relation. This motivates our decision to define a sound dependently-typed

interpreter which embodies the progress property, while leaving preservation as a separate proof

— in order to also incorporate preservation we would require not only the definition of an in-

terpreter with non-deterministic choice but also a proof that this choice mechanism is complete

with respect to Wasm’s inductive operational semantics. We note that this approach would be

theoretically feasible, but feel that it conflicts with our goals of minimizing the maintenance burden

of WasmCert-Coq’s mechanisation.

3.2 Progressful WebAssembly 1.0 Interpreter
We now show how the above approach for a dependently typed progressful interpreter can be

realised in the WasmCert-Coq mechanisation of Wasm. We describe our implementation of the

progressful Wasm one-step interpreter, by starting with the original interpreter of WasmCert-Coq,

and showing how its result type and body can be extended with a certification of progressfulness.

Recall from Figure 3 that WebAssembly’s operational semantics is defined as an inductive relation

between Wasm’s configuration tuples (𝑆 ; 𝐹 ; 𝑒∗). The ordinary one-step interpreter eval1 is therefore
a function that takes a configuration tuple (𝑆 ; 𝐹 ; 𝑒∗) as its input argument, and returns one of the

following results:

• Rnormal (𝑆 ′; 𝐹 ′; 𝑒′∗) – a normal step of computation returning a new configuration tuple;

• Rvalue 𝑣
∗
– a termination result that the instructions 𝑒∗ to be executed in the input configuration

is already a list of values 𝑣∗;
• Rerror – an assertion failure that should only occur if the input configuration is ill-typed;
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• Rbr 𝑘 𝑣∗ and Rreturn 𝑣
∗
– exceptional results used to represent WebAssembly’s special struc-

tured control flow instructions br and return respectively. A detailed description of these

cases is not required to understand the approach of this work, but WasmCert-Coq handles

them in full.

The progressful interpreter takes a configuration (𝑆 ; 𝐹 ; 𝑒∗) as input and returns a dependently-

typed result that includes the necessary progressful certifications for each case:

• Rnormal (𝑆 ′; 𝐹 ′; 𝑒′∗) (𝐻reduce : (𝑆 ; 𝐹 ; 𝑒∗) ↩→ (𝑆 ′; 𝐹 ;′ 𝑒′∗)), a normal step of computation with a

proof of the corresponding reduction;

• Rvalue 𝑣
∗ (𝐻val : to_value(𝑒∗) = 𝑣∗), a termination result with a proof that the input configu-

ration is already a list of values 𝑣∗;
• Rerror (𝐻error : fragment_illtyped 𝑆 𝐹 𝑒∗), an error result with a proof that the input configu-

ration is ill-typed. Note that in the error case, our progressful interpreter needs to certify the

following:

∀𝑡∗ .(⊢ (𝑆 ; 𝐹 ; 𝑒∗) : 𝑡∗ → False)
For technical reasons related to Wasm’s exceptional control flow cases, we first establish a

stronger version of this property, fragment_illtyped, which implies this top-level ill-typedness

statement. We elide its full definition for space reasons.

• Rbr 𝑘 𝑣∗ and Rreturn 𝑣
∗ (𝐻error : wf_{br 𝑘 𝑣∗, return 𝑣∗} 𝑆 𝐹 𝑒∗) are also augmented with cor-

responding certifications which we elide here but handle in full in the mechanisation.

We present a pseudocode of our implementation in Figure 8. In the pseudocode, split_vals
is a function that splits up the value stack 𝑣∗ and instruction stack from the input instruction

list 𝑒∗. Execution then follows by looking up the top instruction 𝑒 if there is one to execute and

performs a case split and returns a terminal result otherwise. For each case of the instruction 𝑒 ,

if the associated constraints are satisfied by the input, the interpreter returns a successful result

Rnormal and constructs a successful certification 𝐻reduce in place. Otherwise, the interpreter returns
an error result Rerror with a certification 𝐻error proving the ill-typedness of the input configuration.

1: Input : (𝑆 ; 𝐹 ; 𝑒∗)
2: match split_vals 𝑒∗ with
3: | (𝑣∗, []) =⇒ return Rvalue rev(𝑣∗) (𝐻value : ...)
4: | (𝑣∗, 𝑒 :: 𝑒∗

0
) =⇒

5: match 𝑒 with
6: | 𝑡 .add :

7: if 𝑣∗ = [𝑡 .const 𝑐2; 𝑡 .const 𝑐1] ++ 𝑣 ′∗:
8: return Rnormal (𝑆 ; 𝐹 ; rev(𝑣 ′∗) ++ [𝑡 .const (𝑐1 + 𝑐2)] ++ 𝑒∗

0
) (𝐻reduce : ...)

9: else
10: return Rerror (𝐻error : ...)
11: | local.get 𝑗 :
12: if 𝐹 .local[ 𝑗] = Some 𝑣 :
13: return Rnormal (𝑆 ; 𝐹 ; rev(𝑣 ′∗) ++ [𝑣] ++ 𝑒∗

0
) (𝐻reduce : ...)

14: else
15: return Rerror (𝐻error : ...)
16: ...

17: end match
18: end match

Fig. 8. Pseudocode of the Wasm 1.0 progressful one-step interpreter
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We omit the concrete syntax of constructing the successful and error certifications in each case

from the above figure. However, we will now explain the structure of our method in detail to

demonstrate how ill-typedness proofs like the above can be constructed in a modular and scalable

way.

In principle, each ill-typedness statement is an implication from a typing term to False, therefore
the proof is performed naturally by inverting the structure of the typing term. However, Wasm’s

subsumption typing rule makes this proof slightly more difficult, as each code fragment 𝑒∗ can be

associated with different function types up to the subsumption rule. To design a scalable infrastruc-

ture for these proofs, we utilise a set of typing inversion lemmas, which were originally established

for proving the preservation property. Given a fragment typing relation, the corresponding typing

inversion lemma provides a set of constraints that the associated function type needs to satisfy.

We display several typing inversion lemmas in Figure 9.

(empty) ∀𝑡∗
1
, 𝑡∗
2
. (⊢ [] : 𝑡∗

1
→ 𝑡∗

2
) =⇒ (𝑡∗

1
= 𝑡∗

2
)

(local.get) ∀𝐶, 𝑡∗
1
, 𝑡∗
2
. (𝐶 ⊢ [local.get 𝑗] : 𝑡∗

1
→ 𝑡∗

2
) =⇒ (∃𝑡 .(𝐶.local[ 𝑗] = Some 𝑡) ∧ (𝑡∗

2
= 𝑡∗

1
++ [𝑡]))

(composition) ∀𝑒∗
1
, 𝑒∗
2
, 𝑡∗
1
, 𝑡∗
2
. (⊢ 𝑒∗

1
++ 𝑒∗

2
: 𝑡∗

1
→ 𝑡∗

2
) =⇒ (∃𝑡∗

3
.(⊢ 𝑒∗

1
: 𝑡∗

1
→ 𝑡∗

3
) ∧ (⊢ 𝑒∗

2
: 𝑡∗

3
→ 𝑡∗

2
))

(values) ∀𝑣∗, 𝑡∗
1
, 𝑡∗
2
. (⊢ 𝑣∗ : 𝑡∗

1
→ 𝑡∗

2
) =⇒ (𝑡∗

2
= 𝑡∗

1
++ (typeof 𝑣∗))

Fig. 9. Selected Typing Inversion Lemmas

The proofs of ill-typedness proceed by proving a contradiction based on the information of the

input configuration that goes into the error execution case.

As a specific example
8
, we prove the error certification 𝐻error for the case of local.get 𝑗 .

Proposition 3.1. If 𝐹 .local[ 𝑗] = None, then

∀𝑡∗, (⊢ (𝑆 ; 𝐹 ; 𝑣∗ ++ [local.get 𝑗] ++ 𝑒′∗) : [] → 𝑡∗) =⇒ False).

Proof. We first expand the configuration typing relation to obtain the following typing relation

for program fragment:

... ∧ (𝑆 ⊢f 𝐹 : 𝐶) ∧ (𝑆 ;𝐶 ⊢ (𝑣∗ ++ [local.get 𝑗] ++ 𝑒′∗) : [] → 𝑡∗)

The frame validity relation, whose detailed definition we omitted in this paper, would provide that

𝐶.local[ 𝑗] = None.

Thus

𝑆 ;𝐶 ⊢ (𝑣∗ ++ [local.get 𝑗] ++ 𝑒′∗) : [] → 𝑡∗

=⇒ ∃𝑡∗
3
.(𝑆 ;𝐶 ⊢ 𝑣∗ : [] → 𝑡∗

3
) ∧ (𝑆 ;𝐶 ⊢ ([local.get 𝑗] ++ 𝑒′∗) : 𝑡∗

3
→ 𝑡∗)

=⇒ (𝑆 ;𝐶 ⊢ ([local.get 𝑗] ++ 𝑒′∗) : (typeof 𝑣∗) → 𝑡∗)
=⇒ ∃𝑡∗

3
.(𝑆 ;𝐶 ⊢ [local.get 𝑗] : (typeof 𝑣∗) → 𝑡∗

3
)

=⇒ ∃𝑡 .(𝐶.local[ 𝑗] = Some 𝑡)
But the last line contradicts with the premise that 𝐶.local[ 𝑗] = None. □

8
For demonstration in the paper, we only present the proof for the config ill-typedness. However, the full fragment

ill-typedness is essentially done in the same way in the mechanisation.
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The execution for other cases, in particular for control-flow instructions br and return, and the

related block-like instructions label and frame, require special treatment in the interpreter, where

error certifications are propagated through exiting of the blocks, which are more difficult to handle.

However, we elide the details of these cases due to space constraints of the paper.

With the above interpreter defined, we have constructed, in one go, a dependently-typed inter-

preter E1 augmented with:

• A proof that its successful executions are sound;

• A proof that its erroneous executions arise from ill-typed inputs.

From these together, we can derive the progress property by contrapositive reasoning.

3.3 Optimising the Augmented Interpreter: Efficient Runtime Representation
One major advantage of our progressful interpreter in §3.2 over the interpreter derived from

type soundness proofs is our ability to directly control the structure of the interpreter, making

optimisations more feasible. In this section, we demonstrate an optimisation to the augmented

Wasm interpreter by using a significantly more efficient runtime representation for evaluation

contexts. This optimisation was first discussed in WasmRef-Isabelle by Watt et al. [46], though we

employ a slightly different formulation in our work.

Recall the one-step interpreter in Figure 8. At every step of execution, the interpreter needs to

decompose the input instruction list 𝑒∗ into an evaluation context with a hole containing at most

one instruction
9 E[𝑒?]. This procedure requires traversing not only each nested label and frame

context in the input instruction 𝑒∗, but also the linear instruction list (line 2, Figure 8) every time to

locate the top instruction to be executed. As we discuss in Section 2, our automatically-derived

interpreter suffers from a similar inefficiency.

The solution proposed by Watt et al. [46] addresses this inefficiency by switching to a more

efficient representation of the evaluation context. Instead of naïvely defining the interpreter on

Wasm’s configuration tuple, this approach moves entered labels into a side data structure, avoiding

re-recursing into them at each execution step.

The optimised representation defines three kinds of nested single-hole contexts, Estack, Elabel,

and Eframe, as shown in Figure 10. Each of these contexts can be mapped to a regular Wasm term

using the family of E⟦𝑒∗⟧ functions described in Figure 10, which fill the context hole with the

argument 𝑒∗.

(interpreter runtime tuple) (𝑆 ; E∗
frame; Estack; 𝑒

?)
(stack context) Estack := stack_ctx 𝑣∗stack 𝑒

∗
stack

(label context) Elabel := label_ctx 𝑛 𝑒∗cont Estack
(frame context) Eframe := frame_ctx 𝑛 𝐹 E∗

label Estack

(stack_ctx 𝑣∗stack 𝑒
∗
stack)⟦𝑒

∗⟧ = rev(𝑣∗stack) ++ 𝑒∗ ++ 𝑒∗cont
(label_ctx 𝑛 𝑒∗cont Estack)⟦𝑒∗⟧ = Estack⟦label𝑛{𝑒∗cont} e∗ end⟧
(Elabel :: E∗

label)⟦𝑒
∗⟧ = E∗

label⟦Elabel⟦𝑒∗⟧⟧
(frame_ctx 𝑛 𝐹 E∗

label Estack)⟦𝑒∗⟧ = Estack⟦frame𝑛 F (E∗
label⟦e

∗⟧) end⟧
(Eframe :: E∗

frame)⟦𝑒
∗⟧ = E∗

frame⟦Eframe⟦𝑒∗⟧⟧
(𝑆 ; E∗

frame ++
[
frame_ctx 𝑛 𝐹 E∗

label Estack
]
)⟦𝑒∗⟧ = (𝑆 ; 𝐹 ; E∗

label⟦E
∗
frame⟦𝑒

∗⟧⟧)

Fig. 10. Optimised Runtime Representation for Wasm Interpreter and Composition between Interpreter
Contexts and Instructions

9
The top instruction may not exist when the current configuration represents, for example, a label or frame with an empty

body. In such cases, the innermost context is exited via the label_exit or frame_exit rule at the next execution step.
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The optimised one-step interpreter now takes an interpreter runtime tuple (𝑆 ; E∗
frame; Estack; 𝑒

?)
as its input and returns a tuple of the same shape as the output when successful. This representation

is efficient as it avoids traversing through all the evaluation contexts on the instruction stack at

every step of execution. Instead, after every step of execution, the one-step interpreter can simply

retrieve the next instruction to be executed from the context.

Incidentally, the return type of the augmented interpreter is in fact simplified by implementing

this optimisation. This is because the new interpreter runtime tuple directly tracks all the existing

evaluation contexts on its representation; therefore, the error certification no longer needs to work

with fragment ill-typedness, but can instead be formulated directly in terms of ill-typedness of the

whole Wasm configuration. In addition, the special return types for br and return are no longer

required, as executing br and return can now simply be done by exiting from the corresponding

label or frame contexts directly in the runtime representation.

Concretely, the augmented, progress-deriving interpreter with the above optimisation now

returns the following types of results:

• Rnormal (𝑆 ′;E′∗
frame; E

′
stack; 𝑒

′?), with certification

𝐻reduce : (𝑆 ;E∗
frame)⟦Estack⟦𝑒?⟧⟧ ↩→ (𝑆 ′; E′∗

frame)⟦E
′
stack⟦𝑒

′?⟧⟧

Along with a proof that the context filling defined in Fig 10 and the decomposition from the

Wasm configuration to the interpreter runtime tuple are inverse to each other, this implies

the soundness of the interpreter with respect to the operational semantics.
10

• Rvalue 𝑣
∗ (𝐻val : ...), a terminating result indicating that the original input configuration is

already a value. We omit the details of the certifying proposition as it also needs to account

for the original decomposition procedure;

• Rerror (𝐻error : ∀𝑡∗, (⊢ (𝑆 ; E∗
frame)⟦Estack⟦𝑒?⟧⟧ : 𝑡∗) =⇒ False), an error result with a certifi-

cation that the corresponding Wasm configuration of the input representation is ill-typed.

Due to the simplified process of dealing with control flow instructions as well as no longer

needing to deal with fragment ill-typedness, the optimised progressful interpreter is not only more

efficient in terms of execution time, but can also be implemented in a smaller code size. We will

compare these characteristics of our different versions of interpreters in Section 4.

4 Evaluation
In this section, we compare several key metrics across the different interpreters we have discussed

and implemented in this paper, including their runtime performances and the engineering efforts.

As part of the discussion of the proof engineering, we discuss our experience of implementing our

dependently-typed interpreter in Coq’s proof mode, instead of directly constructing it functionally

using the convoy pattern [11].

4.1 Runtime performance
In addition to the various versions of interpreters we implemented in this work, we have also

fetched some external interpreters to provide more baselines for comparison. The interpreters

we tested are listed in Figure 11. For external existing interpreters, we include a source of the

interpreter in the figure. For interpreters implemented in this work, we note the sections where

they are first discussed in the paper. All interpreters from Coq mechanisations are extracted to

10
Note that (𝑆 ; E∗ )⟦−⟧ is only well-defined when E∗

is non-empty, as it needs to contain an outermost special frame that

provides the overall frame in the restored Wasm configuration. This is always the case for any decomposition of a Wasm

config tuple (whose detail we omitted here) as the original Wasm configuration always contains a frame. Our interpreter

additionally proves (with trivial effort) that any successful result it returns preserves this as an invariant.
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OCaml as the target language. All benchmarks were run on a MacBook Pro (2019) with 2.3GHz

Intel Core i9 Processor and 16GB RAM.
11

Interpreter Description Source

Type Soundness Interpreter (Original) Interpreter from WasmCert-Coq [45] type soundness proofs Section 2

Type Soundness Interpreter (Optimised) Type Soundness Interpreter with optimised proof trees Section 2

Progressful Interpreter Dependently-typed Interpreter in Section 3 Section 3

Progressful Interpreter (Optimised) Above optimised by methods from WasmRef-Isabelle [46] Section 3.3

Reference Interpreter Official Reference Interpreter from the Wasm Standard [16]

WasmCert-Coq Original WasmCert-Coq [45] Interpreter [45]

WasmRef-Isabelle Monadic Interpreter from an Isabelle mechanisation of Wasm [46]

Wasmtime An industrial interpreter from Bytecode Alliance [4]

Fig. 11. List of interpreters compared

The first benchmark is a simple 𝑂 (𝑛) iterative Fibonacci function, computing Fib(𝑛) using a

loop. The result is displayed in Figure 12.
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WasmRef-Isabelle

Wasmtime

Fig. 12. Benchmark: Iterative Fibonacci with input 𝑛, log-scale

We observe that the interpreter directly extracted from theWasmCert-Coq type soundness proofs

quickly falls behind due to its super-linear performance
12
. In fact, running the interpreter on an

input of 𝑛 = 10
3
resulted in a stack overflow after approximately 20 minutes. An “optimised” version

of the interpreter, which changes the structure of the type soundness proofs to minimize the size of

the proof tree in memory as discussed in §2.5, achieves a linear runtime, although it takes ∼70 times

longer than the original WasmCert-Coq interpreter and the unoptimised progressful interpreter.

The optimised progressful interpreter has a runtime similar to the reference interpreter from the

Wasm standard, while the WasmRef-Isabelle interpreter is approximately twice as fast. Finally, the

industrial interpreter Wasmtime from Bytecode Alliance executed the largest test (𝑛 = 10
6
) within

0.01 seconds.

11
The benchmark results were obtained by averaging from 3 executions and rounded to the nearest 0.01 seconds (with a

floor of 0.01 seconds due to the logarithmic plot).

12
Figure 12 is plotted on a logarithmic scale, so the super-linear performance is reflected by the gradient being larger than 1.
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Fig. 13. Benchmark: Recursive Fibonacci with input 𝑛, log-scaled time axis

The other benchmark we performed involved a recursive Fibonacci program that calculates the

𝑛th Fibonacci number using a recursive function, which has a exponential time complexity. This

benchmark was similarly used in Watt et al. [46] to demonstrate the impact of the optimised run-

time representation for evaluation contexts. Without this optimisation, the runtime configuration

quickly grows in size and contains increasingly deep nested function call frames and labels. Naïve

interpreters that use the native Wasm configuration tuples as runtime representation will suffer

from performance issues due to the need to traverse all the nested evaluation contexts at every

step of execution, as explained in Section 3.3.

Figure 13 displays the benchmark result. All the interpreters without evaluation context optimiza-

tions (i.e., all except the optimised progressful interpreter, WasmRef-Isabelle, and WasmTime) can

only be tested on inputs up to 𝑛 = 30 or less, either due to excessive runtime or crashing from stack

overflow. Our optimised progressful interpreter shows some advantage over WasmRef-Isabelle on

all inputs, being approximately 20% faster. The industrial interpreter Wasmtime executes roughly

300 times faster than both of the verified and optimised interpreters.

4.2 Proof engineering effort
Lines of code comparison. We present a comparison of the lines of code used across different

implementations of the interpreters in Figure 14, including a detailed breakdown on different

components.
13
Auxiliary proofs and definitions, such as the typing inversion lemmas, automation

tactics, and proofs to the preservation properties are omitted from the comparison table as they are

required for all the approaches.

We note that the interpreter from type soundness comes with the shortest code: this is because

the original type soundness proof of WasmCert-Coq is already almost constructive, so we only need

to transform the Coq code from the Prop sort to Type to extract the proofs from Coq to OCaml.

13
The lines of code metric (LOC) is an unreliable basis for comparing different implementations because it is influenced by

various factors, such as individual engineering practices and coding styles. In this case, the versions being compared were

developed by different authors, so the LOC values shown in the table should be viewed as approximate indicators rather

than precise measurements. They are intended only to offer a rough comparison of the various methods.

14
This includes the estimated lines of code in the original proofs that had to be modified.
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Components WasmCert-Coq Type

Soundness

Interpreter

Progressful

Interpreter

Progressful

Interpreter

(Optimised)

Progressful

Interpreter

(Optimised,

Wasm 2.0)

Interpreter 456 ∼30014 2396 1940 2463

Interpreter Soundness 1084 Embedded Embedded Embedded Embedded

Interpreter Progressfulness Not Proved Embedded Embedded Embedded Embedded

Progress 1039 1039 42 (trivial) 37 (trivial) 37 (trivial)

Total 2579 ∼1339 2438 1977 2500

Fig. 14. List of interpreters compared

A wrapper function is then implemented to chain the progress, preservation, and type inference

functions together accordingly.

We also observe that implementing the evaluation context optimisation from Watt et al. [46]

does not result in a larger interpreter definition. A contributing factor may be that the optimised

interpreter no longer needs to deal with the control flow instructions br and return using special

auxiliary return results. Not all optimisations can result in simplifications as the above, but this

nevertheless demonstrates the feasibility of performing structural optimisations to the progressful

interpreter conveniently.

We report on our experience updating the WasmCert-Coq mechanisation to the Wasm 2.0 feature

set in §5. For now, we note that the update to Wasm 2.0 results in a ∼ 30% larger code size for the

optimised interpreter, while the underlying number of instructions almost doubled.

Implementing Dependently-Typed Functions in Coq’s Proof Mode. As part of our experience of
implementing the various interpreters in this paper, we find Coq’s proof mode especially convenient
for implementing dependently-typed functions in Coq comparing to using the traditional functional

syntax and using convoy patterns for constructing the proof terms.

For a concrete example, we display an outline of the original WasmCert interpreter implemen-

tation for local.get 𝑗 in Figure 15a. Transforming it to a progessful interpreter with pseudocode

in Figure 8 requires adding a successful certification 𝐻reduce to the successful 𝑅normal result and

an error certification 𝐻error to the 𝑅error result. We focus on 𝐻reduce, which can be constructed as

follows:

𝐹 .local[ 𝑗] = vj
(𝑆 ; 𝐹 ; [local.get 𝑗]) ↩→ (𝑆 ; 𝐹 ; [vj])

local.get

(𝑆 ; 𝐹 ; 𝑣𝑠 ++ [local.get 𝑗] ++ 𝑒𝑠′) ↩→ (𝑆 ; 𝐹 ; 𝑣𝑠 ++ [vj] ++ 𝑒𝑠′) context

The required proof term 𝐻reduce can therefore be constructed by applying the two constructors

for the context and local.get constructors, provided the knowledge that 𝐹 .local[ 𝑗] = vj . However,
while this equality is valid within the specific case of the match statement, there is no way to extract

this information directly from the original match syntax. Instead, we need to use a trick called the

convoy pattern [11], which works by expanding the return type of the match to a function from

the match equality to the original desired result. In this way, the match equality would then be

available as an argument in constructing the match result. In the end, the function returned by the

match is applied to a trivial reflexive equality of the match argument, thereby constructing the

desired result. The shape of the resulting definition of the function is displayed in Figure 15b.

The above method is valid in itself. However, despite several shortcuts that further simplify the

syntax slightly, we still find it tedious to completely adopt this pattern for every match case in our

implementation. The breaking point that led us to abandon the functional syntax was that a direct

definition of the interpreter does not satisfy Coq’s strict syntactic termination check for Fixpoint,
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Fixpoint run_one_step S F es :
run_result S F es :=

...
match e with
| ... => ...
| local_get j =>

match nth_error F.local j with

| Some v_at_j =>
R_normal

(S; F; rev vs ++ [v_at_j] ++ es')

| None =>
R_error

end
| ... => ...
end
...

(a) Original interpreter of WasmCert-Coq

Fixpoint run_one_step S F es :
run_result S F es :=

...
match e with
| ... => ...
| local_get j =>

match nth_error F.local j as nth_res
return (nth_error F.local j = nth_res

-> run_result S F es) with
| Some v_at_j => (fun Hnth =>

(R_normal ...
(S; F; rev vs ++ [v_at_j] ++ es')
(r_local_get ... Hnth)))

| None => (fun Hnth =>
(R_error ... (?HError)))

end (eq_refl (nth_error F.local j))
| ... => ...
end
...

(b) Progressful interpreter using convoy patterns

Definition run_one_step S F es : run_result S F es.
Proof.

...
destruct e as
[ (* Other cases *) ... |

(* local.get *) j |
(* Other cases *) ... ].

...
(* local.get *)
{

destruct (nth_error F.local j) as [v_at_j |] eqn:Hnth.
- (* Success *)

apply (R_normal ... (S; F; vs ++ [v_at_j] ++ es')).
(* Proof obligation: prove the corresponding Wasm reduction *)

...
- (* Error *)

apply (R_error ...).
(* Proof obligation: prove the ill-typedness of the input *)

...
}

Defined.
(c) Progressful interpreter in Coq’s proof mode

Fig. 15. Different attempts of implementing interpreter execution for local.get

due to Wasm’s structured control flow instructions. Therefore, the interpreter needs to incorporate

a decreasing measure calculated from the structural complexity of the input configuration. This

proved to be overly complicated to implement with the convoy pattern in the end.

As a result, we opted for an unusual method of defining the entire interpreter in the proof mode

of Coq, essentially treating the definition of a function as a proof obligation depending on the

input. This approach avoids the convoy pattern altogether and allows Coq’s Ltac tactics to be

directly used in the interpreter construction. Moreover, as displayed in Figure 15c, the certification

for each case is constructed as a separate proof obligation after specifying the computation result.

This is because constructors of inductive types in Coq can be equivalently used as lemmas that

can be applied with the corresponding arguments. A partial application of a constructor means
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the remaining arguments (in our case, the certification) become proof obligations, which are then

directly proven in the proof mode instead of being constructed functionally from the constructors.

To facilitate recursive calls, the main structure of the interpreter becomes an induction on the

size of the input configuration, and recursive calls of the interpreter become applications of the

inductive hypothesis, with the necessary premises conveniently established in the proof mode.

Overall, we found this method of engineering eased the tediousness of implementing large

dependently-typed functions as complex as our progressful interpreter in Coq.

5 Updating the Wasm 1.0 Mechanisation
As we discuss throughout this work, our key motivation is to reduce the maintenance burden

associated with WasmCert-Coq’s verified interpreter and type soundness proofs. In particular,

we are able to completely remove the old interpreter, its soundness proof, and the type system’s

proof of progress by switching to our progressful interpreter (§3). We report on our extension of

the existing mechanisation of WasmCert-Coq [45] from Wasm 1.0 to the Wasm 2.0 feature set,

facilitated by these efficiency savings. Once the Wasm model itself is updated, we now only need

to update the progressful interpreter and our separate preservation proof, as opposed to the four

separate definitions (progress, preservation, interpreter, interpreter soundness proof) that were

previously present. As we note in §4.2 our progressful interpreter takes notably fewer lines of code

overall to establish the same results as the definitions and proofs it is replacing. In our subjective

experience, we found the progressful interpreter intuitive to work with, and we believe we saved

significant effort in only have to update its single definition to Wasm 2.0, as opposed to the three

definitions it replaces.

Wasm 2.0 is a major update over version 1.0, integrating multiple extension proposals that vastly

extend the abstract syntax and semantics of the language. The following parts of the Wasm 2.0

update interact with our progressful interpreter:

Expanded instruction set. Wasm 2.0 majorly expands Wasm’s instruction set, introducing several

new types of operations such as function reference operations, vector operations, bulk memory

(memcpy-like) operations, along with extensions to the capabilities of existing control flow instruc-

tions. This is the change that causes the greatest expansion to the mechanisation: the number of

instructions in the mechanisation greatly increased from 32 to 57, and the number of reduction rules

in the mechanisation increased from 55 to 95, almost doubling the size for both. This essentially

means between 25 and 40 new inductive cases must be handled in every key proof or definition

that is related to type soundness or the interpreter.

New primitive types. Wasm 2.0 introduced two new basic families of value types in addition to

the existing four scalar numeric types i32, i64, f32 and f64. These include the vector types for vector
instructions, and the reference types for (function) references. These generalisations impacts the

existing cases of the interpreter, because these cases now need expanded reasoning to describe new

situations in which their input values may be ill-typed (e.g. if a vector value is provided to a scalar

numeric operation).

Enriched type system and subtyping. Another key extension is the introduction of a type lattice

and subtyping system into Wasm, including a new subsumption rule. This change had a great

impact on the infrastructural lemmas in the existing mechanisations, as many assumptions that the

existing proofs based on no longer hold – for example, instead of every value being associated to a

unique type, a value can now be associated with a set of types, among which one of them is the

principal type. For the progressful interpreter, the error certification is similarly affected through

the updates to the typing inversion lemmas.
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Our update to the Wasm 2.0 specification shares a similar trusted computing base with the

original WasmCert-Coq [45] mechanisation for Wasm 1.0 and the related verified interpreter from

WasmRef-Isabelle [46]. In particular, the extraction process from Coq to OCaml and the OCaml tools

themselves need to be trusted, and the vector instructions are similarly implemented as opaque

instructions whose behavior agrees with the function type defined in the specification, with the

concrete implementation left to be generated at the OCaml level, as we lack a mature formalisation

of the relevant machine-level vector operations. This mirrors the approach used by Watt et al. [46]

for floating point operations in their Isabelle/HOL mechanisation of Wasm 1.0. Besides the above,

we continue to use the verified CompCert [26] numerics for integer and floating point arithmetic

and the Parseque parser combinator library [2, 3] to generate the binary format parser.

Overall, the experience of updating the progressful interpreter was smooth. In fact, the most

tedious part of the update is to correctly formulate the new definitions introduced by the new

version of Wasm and making sure they are organised in a sensible structure.

5.1 Mistakes found
Just as Watt [44] discovered errors in WebAssembly’s draft type system, our extension of the

existing WasmCert-Coq to the WebAssembly 2.0 feature set has uncovered several errors in the

official specification.

5.1.1 Composition and subsumption. The Wasm 2.0 specification introduces a new concept of

subtyping between value types given by ≤, and attempts to refactor subsumption (with subtyping)

and composition into a single composite typing rule, as follows:

𝐶 ⊢ [] : 𝑡∗ → 𝑡∗
emp − poly

𝐶 ⊢ 𝑒∗ : 𝑡∗
1
→ 𝑡∗

0
++ 𝑡 ′∗ 𝑡 ′∗ ≤ 𝑡∗ 𝐶 ⊢ 𝑒𝑁 : 𝑡∗ → 𝑡∗

3

𝐶 ⊢ 𝑒∗ ++ 𝑒𝑁 : 𝑡∗
1
→ 𝑡∗

0
++ 𝑡∗

3

seq − poly

However this typing rule is erroneous. As a counter-example, consider the instruction

(block {𝑡 ′∗ → 𝑡∗} []) — a block instruction with an empty body. If 𝑡 ′∗ ≤ 𝑡∗, then this instruction

should successfully type-check, but the typing rules above fail to support this. This error in the

official standard has been acknowledged by Wasm’s specification editor. While an official fix is in

progress, WasmCert-Coq instead uses more traditional subsumption and composition typing rules,

drawn from earlier drafts of the type system.

5.1.2 Module typing. Wasm allows the pre-declaration of active element segments, which populate

a module’s function table with a list of pre-declared functions at startup type. With Wasm 2.0,

the typing rule for these segments was re-written in anticipation of future features which would

generalise their structure. However this revised typing rule omitted a key step in constructing a

context representing the types of global module declarations, resulting in a rule which implied

that every active element segment was ill-typed. This error was identified concurrently by both

ourselves and an independent standards contributor, and has now been fixed.

5.1.3 Missing component of typing context. Wasm 2.0 introduces a new component of the typ-

ing context, 𝐶.refs, representing a declared list of functions which are permitted to escape the

boundaries of the module as dynamic references. However, due to an editorial oversight, 𝐶.refs

was inconsistently propagated through the typing rules, making certain typing rules erroneously

strict. These corrections have been adopted into the specification.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 22. Publication date: January 2025.



Progressful Interpreters for Efficient WebAssembly Mechanisation 22:25

5.1.4 Memory soundness. The appendix of the Wasm specification includes auxiliary definitions

necessary for the official statement of the intended soundness properties of the Wasm type system.

However one of these auxiliary definitions declared that a Wasm memory has a runtime type

based on its current size which remains unchanged during program execution, without correctly

accounting for the possibility of memory size increasing due to the memory.grow instruction.

After we discovered this error, a fix was adopted into the specification.

5.1.5 Missing subsumption rule for values. Another issue with the soundness appendix, the follow-

ing subsumption rule on the runtime type of values was inadvertently elided but assumed to exist

in other definitions.

𝑆 ⊢ 𝑣 : 𝑡 ⊢ 𝑡 : ok 𝑡 ≤ 𝑡 ′

𝑆 ⊢ 𝑣 : 𝑡 ′
val − sub

6 Related Works
As we discuss in §3.1, Bach Poulsen et al. [6] present an alternative style for defining a deterministic

programming language’s semantics, using an intrinsically-typed representation combined with a

dependently-typed definitional interpreter. The deep links between dependent types, definitional

interpreters, and intrinsically-typed language definitions have also been widely discussed and

explored by related work [5, 12, 34, 37, 42]. We believe our work is novel in mapping out the extent

to which accepted benefits of the above setting can be transferred to “classical” inductively-defined

semantics, without requiring all three of the above approaches to be simultaneously adopted.

In particular, Wasm is non-deterministic, its configurations are not intrinsically typed, and our

interpreter cannot be definitional. All of these constraints flow directly from the formalisation

of Wasm’s official standard, which we aim to stay close to wherever possible — any effort to (for

example) define an intrinsically-typed Wasm or non-deterministic “definitional” interpreter would

increase the maintenance burden of WasmCert-Coq, as a correspondence would need to be proved

between this new definition and the faithful base mechanisation of the specification. We feel that

our approach strikes the right balance in capturing many of the benefits of the intrinsically typed

approach, without getting bogged down in these additional complications.

Chapman et al. [10] (drawing from Kokke et al. [23]) is an interesting mid-point between our

setting and the intrinsically typed + definitional interpreter setting, as it works with an intrinsically

typed language but an inductive relational definition of the language’s operational semantics. Such

an approach causes the definition of the operational semantics to inherently embody preservation
in its (host) type signature, but not progress, which is constructively proven separately. From this

progress property, a sound interpreter can be automatically derived, as we discuss in Section 2.

The authors of the above work are not able to execute their interpreter end-to-end as, in contrast

to our work, they lack a verified type checker to initiate the interpreter loop. Therefore they do

not investigate the relationship between the structure of their soundness proof and the runtime

performance of the derived interpreter. Related to the need of a verified type checker, Adjedj et al.

[1] describes a mechanised metatheory of the Martin-Löf Type Theory in Coq that could produce a

certified and executable type checker from a decidability proof of type checking for their theory.

Youn et al. [49] describes a Domain-Specific Language (DSL) for Wasm specification, SpecTec,

which aims to automatically generate Wasm specification artefacts and mechanised semantics,

thereby providing a maintainable way to produce mechanised definitions for Wasm. This effort is

neatly complementary to our work, as our approach tackles a different pain point in the mechanisa-

tion process of maintaining the proofs on top of an already-produced model. There is a minor overlap

in the meta-level interpreter reported by SpecTec, as it could be seen as eliminating the need for any
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verified interpreter at all. However, SpecTec’s approach is constrained in the optimisations that can

be performed, since its intermediate representations must be derived automatically from the original
Wasm definitions, while we can implement more ambitious optimisations while maintaining full

trustworthiness through interactive proofs, as we reported earlier. Overall, our method would lessen

the burden of maintaining relevant proofs when a SpecTec-derived mechanisation is extended.

Our challenge of proof maintenance is related to the expression problem (EP) [15], which describes

the challenge of extending existing inductive definitions with new constructors while reusing the

old proofs. The approach of modular semantics [30, 31] has been suggested to address this problem.

With this approach, a language’s syntax and semantic rules are given incrementally from reusable

blocks, thereby avoiding the need of reformulation when further constructs are added to the

language, and potentially allowing highly modularised proofs. This may be helpful in mechanising

Wasm, as the feature proposals of Wasm can often be viewed as optional extensions of the semantics.

Previous works have studied concrete implementations of extensible semantics in proof assistants

such as Coq and Agda, where Delaware et al. [13], Keuchel and Schrijvers [21], Schwaab and Siek

[39] followed the method of Swierstra [40] with workarounds for the respective proof assistants,

and Jin et al. [20] opted for a slightly different approach by directly extending the linguistic facilities

of Coq. However, industrial language specifications such as Wasm are not always defined in a way

that is amenable to modularisation. In particular, new features are simply added as inline patches

to the specification text, and some features involve cross-cutting changes to Wasm’s abstract

representation and control flow. WasmCert-Coq places a high priority on its faithfulness to the

original Wasm specification, and so careful consideration would be needed regarding the extent to

which attempts at modularising the mechanisation would compromise this correspondence, and

the extent to which such a modularisation would be robust against more cross-cutting changes.

7 Conclusion and Future Work
In this paper, we have successfully applied the outline method described in Kokke et al. [23],

extracting an end-to-end interpreter capable of running Wasm binaries from the type soundness

proofs of the existing WasmCert-Coq mechanization. Additionally, we have for the first time

investigated the concrete sources of inefficiency in this approach related to the structure of the type

soundness proofs, devising mitigations that improved the super-linear complexity of the directly

extracted interpreter, achieving a linear runtime performance.

More importantly, recognizing the inadequacy of the method in Kokke et al. [23] for producing

efficient interpreters, we proposed an alternative approach that uses a dependently-typed progressful
interpreter with certifications for both successful and error results, directly implying the progress

property. We fully implemented this alternative method onWasm 1.0, created an executable artifact,

incorporated optimisations fromWatt et al. [46], and successfully updated the underlying semantics

from Wasm 1.0 to Wasm 2.0 and beyond. This showcased the robustness and scalability of our

approach and highlighted the maintenance benefits it offers. Our optimised interpreter achieved

performance similar to the non-dependently-typed interpreter in Watt et al. [46] on benchmarks

testing the subset of optimisations we implemented. This further demonstrates the feasibility of

our approach for maintaining language mechanisations while producing executable interpreters

with competitive performance.

However, there are many possible extensions to this work. We chose to only focus on one

specific optimisation for the runtime representation discussed in Watt et al. [46]. A direct line of

future work is to similarly implement the other optimisation regarding switching to a monadic

heap for more efficient state-manipulating operations, which should allow the performance of our

interpreter to be competitive in all scenarios with that of Watt et al. [46]. It may also be fruitful to

revisit whether integrating the proof of the preservation property into the progressful interpreter
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is worthwhile. For a fully deterministic language, it may be a particularly sensible choice. Even for

a non-deterministic language like Wasm, careful engineering and automation may reveal further

benefits to this approach — it is tempting to consider a truly all-in-one integrated interpreter that

derives the entire type-safety property while preserving the benefits of proof maintenance.

Finally, Youn et al. [49] raise the possibility of one day automatically generating a mechanisation

of the Wasm semantics directly from a normative DSL. Our current work optimises the process of

verifying key artefacts once a Wasm mechanised model has been defined. In combination with an

approach such as Youn et al. [49] for automatically defining the model, we can envisage a world

where all new Wasm features are rapidly verified as they appear, with minimal effort.

Acknowledgments
Conrad Watt is supported by an NTU Nanyang Assistant Professorship Start-Up Grant. Rao is

supported by a Doctoral Scholarship Award from Department of Computing, Imperial College

London. Philippa Gardner was supported by the EPSRC fellowship VeTSpec: Verified Trustworthy

Software Specification (EP/R034567/1) for much of this work.

Artifact Availability
The artifact of the paper is available as a permanent Zenodo entry [36] and on GitHub [43].

References
[1] Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and Loïc Pujet. 2024. Martin-Löf à la Coq.

In Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs (London, UK) (CPP
2024). Association for Computing Machinery, New York, NY, USA, 230–245. https://doi.org/10.1145/3636501.3636951

[2] Guillaume Allais. 2017. GitHub - Total Parser Combinators in Coq. https://github.com/gallais/parseque.

[3] Guillaume Allais. 2018. Agdarsec - total parser combinators. 45–59. Publisher Copyright: © JFLA 2018 - Journees

Francophones des Langages Applicatifs. All rights reserved. Sylvie Boldo, Nicolas Magaud. Journées Francophones des

Langages Applicatifs 2018. Sylvie Boldo; Nicolas Magaud. Journées Francophones des Langages Applicatifs 2018, Jan

2018, Banyuls-sur-Mer, France. publié par les auteurs, 2018. 〈hal-01707376〉; Vingt-neuviemes Journees Francophones

des Langages Applicatifs, JFLA 2018 - 29th French-Speaking Conference on Applicative Languages, JFLA 2018 ;

Conference date: 24-01-2018 Through 27-01-2018.

[4] Bytecode Alliance. [n. d.]. GitHub - bytecodealliance/wasmtime: A fast and secure runtime for WebAssembly. https:

//github.com/bytecodealliance/wasmtime. [Accessed 01-07-2024].

[5] Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing

Machinery, New York, NY, USA, 666–679. https://doi.org/10.1145/3009837.3009866

[6] Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Krebbers, and Eelco Visser. 2017. Intrinsically-typed

definitional interpreters for imperative languages. Proc. ACM Program. Lang. 2, POPL, Article 16 (dec 2017), 34 pages.
https://doi.org/10.1145/3158104

[7] Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language. Journal of
Automated Reasoning 43, 3 (2009), 263–288.

[8] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan

Schmitt, and Gareth Smith. 2014. A trusted mechanised JavaScript specification. SIGPLAN Not. 49, 1 (jan 2014), 87–100.

https://doi.org/10.1145/2578855.2535876

[9] Denis Bogdanas and Grigore Roşu. 2015. K-Java: A Complete Semantics of Java. SIGPLAN Not. 50, 1 (jan 2015), 445–456.

https://doi.org/10.1145/2775051.2676982

[10] James Chapman, Roman Kireev, Chad Nester, and Philip Wadler. 2019. System F in Agda, for Fun and Profit. In

Mathematics of Program Construction: 13th International Conference, MPC 2019, Porto, Portugal, October 7–9, 2019,
Proceedings (Porto, Portugal). Springer-Verlag, Berlin, Heidelberg, 255–297. https://doi.org/10.1007/978-3-030-33636-

3_10

[11] Adam Chlipala. 2022. Certified programming with dependent types: a pragmatic introduction to the Coq proof assistant.
MIT Press.

[12] Nils Anders Danielsson. 2012. Operational semantics using the partiality monad. SIGPLAN Not. 47, 9 (sep 2012),

127–138. https://doi.org/10.1145/2398856.2364546

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 22. Publication date: January 2025.

https://doi.org/10.1145/3636501.3636951
https://github.com/gallais/parseque
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3158104
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2775051.2676982
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1145/2398856.2364546


22:28 X. Rao, S. Radziuk, C. Watt, and P. Gardner

[13] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2013. Meta-theory à la carte. SIGPLAN Not. 48, 1 (jan
2013), 207–218. https://doi.org/10.1145/2480359.2429094

[14] Chucky Ellison and Grigore Rosu. 2012. An executable formal semantics of C with applications. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL
’12). Association for Computing Machinery, New York, NY, USA, 533–544. https://doi.org/10.1145/2103656.2103719

[15] PhilipWadler et al. 1998. The expression problem. http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.

txt

[16] W3C WebAssembly Community Group. [n. d.]. GitHub - WebAssembly/spec: WebAssembly specification, reference

interpreter, and test suite. https://github.com/WebAssembly/spec/tree/main/interpreter. [Accessed 09-07-2024].

[17] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of JavaScript. Springer Berlin Heidelberg,

126–150. https://doi.org/10.1007/978-3-642-14107-2_7

[18] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and JF Bastien. 2017. Bringing the web up to speed with WebAssembly. SIGPLAN Not. 52, 6 (jun 2017), 185–200.

https://doi.org/10.1145/3140587.3062363

[19] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: a minimal core calculus for Java

and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (may 2001), 396–450. https://doi.org/10.1145/503502.503505

[20] Ende Jin, Nada Amin, and Yizhou Zhang. 2023. Extensible Metatheory Mechanization via Family Polymorphism. Proc.
ACM Program. Lang. 7, PLDI, Article 172 (jun 2023), 25 pages. https://doi.org/10.1145/3591286

[21] Steven Keuchel and Tom Schrijvers. 2013. Generic datatypes à la carte. In Proceedings of the 9th ACM SIGPLAN
Workshop on Generic Programming (Boston, Massachusetts, USA) (WGP ’13). Association for Computing Machinery,

New York, NY, USA, 13–24. https://doi.org/10.1145/2502488.2502491

[22] Gerwin Klein and Tobias Nipkow. 2006. A machine-checked model for a Java-like language, virtual machine, and

compiler. ACM Transactions on Programming Languages and Systems (TOPLAS) 28, 4 (2006), 619–695.
[23] Wen Kokke, Jeremy G. Siek, and Philip Wadler. 2020. Programming language foundations in Agda. Science of Computer

Programming 194 (2020), 102440. https://doi.org/10.1016/j.scico.2020.102440

[24] Ramana Kumar, Magnus O Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of

ML. ACM SIGPLAN Notices 49, 1 (2014), 179–191.
[25] Daniel K Lee, Karl Crary, and Robert Harper. 2007. Towards a mechanized metatheory of Standard ML. In Proceedings

of the 34th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 173–184.
[26] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (jul 2009), 107–115. https:

//doi.org/10.1145/1538788.1538814

[27] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016.

CompCert-a formally verified optimizing compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress.

[28] Pierre Letouzey. 2002. A new extraction for Coq. In International Workshop on Types for Proofs and Programs. Springer,
200–219.

[29] Pierre Letouzey. 2008. Extraction in coq: An overview. In Logic and Theory of Algorithms: 4th Conference on Computability
in Europe, CiE 2008, Athens, Greece, June 15-20, 2008 Proceedings 4. Springer, 359–369.

[30] Sheng Liang and Paul Hudak. 1996. Modular denotational semantics for compiler construction. In European Symposium
on Programming. Springer, 219–234.

[31] Peter D Mosses. 2004. Modular structural operational semantics. The Journal of Logic and Algebraic Programming 60

(2004), 195–228.

[32] Michael Norrish. 1998. C formalised in HOL. Technical Report UCAM-CL-TR-453. University of Cambridge, Computer

Laboratory. https://doi.org/10.48456/tr-453

[33] Scott Owens. 2008. A sound semantics for OCaml light. In European Symposium on Programming. Springer, 1–15.
[34] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-Step Semantics. In

Proceedings of the 25th European Symposium on Programming Languages and Systems - Volume 9632. Springer-Verlag,
Berlin, Heidelberg, 589–615. https://doi.org/10.1007/978-3-662-49498-1_23

[35] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A complete formal semantics of JavaScript. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation. 346–356.

[36] Xiaojia Rao, Stefan Radziuk, Conrad Watt, and Philippa Gardner. 2024. Artifact: Progressful Interpreters for Efficient
WebAssembly Mechanisation. https://doi.org/10.5281/zenodo.14052598

[37] John C. Reynolds. 1972. Definitional interpreters for higher-order programming languages. In Proceedings of the ACM
Annual Conference - Volume 2 (Boston, Massachusetts, USA) (ACM ’72). Association for Computing Machinery, New

York, NY, USA, 717–740. https://doi.org/10.1145/800194.805852

[38] Tiark Rompf and Nada Amin. 2016. From F to DOT: Type Soundness Proofs with Definitional Interpreters.

arXiv:1510.05216 [cs.PL] https://arxiv.org/abs/1510.05216

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 22. Publication date: January 2025.

https://doi.org/10.1145/2480359.2429094
https://doi.org/10.1145/2103656.2103719
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://github.com/WebAssembly/spec/tree/main/interpreter
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3591286
https://doi.org/10.1145/2502488.2502491
https://doi.org/10.1016/j.scico.2020.102440
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.48456/tr-453
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.5281/zenodo.14052598
https://doi.org/10.1145/800194.805852
https://arxiv.org/abs/1510.05216
https://arxiv.org/abs/1510.05216


Progressful Interpreters for Efficient WebAssembly Mechanisation 22:29

[39] Christopher Schwaab and Jeremy G. Siek. 2013. Modular type-safety proofs in Agda. In Proceedings of the 7th Workshop
on Programming Languages Meets Program Verification (Rome, Italy) (PLPV ’13). Association for Computing Machinery,

New York, NY, USA, 3–12. https://doi.org/10.1145/2428116.2428120

[40] Wouter Swierstra. 2008. Data types à la carte. Journal of Functional Programming 18, 4 (2008), 423–436. https:

//doi.org/10.1017/S0956796808006758

[41] Yong Kiam Tan, Magnus O Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael Norrish. 2019. The

verified CakeML compiler backend. Journal of Functional Programming 29 (2019), e2.

[42] Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet, Eelco Visser, and Peter Mosses. 2022. Intrinsically-typed

definitional interpreters à la carte. Proc. ACM Program. Lang. 6, OOPSLA2, Article 192 (oct 2022), 30 pages. https:

//doi.org/10.1145/3563355

[43] WasmCert. 2024. WasmCert-Coq: A mechanisation of Wasm in Coq. https://github.com/WasmCert/WasmCert-Coq/

[44] Conrad Watt. 2018. Mechanising and verifying the WebAssembly specification. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs (Los Angeles, CA, USA) (CPP 2018). Association for Computing

Machinery, New York, NY, USA, 53–65. https://doi.org/10.1145/3167082

[45] Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. 2021. Two Mechanisations

of WebAssembly 1.0. In Proceedings of the 24th international symposium of Formal Methods (FM21), Beijing, China;
November 20-25, 2021 (Lecture Notes in Computer Science, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and

Naijun Zhan (Eds.). Springer, 61–79. https://doi.org/10.1007/978-3-030-90870-6_4

[46] Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. 2023. WasmRef-Isabelle: A Verified Monadic Interpreter

and Industrial Fuzzing Oracle for WebAssembly. Proc. ACM Program. Lang. 7, PLDI, Article 110 (jun 2023), 24 pages.

https://doi.org/10.1145/3591224

[47] Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A Eisenberg. 2017. A specifica-

tion for dependent types in Haskell. Proceedings of the ACM on Programming Languages 1, ICFP (2017), 1–29.

[48] A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation 115, 1

(1994), 38–94. https://doi.org/10.1006/inco.1994.1093

[49] Dongjun Youn, Wonho Shin, Jaehyun Lee, Sukyoung Ryu, Joachim Breitner, Philippa Gardner, Sam Lindley, Matija

Pretnar, Xiaojia Rao, Conrad Watt, and Andreas Rossberg. 2024. Bringing the WebAssembly Standard up to Speed

with SpecTec. Proc. ACM Program. Lang. 8, PLDI, Article 210 (jun 2024), 26 pages. https://doi.org/10.1145/3656440

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 22. Publication date: January 2025.

https://doi.org/10.1145/2428116.2428120
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/3563355
https://doi.org/10.1145/3563355
https://github.com/WasmCert/WasmCert-Coq/
https://doi.org/10.1145/3167082
https://doi.org/10.1007/978-3-030-90870-6_4
https://doi.org/10.1145/3591224
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3656440

	Abstract
	1 Introduction
	2 Interpreter from Progress
	2.1 Type soundness
	2.2 Interpreter from Progress
	2.3 Wasm 1.0 Semantics
	2.4 Inefficient proof tree traversals
	2.5 Proof tree explosion

	3 Progress from Progressful Interpreter
	3.1 Connection to intrinsically typed languages
	3.2 Progressful WebAssembly 1.0 Interpreter
	3.3 Optimising the Augmented Interpreter: Efficient Runtime Representation

	4 Evaluation
	4.1 Runtime performance
	4.2 Proof engineering effort

	5 Updating the Wasm 1.0 Mechanisation
	5.1 Mistakes found

	6 Related Works
	7 Conclusion and Future Work
	Acknowledgments
	References

