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0 Introduction

—Lecture 1—

Example classes: 4th Feb, 18th Feb, 4th Mar 330-5pm MR5; fourth class
undecided (probably on 15th).

Although the name of this course is Topics in Set theory, for all of its history
only one topic is discussed. So maybe this course should be called One Topic in
Set Theory, or probably just the Continuum Hypothesis : in this course we’ll just
solve one problem: the continuum problem, which we’ve known in the end that
the problem is independent from ZFC.

Let’s have some background stories first. In the second ICM congress (1900,
Paris), Hilbert posed the famous 23 Hilbert questions, with the first one being
the Continuum Hypothesis (a hypothesis at that time). The original formulation
of CH was:

Any infinite subset of real numbers is either equinumerous to the set of natural
numbers, or to the set of real numbers.

We could definitely formulate it better, but that is less important. More modern
version of CH would be a short equation

2ℵ0 = ℵ1

which seemingly has nothing to do with the previous problem. However, in ZFC
these two statements are equivalent:
• if 2ℵ0 > ℵ1, in particular, 2ℵ0 ≥ ℵ2. Since 2ℵ0 ∼ R, we get an injection
i : ℵ2 → R. Consider X := i[ℵ1] ⊆ R. Clearly, i ↑ ℵ1 (i restricted to ℵ1) is a
bijection between ℵ1 and X, so X ∼ ℵ1; but ℵ1, being uncountable, is not in
bijection with natural numbers, and is not in bijection with real numbers. Thus
X refutes CH.

If 2ℵ0 = ℵ1, let X ⊆ R. Consider b : 2ℵ0 → R a bijection. If X is infinite, then
b−1[X] ⊆ 2ℵ0 . Thus the cardinality of X is either ℵ0 or ℵ1 (which ∼ N and R
respectively). So 2ℵ0 = ℵ1 =⇒ CH.

In 1938, Gödel proved that ZFC does not prove ¬CH, and in 1961 Cohen proved
that ZFC does not prove CH, by methods of inner models and forcing (sometimes
also called outer models, which is not incorrect) respectively. The latter has
become the most important method in Set theory since then.

From logic (see Part II Logic and Set Theory) we have Gödel’s Completeness
Theorem: a theory T is consistent iff it has a model. So from the above two
statements, it seems that we’re going to prove that there are models for ZFC+CH
and ZFC+¬CH; but this is obviously not possible because of the incompleteness
phenomenon: we know we can’t prove the consistency of ZFC (as a result, we
can’t even prove there is a model of ZFC)! So instead we could only prove the
following:

Cons(ZFC)→ Cons(ZFC + CH)
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or equivalently, if M � ZFC, then there is N � ZFC +CH (and similar for the
other half).
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1 Model theory of set theory

1.1 Absoluteness

For a moment, we will assume that we have a model (M,∈) � ZFC. Unfortu-
nately this first assumption doesn’t make much sense, because model theory is
based on set theory and we don’t have anything if ZFC is inconsistent. We refer
to the canonical objects in M by the usual symbols, e.g. 0, 1, 2, 3, 4, ..., ω, ω+1, ....

What would an inner model be? Take A ⊆ M , and consider (A,∈). It is
a substructure of (M,∈), because there are no function symbols or constant
symbols in the language of set theory. This might be counterintuitive, because
we’re using symbols like φ and {·} all the time! However, these are technically
not part of language of set theory, as they can all be defined without any use of
function symbols, i.e. they are just abbreviations. For example:
• X = φ abbreviates ∀w(¬w ∈ X);
• X = {Y } abbreviates ∀w(w ∈ X ⇐⇒ w = Y ), and similarly for ∪ and P;
and also,
• relation symbols, such as ⊆, abbreviates ∀w(w ∈ X → w ∈ Y ).

Note that X = φ is NOT the formula that it looks like; in particular, it is not
quantifier free (because it abbreviates ∀w(¬w ∈ X))! So we need to take extra
care when we do things in this course.

Definition. If ϕ is a formula in n free variables, we say ϕ is upwards absolute
between A and M if for all a1, ..., an ∈ A,

(A,∈) � ϕ(a1, ..., an) =⇒ (M,∈) � ϕ(a1, ..., an)

and we say ϕ is downwards absolute between A and M if for all a1, ..., an ∈ A,

(M,∈) � ϕ(a1, ..., an) =⇒ (A,∈) � ϕ(a1, ..., an)

and ϕ is absolute between A and M if it is both upwards and downwards absolute.

Observation:
(a) If ϕ is quantifier-free, then ϕ is absolute between A and M . But this doesn’t
really help much, because almost nothing is quantifier-free: without quantifiers
we can only say things like A ∈ B and A = B, and conjunctions of those; that’s
pretty much all.
(b) We say that a formula is Σ1 if it is of the form

∃x1...∃xnϕ(x1, ..., xn)

where ϕ is q.f.;
we say a formula is Π1 if it is of the form

∀x1...∀xnϕ(x1, ..., xn)

where ϕ is q.f..
(c) If ϕ is Π1, it is downward absolute; if it’s Σ1 then it is upwards absolute. So
in particular, note that X = φ is downward absolute.
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—Lecture 2—

As an example, write 0, 1, 2, 3, ... for the ordinals in M , and let A := M \ {1}.
In A, we have 0, 2, but no 1; we also have {1}. Use Φ0(x) to denote the formula
∀w(¬w ∈ x) ⇐⇒ x = φ. Clearly (M,∈) � Φ0(0), so by Π1-downwards
absoluteness, (A,∈) � Φ0(0).
Now, how many elements does 2 = {0, 1} have? In M we obviously know 2
has 2 elements; but in A, 2 only has one element 0, and {1} has no element:
(A,∈) � Φ0({1})! Clearly (M,∈) 6� Φ0({1}), so Φ0 is not absolute between A
and M . As a corollary, we get (A,∈) 6� extensionality (we can uniquely specify
sets by specifying their elements).

Remark. We could go on, defining formulas Φ1(x),Φ2(x), etc to analyse which
of the elements correspond to the natural numbers in A.

Reminder (from Part II Logic and Set Theory): we say A is transitive in M if
for all a ∈ A and x ∈ M s.t. (M,∈) � x ∈ a, we have x ∈ A. The problem for
the above A is that it is not transitive. As long as that is fixed, we have the
following:

Proposition. If A is transitive, then Φ0 is absolute between A and M .

Proof. Since Φ0 is Π1, we only need to show upwards absoluteness. Suppose
a ∈ A s.t. (A,∈) � Φ0(a), and suppose for contradiction that a 6= 0. Then there
is some x ∈ a. By transitivity, x ∈ A. But then Φ0(a) : ∀w(w 6∈ a) is not true in
(A,∈).

Similarly, if Φn is the formula describing the natural number n, and there is
a ∈ A s.t. (A,∈) � Φn(a), and A is transitive, then a = n.

Proposition. If A is transitive in M , then (A,∈) � extensionality.

Proof. Take a, b ∈ A with a 6= b. So by extensionality in (M,∈), find, WLOG
some c ∈ a \ b. Since c ∈ a ∈ A, by transitivity c ∈ A. Note that all of these
quantifier-free formulas are absolute, so (A,∈) also models them; in particular,
(A,∈) � c ∈ a, c 6∈ b. So a, b do not satisfy the assumptions of extensionality.

Consider now A = ω+ 2 = {0, 1, 2, ..., ω, ω+ 1} ⊆M . This is clearly a transitive
subset of M because it’s an ordinal. So (A,∈) � extensionality, but clearly it
isn’t anything like a model of set theory as it is too thin. Consider the formula
x = P(y). Unfortunately, this is not a formula, as P is undefined. We have to
expand it properly:

x = P(y)

⇐⇒ x = {z; z ⊆ y}
⇐⇒ ∀w(w ∈ x↔ w ⊆ y)

⇐⇒ ∀w(w ∈ x↔ (∀v(v ∈ w → v ∈ y)))
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In A, what is P(ω)? We have (A,∈) � ω + 1 = P(ω), which is obviously not
what we want for P(ω) to be.

Definition. (Bounded quantification)
We first define the notations ∃v ∈ w ϕ to be ∃v(v ∈ w ∧ φ), and ∀v ∈ w ϕ to be
∀v(v ∈ w → φ), and we call these quantifiers bounded.
Now we say a formula ϕ is 40 if it is in the smallest set S of formulas with the
following properties:
1. All q-f formulas are in S;
2. If ϕ,ψ ∈ S, then so are:

2a. ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ϕ↔ ψ;
2b. ¬ϕ;
2c. ∃x ∈ w ϕ, ∀v ∈ w ϕ.

Theorem. If ϕ is 40 and A is transitive, then ϕ is absolute between A and M .

Proof. We already know that quantifier free formulas are absolute, and absolute-
ness is obviously preserved under propositional connectives. The only case left
is (2c).
Let’s just do ϕ → ∃v ∈ w ϕ = ∃v(v ∈ w ∧ ϕ). So suppose ϕ is absolute. We
need to deal with downwards absoluteness: we have (M,∈) � ∃v ∈ aϕ(v, a) for
some a ∈ A, i.e. (M,∈) � ∃v(v ∈ a ∧ (ϕ(v, a)).
Let’s find m ∈M s.t. (M,∈) � m ∈ a ∧ ϕ(m, a).
Now m ∈ a ∈ A, so m ∈ A. By absoluteness of ϕ, we get (A,∈) � m ∈
a ∧ ϕ(m, a) =⇒ (A,∈) � ∃v ∈ aϕ(v, a).

Let T be any set theory. Then we say that ϕ is 4T0 if there is a 40 formula ψ
s.t. T ` ϕ↔ ψ. So we get, as a corollary:

Corollary. If A is transitive in M , and both (M,∈) and (A,∈) are models of
T , then 4T0 formulas are absolute between A and M .
We may also define ΣT

1 formulas to be the formulas that are T -equivalent to
∃v1...∃vnψ where ψ is 40, and similarly for ΠT

1 formulas. So ΣT1 (ΠT
1 ) formulas

are upwards(downwards) absolute between A and M respectively.

On Wednesday we will look at what formulas are actually in these classes.

—Lecture 3—

Last time we fixed some set theory T , and defined formula classes 4T0 , ΣT0 and
ΠT

1 . We showed that 4T0 formulas are absolute between A,M if A is transitive
and A,M � T , and also ΣT1 and ΠT

1 upwards and downwards respectively.

Even if you haven’t paid attention you would have realize that we have some 0
and some 1 as subscripts here. So what is ∆T

1 ?

Definition. A formula is ∆T
1 if it is both ΣT1 and ΠT

1 .
Note that this definition is only possible upon taking equivalence classes on T ,
else no formula could be both Σ1 and Π1.
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Corollary. If A is transitive, A,M � T , and φ is ∆T
1 , then φ is absolute between

A and M .

Now we have to think of what a set theory is. We have to think of which axioms
we’re using. Preferably we would have extensionality, and then let’s have pairing,
union, power set, separation.
We denote this by FST0 (finite set theory), with the 0 denoting that we don’t
have foundation yet. We use FST to denote FST0+foundation(regularity).
Now if we add infinity in, we reach the original version of Zermelo set theory Z0.
However, nowadays we often call Z = Z0+foundation the Zermelo set theory.
For ordinary people these are enough (or far more than enough). But set-theorists
realized later that they need replacement; we call this ZF0 (of course ZF for
the version with foundation). And lastly if we add choice in we get ZFC0 (with
foundation we get ZFC).

1.2 Long List of ∆T
0 formulas

Now we find a long list of ∆T
0 formulas. We start with the more trivial ones:

1. x ∈ y;
2. x = y;
These two are ∆0 without T needed.
3. x ⊆ y. Apparently this is not a formula: we think it means ∀w(w ∈ x→ w ∈
y), which we might abbreviate it as ∀w ∈ x(w ∈ y), which is exactly the (2c) in
definition of ∆0. So this is ∆0 without T as well.
4. Φ0(x) : ∀w(w 6∈ x) : ⇐⇒ ∀w(¬w ∈ x). If you took part II Logic and Set
theory, you’ll disagree that this is a formula, because ¬ is not a thing; but let’s
not be so parsimonious on the syntax, but write it as ∀w(w ∈ x→ ¬x = x), so
this is also ∆0 in predicate logic.

We say that an operation x1, ..., xn → F (x1, ..., xn) is defined by a formula in
class Γ (where Γ is any class of formulas) in the theory T if there is a formula
Ψ ∈ Γ s.t.
(1) T ` ∀x1...∀xn∃yΨ(x1, ..., xn, y);
(2) T ` ∀x1...∀xn∀y, z Ψ(x1, ..., xn, y) ∧Ψ(x1, ..., xn, z)→ y = z;
(3) Ψ(x1, ..., xn, y) iff y = F (x1, ..., xn).
Note that the first two are formal requirements, but the last one is an informal
requirement as we haven’t defined what F is.

Examples: x → {x}, x, y → {x, y} (these are opeartions in FST0). Note that
these are informal because notations like {·} are undefined.

Let’s now continue our lists:
5. x→ {x}. We need a formula Ψ(x, z)↔ ’z = {x}’ ↔ ∀w(w ∈ z ↔ w = x).
This is not ∆0 yet because we have a ↔ here. We rewrite it as
∀w((w ∈ z → w = x) ∧ (w = x→ w ∈ z)), but the second part is not ∆0. So we
again rewrite it as
∃w ∈ z(w = w) ∧ ∀w ∈ z(w ∈ z → w = x). So this is ∆0, with some very weak
set theory being sufficient.
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Similar to 5, we also have
6. x, y → {x, y};
7. x, y → x ∪ y;
8. x, y → x ∩ y;
9. x, y → x \ y;
10. x, y → (x, y), the ordered pair, where we define it as {{x}, {x, y}}. Note
that we could apply 5 and 6 (twice) to get this one.
The last one gives us the motivation that if two operations f, g1, ..., gk are defined
by ∆T

0 -formulas, then so is the operation

x1, ..., xn → f(g1(x1, ..., xn), ..., gk(x1, ..., xn))

We then naturally have
11. x→ x ∪ {x} := S(x) (by the previous fact from 5 and 7).
12. x→ ∪x; (obvious if we write this fully out)
13. the formula ϕ describing ”x is transitive”.
14. the formula describing x is an ordered pair. At first look it looks like this is
unbounded , but that’s not the case: the quantifiers for the two components of
x are bounded by ∪x.
15. a, b→ a× b;
16. the formula ”x is a binary relation”;
17. x→ dom(x) := {y : ∃p ∈ x(p is an ordered pairs, p = (v, w), y = v)};
18. x→ range(x) := {y : ∃p ∈ x(p is an ordered pair and p = (v, y))};
19. the formula ’x is a function’;
20. the formula ’x is injective’;
21. the formula ’x is a function from A to B’;
22. the formula ’x is a surjection from A to B’;
23. the formula ’x is a bijection from A to B’.
Note that we’ve only used some very few axioms: union, pairing and some finite
version of separation, and nothing more.

Let’s also agree on the definition of an ordinal: α is an ordinal if α is a transitive
set well-ordered by ∈. Of course we have to also agree on what being well-ordered
means: it’s totally ordered + well-founded, i.e. ∀X(X ⊆ α→ X has a ∈-least
element).

Being totally ordered is ∆0 formula (check); however, the sentence (X,R) being
well-founded is not obviously absolute, since the bound for the ∀Z(Z ⊆ X...)
quantifier is the power set. We’ll talk about absoluteness of well-foundedness on
Friday.

However, we don’t actually need the general well-foundedness; we only need
well-foundedness by ∈, but that is given by axiom of foundation! So in models
with the axiom of foundation, α is an ordinal iff α is transitive and totally
ordered by ∈.

—Lecture 4—

We’re still on our list of things that are absolute for transitive models. We ended
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with ordinals last time, where we defined that x is an ordinal iff x is transitive
and (x,∈) is a well-order. We went into an issue there, because that consists of
(x,∈) is a total order, which is fine; but then it also needs ∈ is a well-founded
relation on x, which is only Π1. The good side is that if T contains the axiom
of foundation, then Φord(x) is equivalent to x is transitive and (x,∈) is a total
order (as the last part is guaranteed), which is ∆T

0 . Therefore we can expand
our list:

24. ’x is an ordinal’ is ∆T
0 (for the right choice of T );

This is not as harmless as before, because we actually need T to include the
axiom of foundation.
25. ’x is a successor ordinal’, which is equivalent to ’x is an ordinal’ and ∃y ∈ x(y
is the ∈-largest element of x);
26. ’x is a limit ordinal’;
27. x = ω (the smallest limit ordinal; similarly, x = ω+ω, x = ω+1, x = ω+ω+1,
x = ω2, x = ω3, x = ωω, ...)

1.3 Absoluteness of well-foundedness

If (X,R) is well-founded, we can define a rank function rk : X → α, where α
is some ordinal, s.t. rk is order-preserving between (X,R) and (α,∈). This
theorem is proved using the right instances of Replacement. In particular, ZF
proves:
(X,R) is well-founded ⇐⇒ ∃α∃f α is an ordinal, and f is an order-preserving
function from (X,R) to (α,∈). RHS is ΣZF

1 , and LHS is ΠZF
1 . Thus for suffi-

ciently strong T , (X,R) is well-founded is ∆T
1 and hence absolute for transitive

models of T .

We generalize this to concepts defined by transfinite recursion. But first let’s
recall what it is: let (X,R) be well-founded, let F be ’functional’, so for every x
there is a unique y s.t. x = F (y). Then there is a unique f with domain X and
for all x ∈ X, f(x) = F (f |ISR(x)), where ISR(x) = {z ∈ x : zRx}.

Proposition. Let T be a set theory that is strong enough to prove the transfinite
recursion theorem for F . Let F be absolute for transfinite models of T . Let
(X,R) be in A. Then f defined by transfinite recursion is absolute between A
and M .

Example. Let L be any first-order language whose symbols are all in A. Then
the set of L-formulas and the set of L-sentences are in A.
The relation S � ϕ (note that this is not q-f, although it is bounded by S) is
defined by recursion, and thus is absolute between A and M .
So: if S is an L-structure, S ∈ A,
(A,∈) �’S � ϕ’⇐⇒ (M,∈) �’S � ϕ’.

Gödel’s incompleteness theorem roughly says that, if T is a theory whose set of
axioms are recursive enumerable, and its axioms are strong enough to do some
arithmetics, then T 6` Cons(T ) (which is a sentence in L). Examples for T : PA,
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Z, ZF, ZFC, ZFC+ϕ any one additional formula.
In particular, ZFC∗ := ZFC + Cons(ZFC) 6` Cons(ZFC + Cons(ZFC)).

By completeness theorem, Cons(T ) ⇐⇒ ∃M(M � T ). Note that LHS is Π1

and RHS is Σ1, so completeness theorem tells us that this is a ∆1 concept. Note
also that LHS is a bounded concept, since all quantifiers are bounded (LHS is
∆Z

0 ).

Now write β for ’there is a transitive set A s.t. (A,∈) � ZFC’. Note that this is
stronger than the consistency of ZFC as it also specifies that there is a particular
model for it. In particular, we can’t prove it even in ZFC∗:

Theorem. If ZFC∗ is consistent, then ZFC∗ 6` β.

Proof. Let (M,∈) � ZFC∗. Suppose ZFC∗ ` β. So (M,∈) � β. So we
found a transitive set A in M s.t. (A,∈) is a model of ZFC. By assumption,
(M,∈) � Cons(ZFC), so (A,∈) � Cons(ZFC) since Cons(ZFC) is absolute
between transitive models. So (A,∈) � ZFC∗. So we proved Cons(ZFC∗),
contradicting Gödel’s incompleteness theorem.

That means that assuming β is not an obvious assumption, so we need to study
under which (natural) assumptions β is true.

1.4 Concrete transitive models of ZFC

So let’s investigate transitive models A inside M . The two most basic construc-
tions:
(1) von Neumann hierarchy (cumulative hierarchy);
(2) hereditarily small sets.

(1) is defined as follows by transfinite recursion: V0 := φ, Vα+1 := P(Vα),
Vλ := ∪α<λVα for λ being limit ordinals.

Proposition. ∀αVα is transitive (see Part II Logic and Set Theory). [Induction,
with key lemma: if X is transitive, then P(X) is transitive]

If λ is a limit ordinal, then Vλ � FST .
If λ > ω and a limit ordinal, then Vλ � Z.

For (2): let κ be a cardinal. We say X is hereditarily smaller than κ if |tcl(X)| < κ
(transitive closure).
Let Hκ := {X : X is hereditarily smaller than κ}. This is obviously transitive.

We’ll continue next Monday.

—Lecture 5—

We’ll start with Vα today.



1 MODEL THEORY OF SET THEORY 13

We know (if you don’t know then I invite you to learn it): if λ is a limit then
Vλ � FST ; if further λ > ω, then Vλ � Z. (On example sheet 1. I haven’t printed
them today, so if you want to try them before Wednesday, find an envelope next
to my office at C0.10 from this afternoon).

The critical axiom here is Replacement. The test case is λ = ω + ω, which
we expect replacement fails. Remember replacement says that if we have a
function F : Vω+ω → Vω+ω that is definable in Vω+ω, and x ∈ Vω+ω, then
{F (y) : y ∈ x} ∈ Vω+ω, i.e. image of elements of a set under a function is a set.

The idea is to take x = ω, and define F to be the function that takes n→ ω+ n,
and y → 0 if y 6∈ ω. Remember that definable just means that we need a formula
that uniques specify the image (see previous notes). Let Y = {F (n) : n ∈ ω},
which needs to be a set if replacement holds. Then Y is a subset of Vω+ω, so
Y ∈ Vω+ω+1; but it is not bounded, so it is not in Vω+ω. This example shows
concretely that Vω+ω � ¬Replacement.

What we needed in this particular example is a function that takes a bounded
sequence to an unbounded one. Similarly, if α is any ordinal s.t. there is a
definable function f : ω → α, s.t. the range of f is unbounded in α, then
Vα � ¬Replacement.

Even more general, if β < α, and a definable function f : β → α with unbounded
range, then Vα � ¬Replacement.

Reminder: we call a cardinal κ regular if there is no partition κ = ∪i∈IAi s.t.
|I|, |Ai| < κ for all i ∈ I.
Equivalently, for every α < κ,there is no unbounded function f : α→ κ.

We know, for exmaple, that ℵ1 is regular. Moreover, for any α, ℵα+1 is regular.
So this gives us the next candidate, α = ℵ1, which replacement cannot fail in the
above way. So how does it fail? Note that P(ω) ∈ Vω+2 ⊆ Vω1

. Clearly, there is
a surjection s : P(ω)→ ω1. But that means its range is unbounded in ω1. Thus
Vω1 � ¬Replacement either.
In general, if κ is regular and there is λ < κ with |P(λ)| ≥ κ, then the same
argument shows Vκ � ¬Replacement.

Definition. A cardinal κ is called inaccessible if
(a) κ is regular;
(b) ∀λ < κ, |P(λ)| < κ.

Side note: Related to the question, ’are there regular limit cardinals’? Under
GCH: ∀κ, 2κ = κ+, we have that κ is inaccessible iff κ is regular limit. This
suggests that the above question cannot be answered that easily (we usually call
regular limit cardinals weakly inaccessible).

Let’s assume that κ > ω is inaccessible (because ω is actually inaccessible, which
kind of make sense, because infinity is the ultimate thing that is not accessible
from everything smaller than it).

Lemma. ∀λ < κ, |Vλ| < κ.
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Proof. Clearly |Vω| = ℵ0, so |Vω| < κ.
By induction, suppose |Vλ| < κ. Then Vλ+1 = P(Vλ). Therefore |Vλ+1| =
|P(Vλ)| < κ by (b).
Now let λ < κ be a limit ordinal. Then Vλ = ∪α<λVα. So suppose by contradic-
tion that |Vλ| = κ. But |Vα| < κ for all α < κ, so we can write κ as a union of λ
many things of smaller cardinals, contradicting regularity.

Theorem. If κ is inaccessible, then Vκ � Replacement.

Proof. We’re actually going to prove something slightly stronger: take any
function F : Vκ → Vκ (without caring of its definability), and any x ∈ Vκ. Note
that Vκ = ∪α<κVα. So we can find α ∈ κ s.t. x ∈ Vα. Since Vα is transitive,
x ⊆ Vα. But that means |x| ≤ |Vα| < κ (by lemma). Note that this is exactly
what went wrong in Vω1

.
Now consider X := {F (y) : y ∈ x}. For each y ∈ x, consider ρ(F (y)) := the
least α s.t. F (y) ∈ Vα+1 \ Vα. By assumption, ρ(F (y)) < κ. Consider {ρ(F (y)) :
y ∈ x} := R, then |R| ≤ |x| < κ. By regularity, α := ∪R < κ. But now
∀y ∈ xF (y) ∈ Vα+1. So X ⊆ Vα+1, so X ∈ Vα+2, i.e. Vκ � Replacement.

Note that this proves that the existence of inaccessible cardinals cannot be
proved from ZFC.

1.5 Inaccessible cardinals

—Lecture 6—

Course webpage:
https : //www.math.uni−hamburg.de/home/loewe/Lent2019/TST L19.html.
Hand in work at the start of example class.

On the example sheet we’ve seen(or will see) that we write IC for the axiom
’there is an inaccessible cardinal.
We’ve seen that if κ is inaccessible, then Vκ � ZFC (which is a transitive model).
So ZFC+IC ` ’there is a transitive set that is a model of ZFC’, which we have
called this β at some point; we’ve also proved that β is stronger than Cons(ZFC),
in the sense that ZFC +Cons(ZFC) 6` β. Therefore ZFC +Cons(ZFC) 6` IC.

Two model-theoretic reminders (see Part II Logic and Set Theory for both):
(1) Löwenheim-Skolem theorem. We want to formalize this: if S is any structure
in some countable first-order language L, and X ⊆ S is any subset, then there is
a Skolem hull of X in S, usually written as HS(X), with X ⊆ HS(X) ⊆ S, s.t.
(a) HS(X) ≺ S (elementary subsucture of S);
(b) |HS(X)| ≤ max(ℵ0, |X|).
You probably have seen the proof of this theorem, but let’s have a sketch again
because it’s important to see how theorems of this kind are proved.

Proof. (sketch)
Key ingredient – Tarski-Vaught criterion: Z ⊆ S then Z ≺ S iff for every ϕ and
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all z1, ..., zn, if S � ∃ϕ(x, z1, ..., zn), then Z � ∃xϕ(x, z1, ..., zn).
In order to construct the Skolem hull, we define Z1 = Z0∪ witnesses for all
tuples ϕ1(z1, ..., zn) where z1, ..., zn ∈ Z0 = X, and then Zn+1 := Zn ∪ .... By
induction, each Zi has the same size. In the end we define Z :=

⋃
n∈N Zn, which

will satisfy the Tarski-Vaught criterion.

Consequence: work in ZFC + IC, (M,∈) � ZFC + IC; inside Vκ ⊆M � ZFC.
Apply L-S theorem to Vκ with X := φ, we find a structure H := HVκ(φ) ≺ Vκ,
which is countable (since it cannot be finite). So we’ve found a countable model
of ZFC – isn’t this a contradiction? Not really, because this H is, in general, not
transitive – and it probably shouldn’t be – consider the sentence ’∃x s.t. x is
the least uncountable cardinal. This is certainly true in Vκ, so it needs to be
also true in H; but its only witness in Vκ is ℵ1, so ℵ1 ∈ Z1 ⊆ H; so H cannot
be transitive since ℵ1 has uncountably many elements.

(2) Mostowski Collapse Theorem. If X is any set, and R ⊆ X × X s.t. R is
well-founded and extensional, then there is a transitive set T s.t. (T,∈) ∼= (X,R).
Consider (H,∈) � ZFC: ∈ is extensional on H by the axioms of ZFC;∈ is
well-founded on M , so ∈ is well-founded on H.
So, let T be the Mostowski collapse of H: T is transitive, (T,∈) ∼= (H,∈). So
(T,∈) � ZFC, and now T is transitive, and since this is a bijection, |T | = |H| ≤
ℵ0, so we get a countable transitive model of ZFC!

(some diagrams, where we used T to denote the countable transitive model of
ZFC)

The problem is that, being countable is not an absolute property. Consider
ϕ(x) := x is countable: ∃f(f : x→ N︸ ︷︷ ︸

∆ZFC
0

, f is injective︸ ︷︷ ︸
∆ZFC

0

), which is ΣZFC
1 , so is

upwards absolute. But this formula is not downwards absolute: if α is an ordinal,
α ∈ T , then Vκ � α is countable. But since (T,∈) � ZFC, there is some α ∈ T
s.t. (T,∈) � α is uncountable, so Vκ and T disagree about the truth value of
ϕ(α).

Now consider ψ(x) : x is a cardinal:= ∀α(α < x →there is no injection from
x to α), which is ΠZFC

1 , so downwards absolute. In (T,∈), take α least s.t.
(T,∈) � ¬ϕ(α). Then (T,∈) � α is a cardinal. Clearly Vκ � α is not a cardinal.
So ψ is not upwards absolute.

Note that if λ is an uncountable cardinal in Vκ, then λ 6∈ T , so the downwards
absoluteness of ψ is not very interesting because there aren’t many cardinals.

Instead of building HVκ(φ), why not build H∗ := HVκ(ω1 + 1)? Clearly ω1 ∈ H
now, and ω1 ⊆ H as well, so ω1 stays the same when we do Mostowski’s Collapse;
so ω1 ⊆ T ∗ and ω1 ∈ T ∗ where T ∗ is the new model obtained after Mostowski’s
collapse.

Now we have Vκ � ω1 is a cardinal, so by downwards absoluteness, T ∗ � ω1 is
a cardinal. However, it might be the case that there are some other cardinals
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below ω1, so we can’t say ω1 = ℵ1.

—Lecture 7—

Remember our goal is to deduce some results about CH. We’ve decided to go
for transitive models of ZFC (as we don’t want to be concerned about whether
a function is still a function in a submodel). We’ve looked at ’inner models’,
and in particular, models of type Vα. We also know that if α is inaccessible,
then Vα � ZFC. We’ve also found countable transitive submodel in Vα of ZFC,
called T , by Mostowski collapse and L-S theorem.

One problem: this is not going to change the truth value of CH: Suppose CH
is true in (M,∈), so there’s a bijection between R and ω1. Similarly, if CH is
false then there is no such bijection. An immediate problem is that we don’t
know what R is; we might as well replace it by P(N), which is definitely in Vω+20

(safe enough), while ω1 ∈ Vω1+1. But that means Vκ knows exactly if there is a
bijection (say we can define this in Vω1+20 ⊆ Vk) between R and ω1 because it
has access to both of the levels, and it could just ’take a look’ at it to determine
the truth value. So (M,∈) � CH ⇐⇒ (Vκ,∈) � CH.
But remember by L-S theorem we got a countable H ≺ Vκ, so (H,∈) �
CH ⇐⇒ (Vκ,∈) � CH; and Mostowski collapse gives (T,∈) ∼= (H,∈), so
(T,∈) � CH ⇐⇒ (H,∈) � CH.

Summary: the method of finding countable transitive elementary submodels of
Vκ is not going to change the value of CH. So let’s look at different models.

1.6 The second construction: Models of hereditarily small
sets

Let κ be a regular cardinal (e.g. κ = ω, κ = ω1). Then x is called hereditarily of
size < κ if |tcl(x)| < κ, where tcl(x) is the transitive closure of x (=

⋃
n∈N tn(x),

where t0(x) := x, tn+1(x) =
⋃
tn(x)).

The definition of tcl(x) captures the intuition of ’x has size < κ, all elements of
x have size < κ, all elements of elements of x have size < κ, etc.’.

Remark. It’s important that κ is regular for the intuition to work: suppose
it’s not, say let κ = ℵω. Now think of a tree that has branches of all finite
lengths, where at level n we attach something of cardinality ℵn at the node.
More formally, define

x0
n = ℵn
xk+1
n = {xkn}
...

X := {x0
0, x

1
1, x

2
2, ...}

Note that X is countable, but in the ’tcl’ notation above, the cardinality of
tn+1(X) is ℵn, so tcl(x), as the union of them, has cardinality ℵω! The problem
is obviously because we could obtain ℵω from fewer than ℵω of smaller than ℵω
things, i.e. ℵω is not regular.
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From now let’s forget about those singular κ, but only consider κ regular.

We make a few observations:
1. Hκ is transitive;
2. If X ⊆ Hκ and |X| < κ, then X ∈ Hκ (follows directly from regularity of κ
and the definitions).

Example. Let Hℵ0 := HF (hereditarily finite).
We claim that HF = Vω.

Proof. Vω ⊆ HF . We need to show Vn ⊆ HF∀n. Clearly V0 = φ ⊆ HF ; if
Vn ⊆ HF , and Z ⊆ Vn, then by observation 2, Z ∈ HF , so P(Vn) = Vn+1 ⊆ HF .
Now we show HF ⊆ Vω. Suppose not, so there is x ∈ HF \Vω; take such x with
minimal rank α, so x ∈ Vα+1 \ Vα. By minimality, if y ∈ HF with ρ(y) < α,
then there is k ∈ N s.t. ρ(y) = k. We know x ∈ P(Vα), so x ⊆ Vα ⊆ HF . So
x ∈ HF , so x is finite. Say x = {x1, ..., xn}. By minimality, each of them is in
Vki for some ki, so x ⊆ Vmax(k1,...,kn)+1 ⊆ Vω.

Example. Hℵ1 = HC (hereditarily countable).
We know:
• Ord ∩HC = ω1;
• Vω+2 \HC 6= φ;
• Vω+1 ⊆ HC.

Which axioms are true in HC? Let’s check Pair: say x, y ∈ HC. then {x, y} ⊆
HC. But |{x, y}| < ℵ1, so {x, y} ∈ HC.
Separation, foundation, extensionality, union all hold in HC as well quite easily.
Replacement: let F be a function HC → HC, and x ∈ HC. Consider R :=
{F (y); y ∈ x}, which exists in the universe, and we need to check whether it’s in
R. We know |R| ≤ |x| < ℵ1, and R ⊆ HC. By observation 2 we immediately
get R ∈ HC. So replacement is trivial!
So we know Power Set must be false, or at least not provable in HC, else we’ve
proved the existence of a model of ZFC!

Note that Power Set was trivial in the V hierarchy while it’s replacement that
was troublesome there, whereas here it’s the other way round.

We know that N ∈ HC, and we also know that P(N) 6∈ HC. But that is
not enough to disprove Power Set in HC; we need to show that there is no
object in HC such that HC thinks that it is the power set of N; more formally,
we need to show that for all A ∈ HC, HC �’A is not a power set of N, i.e.
∃X(X ⊆ N ∧X 6∈ A).

Fix A ∈ HC, and presume that this might be the HC-powerset of N.
Thus, if X ⊆ N and X ∈ HC, then X ∈ A. But if X ⊆ N, then X ⊆ HC, and
|X| < ℵ1, so X ∈ HC.
So if A is any set s.t. ∀X,X ⊆ N ∧X ∈ HC → X ∈ A), then A is uncountable,
so A 6∈ HC. Contradiction. Thus HC � ¬PowerSet.

—Lecture 8—
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We’ve not been doing very useful things so far since what we’ve done was basically
proving that many things are not useful. Even worse, the thing that we’re going
to do now is the most pointless of all as it’s almost identical to some problems
in the example sheet.

We knew Hκ is a model of all of ZFC without power set if κ is regular.

Proposition. If κ is a strong limit (cannot be reached by taking power set),
then Hκ � PowerSet.

Proof. We’ll show: if x ∈ Hκ, then P(x) ∈ Hκ. This is much stronger than the
Power Set axiom.
Certainly tcl(P(x)) = P(x) ∪ tcl(x). Now |tcl(x)| < κ since x ∈ Hκ, and
|P(x)| < κ as well since κ is a strong limit. So together we know |tcl(P(x))| < κ,
so P(x) ∈ Hκ.

General idea: build inner models using definability properties. But the problem
is: definability is not definable. This sounds like a typical joke from logicians,
but it’s actually a theorem.

Theorem. (Tarski Undefinability of Truth)
Let (M,∈) � ZFC (we’ll just use this, but we’ll see in the proof what set theory
we actually need). We assume that the language of set theory L∈ ⊆ M (so
that sentences and formulas are actually elements of M). Consider the set S of
sentences of L∈ and the set U of unary predicates (i.e. L∈-formulas in one free
variable).
A truth predicate would be a formula T (x) in L∈, so a unary predicate, i.e.
T ∈ U , s.t. (M,∈) � ϕ ⇐⇒ (M,∈) � T (ϕ).
Claim: there can be no such truth predicate.
Before proving this, let’s contrast this with the definition of truth we had before.
Our previous result says if M is a set, then the concept (M,∈) � ϕ is ∆0 (because
we bound the quantifier by M , which is a set, so in some sense we had to use
a parameter M in our previous result, which is not available in our current
settings.

Proof. (idea: diagonalisation)
If ϕ(x) ∈ U , then we can ask whether ϕ(ϕ) (which is a sentence, so ∈ S) is true.
Let’s assume that there is a truth predicate T , and define a unary formula
δ(x) := ¬T (x(x)) (the diagonal), where x(x) is x applied to x if x ∈ U , and
is φ otherwise (remember formulas are elements in M). Now apply δ to δ, so
δ(δ) ∈ S. Now

M � ¬T (δ(δ)) ⇐⇒ M � δ(δ) ⇐⇒ M � T (δ(δ))

by definition of δ and the fact that T was a truth predicate respectively. Contra-
diction.

Again, let M � ZFC. We say that x ∈M is definable if there is a formula ϕ s.t.
∀y ∈Mx = y ⇐⇒ M � ϕ(y).
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We say that a formula D is called a definition of definability if ∀x ∈ M , x is
definable ⇐⇒ M � D(x). By now we all know what we should expect next:

Theorem. (undefinability of definability)
There is no formula D that is a definition of definability.

Proof. Assume D is a definition of definability. Consider (informally now)

α := max{β : β is not definable, but∀γ < β∃γ′γ < γ′ < β and γ′ is definable}

which is the supremum of the definable ordinals. This has to exist because there
are only countably many formulas, and each formula only specifies at most one
ordinal; this has to be uncountable since, say, ℵ1 is definable. This is defined by
the formula:
y = α↔ y is an ordinal and ¬D(y) and

∀γ(γ < y → ∃γ′(γ < γ′ < y ∧D(γ′)))

This proves that α is definable in the sense of the definition, so M � D(α); but
one of the conjuncts in the definition implies M � ¬D(α). Contradiction.

We now learned that definability is not going to work without keeping track
of parameters. So we need to define definability with direct reference to what
parameters are allowed.

Fix A, and n ∈ N. We’re going to define by recursion what it means to be a
definable subset of An:
Define Diag∈(A,n, i, j) := {s ∈ An : si ∈ sj} (read as diagrams),
Diag=(A,n, i, j) := {s ∈ An : si = sj},
Proj(A,R, n) := {s ∈ An : ∃t ∈ R(t|n = s)} (where the formula in the last
bracket means t restricted to n) (the intended meaning is for R ⊆ An+1). Now
define
Def(0, A, n) := {Diag∈(A,n, i, j) : i, j < n} ∪ {Diag=(A,n, i, j) : i, j < n},

Def(k + 1, A, n) := Def(k,A, n) ∪ {R ∩ S : R,S ∈ Def(k,A, n)}
∪ {An \ S : S ∈ Def(k,A, n)}
∪ {Proj(A,R, n) : R ∈ Def(k,A, n+ 1)}

(corresponding to conjunctions, negations and existence quantifier). Lastly we
define

Def(A,n) :=
⋃
k∈N

Def(k,A, n)

Observe that the definition of Def(k+ 1, A, n) and Def(0, A, n) are ∆0 because
all of the quantifiers are bounded by A. So the definition of Def(A,n) is a
recursive definition based on absolute notions, and thus absolute for transitive
models (containing A, of course).
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The next thing we are going to do (a bit of preview) is to use Def(A,n) to define
the definable power set. After that, define a definable von Neumann hierarchy.
That’s what we are going to do on Wednesday.

A reminder that we’re going to have an example class this afternoon (330-5pm).
I think it’s in MR5?

—Lecture 9—

1.7 The constructible universe

Last time we discussed the construction of an inner model L ⊆M that is based on
definability. Problems with definability are conncted to Tarski’s Undefinability of
Truth; the definable fragment of truth is that where we fix the scope of existential
quantifiers in advance.
Recall that we defined recursively Def(A,n), which are definable subsets of An,
where definable is interpreted in A.

Lemma. Let X ⊆ An. If there is a formula ϕ s.t.

(x1, ..., xn) ∈ X ⇐⇒ (A,∈) � ϕ(x1, ..., xn)

then X ∈ Def(A,n).

Proof. Simple induction over complexity of ϕ.

Lemma. In M , we have that Def(A,n) is countable.
(We even have a concrete surjection N→ Def(A,n).)

Proof. There are only countably many formulas.

Observation: in the definition of Def(k,A, n), we only used notions absolute
for transitive models of ZF. So, since Def(A,n) was defined by recursion over
Def(k,A, n), also Def(A,n) is absolute between transitive models.

Our goal is to find a definable power set. However, Def(A, 1) is not a good
candidate as it is always countable, so if A is uncountable, then there is a ∈ A
s.t. {a} 6∈ Def(A, 1) by the above lemma.

We define

D(A) := {X ⊆ A : ∃n∃s ∈ An∃R ∈ Def(A,n+ 1)s.t.X = {a ∈ A : (a, s0, ..., sn−1) ∈ R}}

and we’ll call this the definable power set.

Observation: If X is informally definable with parameters from A, i.e. X = {a ∈
A : (A,∈) � ϕ(a, p1, ..., pn)} for some p1, ..., pn ∈ A, then X ∈ D(A).

Observation: As Def(A,n) was absolute and the quantifiers in the definition of
D(A) are all bounded, D(A) is absolute for transitive models.
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Proposition. If A is transitive, then D(A) is transitive.

Proof. Suppose x ∈ X ∈ D(A). Then x ∈ X ⊆ A. So x ⊆ A and x ∈ A as A is
transitive. We can then define x as a subset by the formula v ∈ x = ϕ(v) (which
selects exactly the elements of x, which form x): x = {z ∈ A : (A,∈) � ϕ(z)}.

Let L0 := φ,
Lα+1 := D(Lα),
Lλ :=

⋃
α<λ Lα.

We refer to the class
⋃
α∈Ord Lα as ’L’, or the constructible universe.

Properties:
(1) If α ≤ ω, then Vα = Lα.
(2) For every α, Lα is transitive from proposition by induction.
(3) α ≤ β → Lα ⊆ Lβ ;
(4) Ord ∩ Lα = α (this and (3) are in sheet 2);
(5) If α ≥ ω, then |Lα| = |α|.

Proof. α = ω: |Lω| = |Vω| = ℵ0 = |ω|;
Suppose for all β < α we have |Lβ | ≤ |β|. Show that |Lα| < |α|+:
(a) α is a successor, say α = β + 1. So Lα = Lβ+1 = D(Lβ); if we look carefully
at the definition, we could get a surjection from ℵ0 ×

⋃
n∈N L

n
β onto D(Lβ); but

we assumed α is at least ω, ℵ0 ×
⋃
n∈N L

n
β has cardinality |Lβ | as well.

(b) α is a limit. Let πβ : α→ Lβ be a surjection. Then we find surjection from
α× α� Lα by (γ, γ′)→ πγ(γ′).

Note that in the above we’ve only proved that the cardinality is at most what
we wanted; but it is also at least that by property (4).

Now look at Vω+1 and Lω+1. They can’t be the same, as the first is uncountable
but the second is uncountable. So Lω+1 ⊆ Vω+1, and Vω+1 \Lω+1 6= φ. However,
it is entirely possible that the missing part is collected later when we reach Lω1

or later.

Definition. If x is constructible, x ∈ L, then ρL(x) := min{α : x ∈ Lα+1} (an
analogue of the rank in V ).

Definition. V = L is the axiom of constructibility

∀x∃α(x ∈ Lα)

Note that this is a concrete sentence in L∈, as Lα can be recursively defined.

Lemma. If M is a transitive set model of ZFC + (V = L), then there is a limit
ordinal λ s.t. M = Lλ.
Note that we haven’t shown that such M would exist (as ¬V = L might well be
a theorem in ZFC), but we know what it will look like if it exists.
We don’t really have much time, so we’ll present a quick proof here; more details
next lecture.
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Proof. Consider λ := Ord ∩M (remember that M is a set, so λ is indeed a set,
so an ordinal). Clearly, λ is a limit ordinal (both are transitive).
We claim that M = Lλ: suppose x ∈M , by V = L find α ∈M s.t. (M,∈) � x ∈
Lα. Lα was defined by recursion from absolute notions, so x ∈ Lα is absolute.
So x ∈ Lα ⊆ Lλ.
Suppose x ∈ Lλ, so there is α < λ s.t. x ∈ Lα (this is absolute, so (M,∈) � x ∈
Lα), by choice of λ, α ∈M .

—Lecture 10—

What did we do so far? We defined the constructible universe, and we realized
that our definitions were absolute for transitive models: if we write Φ(x, α) the
formula ’x ∈ Lα’, Ψ(x, α) the formula ’x = Lα’, then both Φ and Ψ are absolute
for transitive models of set theory.

We also had the axiom ’V = L’, which is a short hand for ∀x∃αx ∈ Lα.

Proposition. If A is a transitive set model of ZFC + (V = L), then A = Lα
where α = Ord ∩A.

Proof. ’A ⊆ Lα’: If x ∈ A, then by (A,∈) � V = L, find β s.t. (A,∈) � x ∈ Lβ ;
by absoluteness, x ∈ Lβ ⊆ Lα.
’Lα ⊆ A’: If x ∈ Lα, since α = Ord ∩ A and A � ZFC, α has to be a limit
ordinal. So we can write Lα =

⋃
β<α Lβ . So find β < α and x ∈ Lβ . Since

(A,∈) � ZFC, we know that A thinks ’Lβ exists’, or slightly more formally,
there is X s.t. (A,∈) � Ψ(X,β). By absoluteness of Ψ, Ψ(X,β) is actually true
in the bigger universe M . So X = Lβ . Therefore Lβ ∈ A. But x ∈ Lβ and A is
transitive. So x ∈ A.

However, as we said last time, we don’t really know if there is actually a model
of ZFC + (V = L), so what we just did seems a bit pointless. Our next major
goal shall then be:

Theorem. (Gödel, 1938)
If κ is inaccessible, then Lκ � ZFC + (V = L).

Corollary. IC =⇒ there is a countable α s.t. Lα � ZFC + (V = L).

Proof. Take H := HLκ(φ) ≺ Lκ, the Skolem hull. H is therefore countable.
Then take T ∼= H the Mostowski collapse, then (T,∈) ≡ (Lκ,∈) (all sentences
have the same truth value). Therefore (T,∈) � ZFC + (V = L) is a countable
transitive model; then apply our previous proposition we know T = Lα for some
ordinal α. But by a previous property |Lα| = |α|, so α has to be countable.

Contrast this with: If Vα � ZFC, then α cannot be countable: if α is countable,
then there is a code for a surjection f : N � α in Vω+1 ⊆ Vα, so Vα � ’α is
countable’; contradiction to Vα � ZFC. (some diagram)
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Proof. (of theorem)
Extensionality follows from transitivity;
Pair: x, y ∈ Lκ, find α s.t. x, y ∈ Lα s.t. {x, y} ⊆ Lα. Clearly the formula

ϕ(z, x, y) := z = x ∨ z = y

defines the pair {x, y}. So by one of our previous lemmas, the pair lies in
D(Lα) = Lα+1 ⊆ Lκ.
However, note that our lemma only says that if we have a formula ϕ, and we
interpret it in Lα, then what we get will be in D(Lα). But luckily our ϕ here
is simple enough that it doesn’t matter where we interpret it within: its truth
value is the same in any model that contains x and y.
The same proof takes care of, say, Union. Let’s get to something that’s more
interesting. How about Power Set? This can’t work directly, since there are just
not enough elements in D(Lα).
Consider x ∈ Lκ. As before, α < κ, so x ∈ Lα, so x ⊆ Lα by transitivity, so
|x| ≤ |Lα| < κ because κ is strongly inaccessible.
Consider P(x) in M ; we know |P(x)| = 2|x| < κ because κ is inaccessible, and
|Lκ ∩ P(x)| ≤ |P(x)| < κ (diagram).

Remark. Since Lκ,P(x) are sets in M , Lκ ∩ P(x) is a set in Vκ, and it is
definable in Vκ by the formula

z ∈ Lκ ∩ P(x) ⇐⇒ Φ(z, κ) ∧ z ⊆ x

But that’s not good enough to prove that Lκ ∩ P(x) ∈ Lκ, as we actually need
to find an α < κ in place of κ in the formula.

For each z ∈ Lκ ∩ P(x), find the L-rank,

αz := ρL(z) < κ

and consider the set

{αz : z ∈ Lκ ∩ P(x)} ⊆ κ

of size < κ. Then by regularity of κ we know it must be bounded by some β < κ
s.t.

{αz : z ∈ Lκ ∩ P(x)} ⊆ β

So Lκ ∩ P(x) ⊂ Lβ .
Now define

P := {z : (Lβ ,∈) � z ⊆ x}

By our lemma, P ∈ D(Lβ) = Lβ+1 ⊆ Lκ; but Lκ � ∀z(z ∈ P ⇐⇒ z ⊆ x), so
Lκ is a model of the power set axiom. (see diagram)

—Lecture 11—

Example sheet 2 will be in an envelope next to C0.10 this afternoon.
We saw pairing and power set last time. Some of the others will be in the
example sheet.
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Let’s consider separation, a more difficult one. Let x ∈ Lκ, ϕ be a formula,
a1, ..., ak ∈ Lκ.
Separation says that, informally, {z ∈ x : ϕ(z, a1, ..., an)} exists.
More formally, {z ∈ x : Lκ � ϕ(z, a1, ..., an)} exists. At first glance we can
use the same argument for power set: just find all these z are, and go to the
next level and consider D of it. Let’s see how that stops working. For each
1 ≤ i ≤ n, find αi < κ s.t. ai ∈ Lαi , and find α < κ s.t. x ∈ Lα. Define
β := max{α, α1, ..., αn}.
So for any z ∈ x, we have z, a1, ..., an ∈ Lβ (by transitivity of Lβ). So {z ∈
x : Lβ � ϕ(z, a1, ..., an)} ∈ D(Lβ) = Lβ+1. Apparently this is not necessarily
what we want: we have no idea if ϕ is absolute between Lβ and Lκ; in fact we
have some idea, because this has to work for any ϕ, so there are definitely some
formulas that are not absolute.
So we see the problem is that, in general, {z ∈ x : Lβ � ϕ(z, a1, ..., an)} 6= {z ∈
x : Lκ � ϕ(z, a1, ..., an)}.

Note that our choice of β might be a terrible one, as we have no idea what it is;
it might even be a successor ordinal. So we have to choose it more carefully.

Consider HLκ(Lβ) ≺ Lκ, with cardinality the same as |Lβ | = |β| < κ; and now
consider its Mostowski collapse, T ∼= HLκ(Lβ), with Mostowski isomorphism
π : T → HLκ(Lβ). T is transitive, |T | = |β| < κ, and T ≺ Lκ.

[Some model theory recap: we have if M ∼= M ′, M � ϕ(x1, ..., xn) ⇐⇒ M ′ �
ϕ(π(x1), ..., π(xn)). M ≡ M ′ means M � ϕ ⇐⇒ M ′(ϕ) for all sentences
ϕ. Therefore isomorphism implies elementary equivalence. M ≺ M ′ means
M � ϕ(x1, ..., xκ) ⇐⇒ M ′ � ϕ(x1, ..., xn).]

We then have

T HLκ(Lβ) Lκ

ϕ(z, a1, ..., an) ϕ(π(z), π(a1), ..., π(an)) ϕ(π(z), π(a1), ..., π(an))

π id

We know that the Mostowski collapse is the identity on transitive sets. So, if
X ⊆ Lκ is transitive, then π|X = id|X . Since Lβ is transitive, and all z, a1, ..., an
are in Lβ , we get that T � ϕ(z, a1, ..., an) ⇐⇒ Lκ � ϕ(z, a1, ..., an).

Let’s do the ’modified Skolem Hull construction’ from sheet 1 q12: let
α0 := Ord ∩ T, αn+1 is the least γ s.t. Lγ contains Lαn and a witness for each
existential statement true with parameters in Lαn . Let ᾱ :=

⋃
n∈N αn. So

T ≺ Lᾱ with ᾱ < κ.
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Now define the set via ϕ over Lᾱ:

Lᾱ+1 = D(Lᾱ) 3{z ∈ x : Lᾱ � ϕ(z, a1, ..., an)}
={z ∈ x : T � ϕ(z, a1, ...., an)} (T ≺ Lᾱ)

={z ∈ x : HLκ(Lβ) � ϕ(π(z), π(a1), ..., π(an))}
={z ∈ x : HLκ(Lβ) � ϕ(z, a1, ..., an)}
={z ∈ x : Lκ � ϕ(z, a1, ..., an)}

We only showed pairing, power set, and separation. The rest are similar.

Theorem. (The Condensation Lemma)
If κ is inaccessible, x, y ∈ Lκ, and y ⊆ x, then there is α < κ with |α| ≤ |tcl(x)|
s.t. y ∈ Lα.

Proof. Consider y ⊆ x and tcl(x∪{y}) =: t. Clearly |t| = |tcl(x)|. Now consider

T
π−→ HLκ(t) ≺ Lκ, clearly all these things have the same cardinality. Now we

know π is the identity on t, so in particular π(y) = y, ∀z ∈ xπ(z) = z, and
π(x) = x.
By our lemma, find β s.t. T = Lβ (we’re now allowed to do this since Lκ �
ZFC + (V = L), and therefore Lβ ≡ Lκ � ZFC + (V = L)).
Now y can be defined over Lβ with parameters in Lβ , namely viz. y (we know y
is in there so we don’t actually need to define it).
We just need to check β has the right cardinality: |β| = |Lβ | = |T | = |tcl(x)|.

—Lecture 12—

Today we’re going to prove that there is a model of ZFC+CH. This is especially
convenient as today we’re in the middle of the entire course (the 12th lecture),
so we spent exactly half of the course on proving one side of what we wanted.

Recall that last time we had the condensation lemma: if κ is inaccessible.
x, y ∈ Lκ, y ⊆ x, then there is α s.t. |α| ≤ |tcl(x)| s.t. y ∈ Lα.

Corollary. x = N, y ⊆ N, then there is α < ω s.t. y ∈ Lα.

Corollary. (1) P(N) ∩ Lκ ⊆ Lω1
.

Observe that P(N) ∩ Lκ = PLκ(N), where PLκ(N) referes to the unique p ∈ Lκ
s.t. Lκ � p = P(N).
(2) PLκ(N) ⊆ Lω1 .
(3) |PLκ(N)| ≤ |Lω1

| = |ω1| = ℵ1.
Hence it seems that we’re extremely close to having a model of ZFC+CH.
However, this ω1 we’re referring to here is, of course, in the model that we’re
building.
(A ’one-line proof’ of the Condensation Lemma:

y ∈ Lα = T ∼= HLκ(tcl(x) ∪ {y}) ≺ Lκ

)
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Let’s improve this to show Lκ � CH. The key idea is that Lκ � ZFC, the con-
densation lemma itself is a theorem of ZFC(?), so we can just apply condensation
lemma inside Lκ.

The problem is that our condensation lemma is a theorem of ZFC+IC instead
of ZFC.

Remark. So if you assume ZFC+2IC in M , then this argument gets you that
Lκ (where κ should be the second inaccessible cardinal now) is a model of CH,
and you’re actually done provided that you think 2IC is a reasonable thing to
have.

But this feels a bit odd. Let’s try to do this without 2IC.

Work in Lκ, we know that PLκ(N) ⊆ Lω1
, where ω1 is the ω1 in M .

Note that ω1 < κ, so in particular Lω1 ⊆ Lκ.

Now we could build HLκ(Lω1
) ≺ Lκ, and PLκ(N) ⊆ Lβ = T ∼= HLκ(Lω1

). By
the standard argument we know β < ℵ2 < κ. But now Lβ � ZFC + V = L.

Run the condensation lemma proof for Vκ as M and Lβ as Lκ, we then get

y ∈ Lα = T ∼= HLβ (N ∪ {y}) ≺ Lβ

Now the surrounding universe knows that α is countable, so Lκ knows α is
countable. So if ωLκ1 is the ω1 of Lκ, then PLκ(N) ⊆ LωLκ1

.

So Lκ � 2ℵ0 ≤ ℵ1, i.e. Lκ � CH. So we’ve proved:

Theorem.

Cons(ZFC + IC) =⇒ Cons(ZFC + CH)

Remark. (1) The same argument with x = λ for some Lκ-cardinal λ gives us
Lκ � 2λ ≤ λ+. So GCH holds: ∀λ2λ = λ+.
(2) What about the inaccessible cardinal?
(a) If we have a transitive set model of ZFC, we can mimic this proof. Nevertheless
we knew it was still stronger than Cons(ZFC).
(b) There is a way of getting around that assumption as well by Lévy Reflection
Theorem (see sheet 2): fix in advance some finite list Φ of sentences you wish to
preserve, and find sufficiently large α s.t. Φ is absolute for Vα.
Go through all needed absoluteness results and lemmas and theorems, and
collect, for each of them, ϕ, the finite set Φϕ of axioms of ZFC we needed to
prove them. Form Φ :=

⋃
ϕ is relevant Φϕ, which is a finite union of finitely many

things. Apply Lévy to Φ and run the previous proof to get a model of Φ + CH.
Now consider all finite subsets Ψ s.t. Φ ⊆ Ψ ⊆ ZFC, and get models of Ψ +CH.
Compactness then gives a model of ZFC + CH.
(3) Consider

L =
⋃

α∈Ord

Lα ⊆M

Our proof does not say what axioms hold in L, but using the Lévy reflection
theorem, we can prove that if V � ZFC, then L � ZFC + V = L.
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Now let’s use this to solve one of the open problems in the 1910s, which follows
as an almost trivial consequence of what we’ve done.

Consider the question about regular limit cardinals. Remember we had notions
of regular/singular, successor/limit. We realize that we can prove that every
successor cardinal is regular, and we have a lot of singular limit cardinals. So
can we get regular limit cardinals?

If we strengthen ’limit’(∀λ < κ(λ+ < κ)) to ’strong limit’(∀λ < κ(2λ < κ)), then
we showed that ZFC cannot prove the existence of regular strong limits (i.e.
inaccessible cardinals).

Clearly, ZFC+GCH implies that every limit is a strong limit (because λ+ = 2λ).
So ZFC+CH gives every regular limit is an inaccessible cardinal.

Proof. Assume that M � ZFC and that ZFC ` there are regular limits.
Towards a contradiction (with Gödel’s incompleteness theorem), prove M �
Cons(ZFC).
Consider L ⊂M , by remark (3), L � ZFC +GCH. By assumption, ZFC ` ∃
regular limit, so L � ZFC+GCH+(∃κ κ is a regular limit). But ZFC+GCH im-
plies every regular limit is inaccessible, so L � ZFC+IC. So L � ∃κ(Lκ � ZFC),
so L � Cons(ZFC); so M � Cons(ZFC) by absoluteness between transitive
models.
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2 Construction of the generic model

2.1 Limitation of methods of inner models

—Lecture 13—

Sorry for the forced break on Friday – we’ll see if we can manage with 23 lectures;
if not we’ll have to have an additional one at the end of term.

Last time we gave the impression that we’re at a breaking point between the
first and the second part of the course (CH and ¬CH); but that’s not entirely
true. Today we’ll try to understand the difficulty and limitations of our previous
method of inner models.

Definition. If (M,∈) � ZFC, N ⊆M , we say that N is an inner model of M
if:
(a) (N,∈) � ZFC;
(b) Ord ∩N = Ord ∩M (not always needed, but this is usually the standard
requirement in literature);
(c) N is transitive in M .

Let’s rephrase some things that we’ve learnt about L. We have the following
theorem:

Theorem. (Minimality theorem)
If M � ZFC + (V = L), and N is an inner model, of M , then N = M .
In other words, L has no non-trivial inner models.

Proof. We know that M =
⋃
α∈Ord∩M LMα (Lα interpreted in M , which doesn’t

really matter because of absoluteness); this follows directly from V = L in M .
So in order to show N = M , it’s enough to show LMα ⊆ N for all α ∈ Ord ∩M .
But LNα ⊆ N for α ∈ Ord ∩ N , but then by absoluteness LNα = LMα ; then by
requirement (b) we’re done.

Remark. (1) If we drop (b), we still get that N = LMΩ where Ω = Ord ∩N ; so
we get a smaller model not because it’s narrower, but only because it’s shorter.
(2) We don’t need full ZFC for this: similar results hold for considerably weaker
theories.

Now, what do we mean by the technique of inner models? An application
of the technique would mean: we want to show Cons(ZFC + ϕ); start with
M � ZFC+¬ϕ; go to an inner model N ⊆M where N � ZFC+ϕ. A limitation
would mean that this is not possible (well, not quite; it is always possible in
some way, say by going to a larger model where ϕ fails and then going back).

Definition. A definable inner model is an L∈-formula ϕ with one free variable,
with the property: if (M,∈) � ZFC, then define

N := {x ∈M : M � Φ(x)}

Then we call N an inner model of M .
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Of course we have an example, L, in the sense that we can use the formula
Φ(x)↔ ∃α(x ∈ Lα).

Now we can define what we mean by the consistency of ϕ can be shown by inner
models.

This means we find an inner model ϕ s.t. for all M � ZFC, and N := {x ∈
M,M � Φ(x)}, then N � ZFC + ϕ.

Corollary. There is no inner model proof of the consistency proof of ¬CH.

Proof. Suppose otherwise, so let Φ be an inner model that proves Cons(ZFC +
¬CH). Take an arbitrary M � ZFC. Build LM , and form N∗ := {x ∈ LM :
Lm � Φ(x)}. By minimality theorem, N∗ = LM . So N∗ � ¬CH by assumption;
but also N∗ � CH because it’s L. Contradiction.

2.2 Basic terminologies of forcing

So instead we consider outer models, nowadays more often known as forcing.

Let’s do some illustration first: let L be the language of arithmetic with symbols
+, ·, 0, 1; let Fld denote the axioms for fields; and let Φ0 denote the formula
specifying a field have characteristic 0; and of course use Fld0 := Fld+ Φ0 (field
of characteristic zero).
From algebra we know each characteristic has a prime field (in this case, Q). The
method of inner model here would be (something like) subfields. Q is minimal
in the sense that it has no proper subfields.

Now let’s consider something that is true in Q but might be false somewhere
else. Maybe let’s have the axiom

NSRT := ∀x(x · x 6= 1 + 1)

(a great name for the axiom no square root of two). Then Q � NSRT . In
analogy to the discussion of inner models before, the technique of submodels
cannot show Cons(Fld0 + ¬NSRT ). So we instead add some weird X 6∈ Q
(from the surrounding meta-universe), and assume that X2 = 2. Obviously
we can’t just take Q ∪ {X} as that won’t satisfy axioms of Fld0. So we need
X+X,X+X+X, qX,X3, .... In algebra we had various techniques that allowed
us to do constructions and obtain Q(X) � Fld0 + ¬NSRT .

We’ve seen how the above illustration works to prove Cons(Fld0 + ¬NSRT ).
Why not just do the same for CH? Assume M � ZFC +CH, and further more
assume M is countable and transitive (by the usual L-S and then Mostowski
collapse trick). So all of its elements are countable, i.e. RM ,ℵM1 ,ℵM2 , ... in M
are all countable (in M). So there are lots of (uncountably many) reals not in M .
In particular (since ℵM2 is countable (in M) as well, we could have an injection
i : ℵM2 → R s.t. the range of i is completely outside M , i.e. ran(i) ∩M = φ.
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Now form: M(i), the smallest ZFC models containing M as a subset, i as an
element (let’s assume we have some way to do that). Then M(i) � ZFC + |R| ≥
|ℵM2 |.
This looks really like ¬CH; unfortunately, ¬CH would require |R| ≥ |ℵM(i)

2 |.
Note that the property of being a cardinal is only downward absolute, so both
ℵM1 and ℵM2 might lose the property of being a cardinal when we move to M(i).
So we definitely want both of them to be preserved as cardinals: if either of them

is not a cardinal then at best we get an unimpressive result that |R| ≥ |ℵM(i)
1 |.

So we need ℵM1 = ℵM(i)
1 and ℵM2 = ℵM(i)

2 in order to prove ¬CH.

Let’s summarize our proof components:
(1) Find a construction of transitive M(i) � ZFC;
(2) Preservation theorems for cardinals;
We’ve only seen one preservation theorem (in sheet 1): RM = RN =⇒ ℵM1 = ℵN1 .
But this is pointless now, as the whole point of our attempt is to add new reals.
Also, there’s no chance that our general attempt above would work for any
injection i: if x codes a well-order on N of order type ℵM1 , and i(j) = x, then
M(i) � ℵM1 is countable; so we really need to be more careful when specifying
which i we want (on lecture 14, a different phrased version: if x ∈ ran(i), then

X ∈M [i]; if x is a code for the countability of ℵM1 , then M [i] 6� ℵM [i]
2 = ℵM2 ).

—Lecture 14—

Even worse, if such an x can be constructed in ZFC from i, then it will be in
M [i]. So we need to guarantee that no such objects can be constructed.

Let’s introduce some vocabularies. As usual, we call (P,≤, 1) a partial order
(in the theory of forcing, this is sometimes also called a forcing/forcing partial
order) if P is a set, ≤ is a reflexive, transitive, antisymmetric relation, and 1 is
the largest element. Elements of P are called conditions; if p ≤ q, we say p is
stronger than q.1

As usual, C ⊆ P is called a chain if (C,≤) is a total order. If p, q ∈ P, say that
p and q are incompatible (p ⊥ q) if there is no r ≤ p, r ≤ q.
A ⊆ P is called antichain if ∀p, q ∈ A, p 6= q → p ⊥ q.
We say that P has the countable chain condition (ccc) if every antichain in P is
countable.
If D ⊆ P, we say D is dense if ∀p ∈ P ∃q ∈ Dq ≤ p.
If F ⊆ P, we say F is a filter if
(a) ∀p ∈ F∀q(q ≥ p→ q ∈ F );
(b) ∀p, q ∈ F∃r ∈ Fr ≤ p, q.
We say P is splitting if for all p ∈ P, ∃q1, q2 ∈ P, q1, q2 ≤ p and q1 ⊥ q2.
If D is a set of dense sets and G ⊆ P, we say G is D-generic if ∀D ∈ D,
(D ∩G 6= φ).

Example. (1, Cohen forcing)

1This is the standard convention; in Jerusalem there are attempts to revert the order of
partial order, so we have a minimum element 0 and ≥ means stronger. Unfortunately, this
hasn’t helped literature: the group in Jerusalem has considerable size of population, so now
there are two opposing set of conventions being used in literature. In particular, if you read a
paper, you have to first find out which set of conventions is used before anything could make
sense.
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Let P := {p : p is a partial function from N to 2 with finite domain}. Define
p ≤ q ⇐⇒ p ⊇ q (so domain of p covers domain of q and they agree on domain
of q). Of course here 1 is the empty function.
If p ⊥ q, then there is n ∈ dom(p) ∩ dom(q) s.t. p(n) 6= q(n).
If F is a filter in P, then

⋃
F is a partial function from N into 2 (think very

carefully).
Consider Dn := {p : n ∈ dom(p)}. This is a dense set for every n: given any
q, if q is defined on n then it’s already in Dn; else we could just define it in n
(by any value) and get an element in Dn that is stronger than it. Now define
D := {Dn : n ∈ N}. If F is D-generic, then

⋃
F : N → 2 is a total function.

Note that in this way we could have defined the real numbers.

Example. (2)
Let PX := {p : p is a partial function from N to X with finite domain}, where
X is any set.
As before: if F is a filter,

⋃
F is a partial function; if F is D-generic,

⋃
F : N→ X

is a total function.
Let’s add some more dense sets: consider EX := {p : x ∈ ran(p)} for every
x ∈ X (in some sense the dual to Dn). Let D∗ := D ∪ {Ex : x ∈ X}.
Suppose G is D∗-generic filter. So in particular

⋃
G is a total function N→ X.

But now for every x ∈ X, Ex ∩G 6= φ. So there’s some p ∈ G with x ∈ ran(p).
So
⋃
G is a surjection N→ X. Therefore G cannot exist for uncountable X.

If M is a transitive model of ZFC, and P ∈M is a partial order, we say that a
filter G (not necessarily an element of M) is generic over M , if it is D-generic
for D := {D ∈M : D is dense in P}.

Lemma. Suppose P is splitting, P ∈ M and M is a transitive model of ZFC.
Suppose G is P-generic filter over M . Then G 6∈M .
This is exactly what we’ve seen in example 2 above.

Proof. Suppose G ∈ M . Then D = P \ G ∈ M . We claim that D is dense.
Take p ∈ P arbitrary. By splitting, find q1, q2 ≤ p, q1 ⊥ q2. So q1, q2 cannot
be both in G because G is a filter. So by definition G ∩ D = G ∩ P \ G 6= φ,
contradiction.

—Lecture 15—

Last time we had the notion of P being a filter, being D-generic, being P-generic
over M , and being splitting. We also proved a lemma that if M is a transitive
model of ZFC, P ∈M , G a P-generic filter of M , P splitting, then G 6∈M . We
looked at two examples (one of them is a special example of another).

Lemma. If D is countable set of dense sets, p ∈ P, then there is a D-generic
filter G over P s.t. p ∈ G.

Proof. Let D = {Dn : n ∈ N}. Define recursively:
• p0 := p;
Suppose p0 ≥ p1 ≥ ... ≥ pn are already defined. By definition, Dn has an element



2 CONSTRUCTION OF THE GENERIC MODEL 32

q s.t. q ∈ Dn, q ≤ pn, and set pn+1 := q.
Now consider X := {pn : n ∈ N} ⊆ P. Note that if pn, pk ∈ X, then pmax(n,k) ≤
pn, pk. So this does generate a filter

G := {p : ∃npn ≤ p}

which clearly intersect Dn non-trivially for each n.

Corollary. If M is a countable transitive model of set theory, p ∈ P ∈M , then
there is a P-generic filter G over M with p ∈ G.

Proof. If P ∈M , then P is countable. Now look at

{D ⊆ P : D is dense, D ∈M} ⊆ PM (P)

the nth power set of P. So this is countable as well.

2.3 Forcing language

Fix M a transitive model of set theory, with a partial order P. Define
• Name0(M,P) = φ;
• for λ > 0, set Nameλ(M,P) to be

{τ : each element of τ is an ordered pair (σ, p), σ ∈ Nameα(M,P) for some α < λ, p ∈ P}

The elements of

MP :=
⋃

λ∈Ord∩M

Nameλ(M,P)

are called P-names.

Example. The most basic example is P = {1}. We can see that φ is a name
(at the first level), {(φ, 1)} is a name (which in some sense represents {φ}), etc.
This results in (an isomorphic copy) of the von Neumann hierarchy inside M .

Example. Another basic example is P = {1, L,R}, where L ≤ 1 and R ≤ 1.
The dense sets are {1, L,R} and {L,R}.
What are filters? Filters are closed upwards and do not contain anything
incompatible. There are exactly one pair of incompatible things, namely L,R.
So the filters are {1}, {1, L} and {1, R}.
What are generic filters? {1} doesn’t intersect {L,R}, so only the other two are
generic filters.

For names, φ is a name at the first level; at the next level we have (φ, 1), (φ,L)
and (φ,R); at the next level we have {(φ, 1)}, {(φ,L)}, {(φ,R)}, {(φ, 1), (φ,L)},
{(φ, 1), (φ,R)}, {(φ,L), (φ,R)}, {(φ, 1), (φ,R), (φ,L)}.

Interpretation of names: let P,M be as before, and let G be P-generic over M
(the definition actually makes sense for any G ⊆ P ).
If τ ∈ Name(M,P), we define the G-value of τ

val(τ,G) := {val(σ,G) : ∃p ∈ G, (σ, p) ∈ τ}
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Using this, we can now define M [G] := {val(τ,G) : τ ∈ Name(M,P)}.

Observation: if N is a transitive model of ZFC s.t. M ⊆ N , and G ∈ N , then
M [G] ⊆ N . Also note that if we can prove M [G] � ZFC, this would then be a
minimality theorem.

Back to our previous example 2. We had 8 names there. Let’s start with φ. What
is val(φ,G)? There are no elements of τ , so val(φ,G) = φ and is completely
independent of what G is. So at least the empty set has the correct name.
If τ is any of the other 7 names, and (σ, p) ∈ τ , then σ = φ by our previous
listing. So there are only two possibilities

val(τ,G) =

{
φ
{φ} = 1

Of course, this now depends on which filter we choose. For convenience we set
τL = {(φ,L)} and τR = {(φ,R)}. Consider GL = {1, L} and GR = {1, R}. Not
entirely surprisingly we get

val(τL, GL) = {φ}
val(τL, GR) = φ

because L ∈ GL but L 6∈ GR. The case is similar for val(τR, ·).
Note that even without specifying the filter, we know val(τL, G) is a subset of
{φ} = 1. There are only two subsets of 1, namely 0 and 1, and we need to specify
the filter to know which one it is.
We see from this example that the name is not unique: in the model built by
GR, both φ and τL name φ. So in particular we cannot say something like ’take
the name of something’.

Definition. Let x ∈M . We define the canonical name for x by recursion:

x̌ := {(y̌, 1) : y ∈ x} ∈M

Proposition. For any G s.t. 1 ∈ G, we have val(x̌, G) = x (proof is by
∈-induction).

Corollary. M ⊆M [G].

This should tell us what we want next: we want to show G ∈M [G]. Note that
all of the names are elements of M , so we can’t do the same for G as it’s not an
element of M .

—Lecture 16—

Note: there is no canonical name for the generic filter G in M . It would be
something like

′Ǧ′ := {(p̌, 1) : p ∈ G}

Of course we can define this in the surrounding universe; but it is not a name in
M . This ’name’ has the property that ′Ǧ′ ∈ N ⇐⇒ G ∈ N .
Last time we proved that if M is transitive, G is P-generic over M , then
val(x̌, G) = x. (For this, we do not need G to be P-generic, but only 1 ∈ G.
As a consequence, we know M ⊆M [G].
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Definition.

Γ := {(p̌, p) : p ∈ P}

Lemma. val(Γ, G) = G.

Proof. Suppose x ∈ val(Γ, G). By definition, x = val(p̌, G) for some p ∈ P with
p ∈ G. Then in fact x = p. So x ∈ G.
Suppose x ∈ G. Then (x̌, x) ∈ Γ. But x ∈ G, x = val(x̌, G) ∈ val(Γ, G). So
x ∈ val(Γ, G).

Corollary. If M is transitive, then G ∈M [G].

Now both elements of M and G are in M [G]. But does M [G] satisfy enough set
theory?

Lemma. M [G] is transitive.

Proof. To show: x ∈ y ∈M [G] =⇒ x ∈M [G].
y ∈M [G] means ∃τ y = val(τ,G).
x ∈ y means ∃σ, p, p ∈ G, (σ, p) ∈ τ and x = val(σ,G). Thus x ∈M [G].

Corollary. M [G] � Extensionality and Foundation.

Let’s look at pairing: suppose x, y ∈M [G], and τ, σ evaluates to x, y respectively
in G (x = val(τ,G), etc). Construct

µσ,τ := {(σ, 1), (τ, 1)}

Now try to evaluate it: 1 is always in the filter G, so

val(µσ,τ , G) = {val(σ,G), val(τ,G)}
= {x, y}

So

Proposition. M [G] � Pairing.

We’ll stress again that the above name is not unique. For example, we could
add any (σ, p) for p ∈ G, or any (µ, q) if q 6∈ G; also the choice of τ and σ is not
unique.

On Sheet 3, we’ll see Union; so as a corollary, since ω̌ ∈MP, val(ω̌, G) = ω we
get M [G] � infinity.

Lemma. If τ ∈MP, then

ρ(val(τ,G)) ≤ ρ(τ)

where ρ is the rank function.
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Proof. Simple induction.

In particular, there can’t be any new ordinals, as any new ordinal cannot have
an existing rank. So

Corollary. Ord ∩M = Ord ∩M [G].

How about power set? Let x ∈M [G]. Take a name τ ∈MP for it. Why not just
take all the first components of elements of τ , and do it the same way as we did
for pairing? The problem is that names are not unique; for example we could
have val(σ,G) = val(σ̄, G), where σ̄ doesn’t occur in τ . Now {(σ̄, p)} is name of
some subset of x, but we wouldn’t know it from looking at τ . It would be nice
to be able to talk about whether a name σ is a name for a subset if val(τ,G)
without referring to the precise set-theoretic make-up of τ and σ.

2.4 Forcing Relation

We had Forcing Language on the board previously without saying what it actually
is, so let’s talk about it now. The forcing language is just L∈ augmented with
one constant symbol for each τ ∈MP.
If G is P-generic over M , there is a canonical interpretation of L(MP) in M [G]

M [G] � ϕ(τ1, ..., τn) ⇐⇒ M [G] � ϕ(val(τ1, G), ..., val(τn, G))

If ϕ is a sentence of L(MP), and p ∈ P, then we say p  ϕ (p forces ϕ in M):
For every P-generic filter G over M s.t. p ∈ G, M [G] � ϕ.

Note that this looks to be helpful, but if we look carefully at it, it’s entirely not
obvious that this relation is even definable in M : we had for every P-generic
filter G over M , but we knew no such G is in M ! However, we have:

Theorem. (Forcing theorem)
The following are equivalent:
(1) M [G] � ϕ;
(2) ∃p ∈ G(p  ϕ)

Theorem. The forcing relation is definable in M , in the sense that:
There is a definable relation p ∗ ϕ s.t. ∀p, ϕ, p  ϕ ⇐⇒ p ∗ ϕ.

—Lecture 17—

Last time we defined what the forcing language L(MP) is and we had a forcing
theorem about M [G] � ϕ where ϕ is a sentence in L(MP). However, there is a
small lie here because ϕ uses G as a parameter, because

M [G] � ϕ :⇐⇒ M [G] � (val(τ1, G), ..., val(τn, G))

Technically, the meaning of M [G] � ϕ does not just depend on M [G] but on G
as well. So our better notation should be M [G], G � ϕ, or (M,G) � ϕ.
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We then used this to define the forcing relation p  ϕ. Again this is slightly
inprecise as the meaning of this depends on the model: we should write p M ϕ,
which means ∀G p ∈ G =⇒ M [G] � ϕ.

However,  is a priori not definable in M , since G is not; but we’ll show that it
is.

We shall give a different definition of a relation p ∗ ϕ, which is definable in M ,
and we’ll show that p ∗ iff p  ϕ.2

So let’s write down the version of forcing theorem that we’re going to prove,
which is currently meaningless (as we haven’t defined what ∗ is):

Theorem. (Forcing theorem)
Let M be a countable transitive model of set theory, and P ∈ M . Let ϕ be a
sentence in the forcing language L(MP). Let G be P-generic over M . Then the
following are equivalent:
(1) M [G] � ϕ;
(2) There is a p ∈ G s.t. M � (p ∗ ϕ). 3

Again note that we haven’t defined ∗ yet.

Let’s prove the equivalence of ∗ and  from the forcing theorem.

Proposition. Let M be countable transitive model, P ∈M , p ∈ P, ϕ a sentence
of L(MP). Then

p M ϕ ⇐⇒ M � p ∗ ϕ

It’s a bit weird we’re trying to prove something about things we haven’t even
defined, but of course we had a powerful theorem above.

Proof. Suppose p M ϕ. So for every G that is P-generic over M with p ∈ G,
we have M [G] � ϕ. But now by forcing theorem (1) =⇒ (2), we can find q ∈ G
s.t. M � q ∗ ϕ.
Let’s consider the closure property of :
(1) if p  ϕ and q ≤ p, then q  ϕ (by property of filter).
(2) If p  ϕ and p  ψ, then p  ϕ ∧ ψ (just consider what  means).
We know that p, q ∈ G, and G is a filter, so there is some r ∈ G s.t. r ≤ p, q. By
property (1) we know that r  ϕ.
(stuck for a while) Ok, I may have to postpone this until we have actually defined
∗. As you may have noticed I was quite surprised when I realized I could have
proved this without defining ∗, but it’s good to know now that I was wrong.

Nevertheless, the above attempt gives us some hints on what properties ∗ need
to have: in particular it must make (1) and (2) work.

2∗ and  are usually called the syntactic forcing relation and the semantic forcing relation.
3Lecturer restated this theorem in different ways for several times and decided on this final

version, saying: If you’re wondering why I’ve been struggling with stating one of the most
important theorems, the reason is that there are so many versions of it, and we need the right
version for our induction to work later.
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Definition. We say that D is dense below p if ∀q ≤ p ∃r ≤ q, r ∈ D.

Definition. (of ∗)
This will be by simultaneous recursion on the rank of the names involved and
the complexity of ϕ.
Atomic formulas: (1) τ1 ∈ τ2; (2)τ1 = τ2 (remember these are constants in
L(MP), so they are sentences);
(3) for ϕ,ψ we need to define for ϕ ∧ ψ;
(4) for ϕ we need to define for ¬ϕ;
(5) for ϕ we need for ∃xϕ.
In this setting (1) and (2) are the hardest (after all, they are where the set theory
lives in, as (3)-(5) are purely logic). We’ll do the easy ones first: For (3) we have
no choice due to property (1) in the above failed proof: p ∗ ϕ ∧ ψ iff p ∗ ϕ
and p ∗ ψ.
(4) p ∗ ¬ϕ iff ∀q ≤ p q 6∗ ϕ. So instead of only requiring p to not force ϕ, we
also require that it’s not possible to force ϕ by anything stronger.
(5) p ∗ ∃xϕ(x, τ1, ..., τn) iff

{r : there is a P-name σ s.t. r ∗ ϕ(σ, τ1, ..., τn)}

is dense below p – so for any q ≤ p, we can extend q to some stronger r s.t. there
is a name σ s.t. r ∗ ϕ(σ, τ1, ..., τn).
These are the logical ones; let’s now think about the set-theoretic ones.
(1) p ∗ τ1 ∈ τ2. Note that this needs to depend on (2) because τ1 and τ2 may
look very different from set theoretic perspective, but p may force some of the
names to be equal. Now we have to be very careful because in defining (2) we
may need (1) as well, and we can’t do a cyclic definition. This is why we said
we would use a simultaneous recursion on rank of names and complexity of ϕ:
define p ∗ τ1 ∈ τ2 iff

{q : there is (π, s) ∈ τ2 s.t. q ≤ s, q ∗ π = τ1}

is dense below p.
(2) p ∗ τ1 = τ2: now we’ve already defined (1), if we’re going to obtain a model
of extensionality then we need to define = in the only possible way as required
by (1): p ∗ τ1 = τ2 iff:
(α) for all (π1, s1) ∈ τ1,

{q : q ≤ s1 → ∃(π2, s2) ∈ τ2 s.t. q ≤ s2 and q ∗ π1 = π2}

is dense below p; and symmetrically,
(β) for all (π2, s2) ∈ τ2,

{q : q ≤ s2 → ∃(π1, s1) ∈ τ1 s.t. q ≤ s1 and q ∗ π1 = π2}

is dense below p.
Let’s justify why this is a proper recursive definition. We start with (2). π1

and π2 have strictly lower ranks than τ1 and τ2, so (2) on itself is a recursive
definition. And then there’s no recursion involved in (1) as we’ve already defined
(2), and (1) on itself doesn’t depend on ∈.
You might wonder how absolute these conditions are, because if you look at (1)
and (2), of course all of these are bounded by p. So the definition on the atomic
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formulas are absolute and does not depend on M (?). Obviosuly (3) and (4)
doesn’t do anything; (5) is slightly trickier as it involves the use of P-names; so
if we have a bigger model, we might have more names that change the truth
value of the forcing relation. So it’s (5) that actually requires us to write things
like M � p ∗ ϕ; in other words, (5) is the only source of non-absoluteness.

—Lecture 18—

We’re going to start the proof of forcing theorem today, and hopefully finish by
the end of next lecture.

On ES3 q23, we’ll see that
(1) If D is dense below p and r ≤ p, then D is dense below r;
(2) If {r : D is dense below r} is dense below p, then D is dense below p.

Lemma. The following are equivalent:
(i) p ∗ ϕ;
(ii) ∀r ≤ p(r ∗ ϕ);
(iii) {r : r ∗ ϕ} is dense below p.

Proof. Clearly (ii) =⇒ (i) and (iii). So we need to show the other two directions.
(i) =⇒ (ii): Proof by induction on the definition of ∗.
Remember that we had five parts of the recursion. Let’s stick with the handout
for notation, so we’ll use the labelling: (a) τ1 = τ2; (b) τ1 ∈ τ2; (c) ∧; (d) ¬; (e)
∃.
If we look at the five parts, we realize that (a),(b) and (e) are all defined by
some sets being dense below p, in the sense that we defined p ∗ ϕ ⇐⇒ Xϕ

is dense below p, where Xϕ is some set depending on ϕ (note that although in
defining Xϕ we had ’q ≤ p’, but that’s just for convenience, and the resulting set
will still be dense below p if we omit the ≤ p part). But by ES3 q23 we know if
r ≤ p and Xϕ is dense below p, then Xϕ is dense below r. For (c) and (d) it’s
obvious that (i) =⇒ (ii) by definition.
Similarly, (iii) =⇒ (ii) goes by recursion via (a) - (e) using item (2) of ex.(23)
rather than item (1).

Corollary. p M ϕ ⇐⇒ M � p ∗ ϕ.
(Assuming FT and lemma)

Proof. Assume p M ϕ. So for any G s.t. p ∈ G, M [G] � ϕ.
FT gives that ∃q ∈ G M � q ∗ ϕ.
We want to show that p ∗ ϕ: by lemma, it suffices to show D := {r : r ∗ ϕ}
is dense below p.
Fix any q′ ≤ p. Recall that we proved that for countable transitive model M ,
there is some H with q′ ∈ H and H is a P-generic filter over M . Now q′ ≤ p, we
know p ∈ H as well. So by p M ϕ, we know M [H] � ϕ.
Apply FT again, we know there is q′′ ∈ H s.t. M � q′′ ∗ ϕ. But now q′′ ∈ D∩H.
Since H is a filter, we find r ≤ q′, q′′, r ∈ H. So r witnesses that D is dense
below p.
The other direction is easier: assume that M � p ∗ ϕ. We want to show that
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p M ϕ. So let G be P-generic over M with p ∈ G. But forcing theorem directly
gives that M [G] � ϕ. So p M ϕ.

Proof. (of FT)
Again there’s only one way to prove it: ∗ is defined by recursion, so the only
way FT could be proved is by doing induction on that recursion.
We’ll prove this by induction on
(a) ranks of names,
(b) assumption that = is done,
(c)-(e) complexity of formulas.

We’ll do these in the order (c),(d),(e),(b),(a) (increasing difficulty).
Let’s write down the induction hypothesis(IH): M [G] � ϕ ⇐⇒ ∃p ∈ G
M � p ∗ ϕ.
(c) assume IH holds for ϕ and ψ. Assume that M [G] � ϕ ∧ ψ. So M [G] � ϕ and
M [G] � ψ. So by IH, there are p, q ∈ G s.t. p ∗ ϕ and q ∗ ϕ (we’re getting a
bit lazy so we’ll omit the M �). But G is a filter, so ∃r ≤ p, q r ∈ G. But by
lemma (i) =⇒ (ii), r ∗ ϕ and r ∗ ψ. So r ∗ ϕ ∧ ψ.
Conversely, suppose we have a p ∈ G s.t. p ∗ ϕ∧ψ. So by definition, p ∗ ϕ and
p ∗ ψ. But by IH, any G that is a P-generic filter over M will give M [G] � ϕ
and M [G] � ψ. So M [G] � ϕ ∧ ψ.
(d) Let’s assume IH for ϕ. Suppose M [G] � ¬ϕ. Consider

D := {p : p ∗ ϕ or p ∗ ¬ϕ}

We claim that D is dense, which is quite obvious from definition of p ∗ ¬ϕ. So
we find some p ∈ D∩G (which is non-empty since D is dense and G is P-generic
filter). If p ∗ ¬ϕ we’re done by FT. So suppose p ∗ ϕ. So by IH, M [G] � ϕ.
But we assumed M [G] � ¬ϕ. Contradiction.
Conversely, suppose p ∗ ¬ϕ. Suppose for contradiction that M [G] � ϕ. So
by IH we can find q ∈ G that q ∗ ϕ. But now we find r ∈ G s.t. r ≤ p, q.
By lemma, r ∗ ϕ because r ≤ q; but p ∗ ¬ϕ, so by definition, r 6∗ ϕ.
Contradiction.
(e) Suppose IH for ϕ(σ/x), i.e. for any σ ∈ MP, we assume IH hold for the
sentence obtained by substituting x with σ. Now suppose M [G] � ∃xϕ(x). So
there is a ∈M [G] s.t. M [G] � (ϕ(a/x)). But elements of M [G] are just names
in MP, so there is σ ∈ MP s.t. M [G] � (σ/x). So by IH, there is p ∈ G s.t.
M � p ∗ ϕ(σ/x).
Now let’s look at the definition to see what we need to prove. But then we
realized what we’ve proven is already stronger than definition: we’ve proved that
the set

{r : ∃σ ∈MP(r ∗ ϕ(σ, ...)}

is not only dense below p, but is actually everything below p. So p ∗ ∃xϕ.
This is a very nice point to stop as we’ve proved exactly half of FT: out of the
five cases, we proved the first two and half of the third case. We’ll continue next
monday to finish the other half.*

—Lecture 19—
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We were in the middle of the proof of FT: M is countable transitive model,
P ∈ M , G a P-generic filter over M , ϕ a L(MP)-sentence. The following are
equivalent:
(i) M [G] � ϕ;
(ii) ∃p ∈ G M � p ∗ ϕ.

We had five cases by induction, and we’ve proved (c),(d) and (e) =⇒ . Let’s
continue from there:

(e) ⇐: Assume that p ∈ G, p ∗ ∃xϕ (as before, we’re suppressing M �, but
actually this is the only one case that it matters as we’ve discussed before – (e)
is the only source of non-absoluteness. So maybe I should write M � here?).
By definition,

D := {r : there is σ s.t. r ∗ ϕ(σ/x)}

is dense below p.
We should set IH as: FT holds for each ϕ(σ/x) for arbitrary names σ, as we
only defined M [G] � ϕ for ϕ sentences.
Find r ∈ D ∩G which exists since p ∈ G and D is dense below p. Fix witness σ
to the fact that r ∈ D, i.e. r ∗ ϕ(σ/x). By IH, M [G] � ϕ(σ/x) (which should
actually mean M [G] � ϕ(val(σ,G)/x) in the usual model theoretic sense). So
M [G] � ∃xϕ.

(b) ⇐: Let p ∈ G s.t. p ∗ τ1 ∈ τ2. Note that in this case our IH should be FT
for = if we look at definition of (b),

D := {q : ∃(π, s)τ2(q ≤ s ∧ q ∗ π = τ1)}

is dense below p. By the same reason D ∩G is non-empty, so pick q ∈ D ∩G.
Fix (π, s) ∈ τ2 s.t. q ≤ s and q ∗ π = τ1. Now

q ≤ s =⇒ s ∈ G =⇒ val(π,G) ∈ val(τ2, G)

While

q ∗ π = τ1
IH
=⇒ M [G] � π = τ1 =⇒ val(π,G) = val(τ1, G)

So val(τ1, G) ∈ val(τ2, G), i.e. M [G] � τ1 ∈ τ2.

(b) =⇒ : M [G] � τ1 ∈ τ2 =⇒ val(τ1, G) ∈ val(τ2, G). Be very careful
because this doesn’t mean that τ1 is the first component of some element of
τ2; what we get from this is only that there is some (π, s) ∈ τ2 s.t. s ∈ G and
val(τ1, G) = val(π,G). This gives M [G] � τ1 = π. So by IH we find r ∈ G s.t.
r ∗ π = τ1. Find p ≤ s, r, p ∈ G as it’s a filter. Then

{q ≤ p : ∃(π̄, s̄) ∈ τ2(q ≤ s̄ ∧ q ∗ π̄ = τ1)}

or even the smaller set

{q ≤ p : q ≤ s ∧ q ∗ π = τ1}

is everything below p, so dense below p.
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(a) This is the hardest part.
⇐: Fix p ∈ G s.t. p ∗ τ1 = τ2.
Our IH should be: FT for = with names of lower rank. The form of the definition
of p ∗ τ1 = τ2 is symmetric in the sense that if we’re using (α) to show that
val(τ1, G) ⊆ val(τ2, G), then (β) shows val(τ2, G) ⊆ val(τ1, G).
So we’ll show val(τ1, G) ⊆ val(τ2, G).
Fix x ∈ val(τ1, G). Fix a (π1, s1) ∈ τ1 s.t. s1 ∈ G and val(π1, G) = x.
Now find r ≤ p, s1 with r ∈ G. By lemma, r still forces τ1 = τ2, so

D := {q ≤ r : q ≤ s1 → ∃(π2, s2) ∈ τ2(q ≤ s2 ∧ q ∗ π1 = π2)}

is dense below r.
Find q ∈ D ∩G. q ≤ r, r ≤ s1, so q ≤ s1. So the antecedent in the above set of
D is true. So we can actually find (π2, s2) ∈ τ2 with q ≤ s2 and q ∗ π1 ∈ π2.
Now

q ≤ s2 =⇒ s2 ∈ G =⇒ val(π2, G) ∈ val(τ2, G)

and

q ∗ π1 = π2
IH
=⇒ M [G] � π1 = π2 =⇒ val(π1, G) = val(π2, G)

So in the same fashion we get x = val(π1, G) ∈ val(τ2, G). The other half is
symmetric.

(a) =⇒ : Assume M [G] � τ1 = τ2. So val(τ1, G) = val(τ2, G).
Consider the following set

D := {r :r ∗ τ1 = τ2 (Case 1) or

∃(π1, s1) ∈ τ1(r ≤ s1 ∧ ∀(π2, s2) ∈ τ2∀q(q2 ≤ s2 ∧ q ∗ π1 = π2)→ q ⊥ r) (Case 2) or

∃(π2, s2) ∈ τ2(r ≤ s2 ∧ ∀(π1, s1) ∈ τ1∀q(q1 ≤ s1 ∧ q ∗ π1 = π2)→ q ⊥ r) (Case 3)}

Observation: if r ∈ G, then neither case 2 nor case 3 can hold: by symmetry
it’s enough to deal with case 2 only: to prove this observation, suppose, towards
a contradiction, that r ∈ G and case 2 holds. Find (π1, s1) ∈ τ1 with the
above desired (actually, undesired) properties. Since r ≤ s1, s1 ∈ G. So
val(π1, G) ∈ val(τ1, G) = val(τ2, G) by our assumption. But then there’s some
(π2, s2) ∈ τ2 with s2 ∈ G and val(π2, G) = val(π1, G) by definition of ∈.
Now we can use IH on =: find q′ ∈ G s.t. q′ ∗ π1 = π2.
Now find q ≤ r, s1, s2, q

′. But now case 2 says that if q ≤ s2 and q ∗ π1 = π2,
then q has to be incompatible with r; but it isn’t. Contradiction.
So we’re done if we show that D is dense.
Fix p ∈ P. If p ∗ τ1 = τ2 then we’re done. So assume it doesn’t, then we’ll find
r ≤ p for case 2 or 3. Again by symmetry we’ll show that if the failure of (α) is
the reason for p 6∗ τ1 = τ2, then we can find r in case 2 in the definition of D.
We’ll do it on Wednesday because I think we need to do the detail of everything,
although it’s quite boring.

—Lecture 20—

We’re stuck at the end of the proof of FT because the clock is probably 3 minutes
faster (so lecture thought he didn’t have enough time on Monday). We showed
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that if p ∈ G, then neither case 2 or 3 can hold. Thus if p ∈ G ∩ D, then
p ∗ τ1 = τ2.
So we’re left to show that D is dense.

Let p ∈ P be arbitrary. If p ∗ τ1 = τ2 then we’re done. So assume otherwise.
We’ll show that if (α) from definition of ∗ τ1 = τ2 is violated, then we find
r ≤ p s.t. Case (2) holds for r. As before the proof is symmetric, so failure of
(β) can be done similarly.
So what does it mean for (α) to fail? (α) fails if there is (π1, s1) ∈ τ1 s.t. the set

D′ := {q ≤ p : q ≤ s1 → ∃(π2, s2) ∈ τ2(q ≤ s2 ∧ q ∗ π1 = π2)}

is not dense below p.
Let’s fix this (π1, s1) ∈ τ1, and fix r ≤ p s.t. D′ has no element below r. So for
every q ≤ r,

q ≤ s1 ∧ ∀(π2, s2) ∈ τ2(q 6≤ s2 ∨ q 6∗ π1 = π2) (∗ ∗ ∗)

(just the negation of the implication).
In particular, this holds for r. So we know r ≤ s1.
Fix arbitrary (π2, s2) ∈ τ2 and q s.t. (the condition in case 2)

q ≤ s2 ∧ q ∗ π1 = π2 (4∗)

Now if q is compatible with r, find q′ ≤ r, q satisfying (***) above. But now

q′ 6∗ π1 = π2

by (***) and q ∗ π1 = π2 by (4*) and q′ ≤ q. Contradiction.
So q ⊥ r, which is exactly what we want to show for Case 2.

We can now prove:

Theorem. (The Generic Model Theorem)
Let M be a countable transitive model of ZFC, P ∈M , G is P-generic over M ,
then M [G] � ZFC.

Corollary. This shows that M [G] is the minimal transitive model of ZFC with
M ⊆M [G] and G ∈M [G].

Observe that if M = Lα for some countable α, and Lα(G) is the relativised
L-construction as before, then by minimality of L (or L(G) for models containing
G), M [G] = Lα(G).

Proof. (of Generic Model Theorem)
We’ve already proved extensionality and foundation because M [G] is transitive.
We’ve seen pairing by constructing the name explicitly and proved union also by
constructing names in sheet 3.
For infinity, by absoluteness of the formula ’x = N’, we only need N ∈ M [G].
But N = val(Ň, G).
We have four axioms left: separation, replacement, power set, and choice. We’ll
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do replacement and choice in sheet 4, so immediately we only have two left to
do (how convenient).

Separation. fix a formula ϕ and parameters x1, ..., xn ∈ M [G], and x ∈ M [G]
from which we separate. We want to give a name for the set

{z ∈ x : M [G] � ϕ(z, x1, ..., xn)}

Fix names τ1, ..., τn for x1, ..., xn, and σ for x. So we want a name for

A := {z ∈ val(σ,G) : M [G] � ϕ(z, τ1, ..., τn)}

But of course we can’t use FT directly because the formula to be forced above still
contains a free variable z while the forcing relation is only defined for sentences.
We need to consider

ρ := {(π, p) : p ∗ π ∈ σ ∧ ϕ(π, τ1, ..., τn)}

And we claim that A = val(ρ,G).
⊇: Suppose z ∈ val(ρ,G). There is (π, p) ∈ ρ with p ∈ G and val(π,G) = z. So
p ∗ π ∈ σ ∧ ϕ(π, τ1, ..., τn). By FT, we know

M [G] � π ∈ σ ∧ ϕ(π, τ1, ..., τn)

which translates to

M [G] � z ∈ x ∧ ϕ(z, x1, ..., xn)

so z ∈ A.
⊆: Suppose z ∈ A. So z ∈ x and M [G] � ϕ(z, x1, ..., xn)(*).
Fix π a name for z, so z = val(π,G). We know z ∈ x, so FT gives that there is
p ∈ G s.t. p ∗ π ∈ σ (z ∈ x is absolute). FT+(*) gives that there is q ∈ G s.t.
q ∗ ϕ(π, τ1, ..., τn).
Fix r ≤ p, q, r ∈ G. Then

r ∗ π ∈ σ ∧ ϕ(π, τ1, ..., τn)

So by definition (π, r) ∈ ρ. But r ∈ G, so z = val(π,G) ∈ val(ρ,G).

Power set. Since we have separation, it’s enough to show that

∀x∃y∀z(z ⊆ x→ z ∈ y)

because we can then separate the power set of x as a subset of y.
Fix a name σ for x. Let’s write for any name τ :

dom(τ) := {τ ′ : ∃p(τ ′, p) ∈ τ}

(i.e. just take all the first component, like for functions). We think of names for
subsets of x as names whose domain are subsets of dom(σ). Now define

ρσ := {(τ, 1) : dom(τ) ⊆ dom(σ)}

which collects every possible subset (plus some additional rubbish because some
of the p might not be in our generic filter G): to prove this, we’re proving
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that ∀z(z ⊆ x → z ∈ val(ρσ, G). So assume z ⊆ x. Fix a name µ for z, so
val(µ,G) = z.
Now define

µ∗ := {(π, p) : π ∈ dom(σ) and p ∗ π ∈ µ}

By definition, dom(µ∗) ⊆ dom(σ). So (µ∗, 1) ∈ ρσ. In particular, val(µ∗, G) ∈
val(ρσ, G). So need to show val(µ,G) = val(µ∗, G): w ∈ val(µ,G) =⇒ we can
find (π, p) ∈ σ with p ∈ G s.t. val(π,G) = w (since val(µ,G) ⊆ val(σ,G)). So
M [G] � π ∈ µ. So by FT, we get some q ∈ G s.t. q ∗ π ∈ µ. So (π, q) ∈ µ∗.
As q ∈ G, we get val(π,G) ∈ val(µ∗, G). So val(µ,G) ⊆ val(µ∗, G).
Conversely, suppose w ∈ val(µ∗, G). So find (π, p) ∈ µ∗, p ∈ G s.t. w =
val(π,G). By definition, we get that p ∗ π ∈ µ. By FT, M [G] � π ∈ µ. So
w = val(π,G) ∈ val(µ,G).

—Lecture 21—

As usual the printer didn’t print the example sheets, but they’re online now (you
can find them in the envelope at the usual place).

As the first step of proving consistency of ¬CH, we’ll show that V 6= L is
consistent.

Suppose M is a countable transitive model of ZFC + V = L. By our work on
L, we know that there is α < ω1 s.t. M = Lα. Take any partial order P ∈ Lα
that is splitting. By countability, we get G P-generic over M and G 6∈M since
P is splitting. In particular, M [G] 6= M .

We claim that M [G] � V 6= L: suppose otherwise, then by our previous theorem
we know M [G] = Lβ for some β. But we proved that M and M [G] have the
same ordinals. So β = α, i.e. M = M [G]. Contradiction.

Let’s remind ourselves of the P’s we had. Essentially we only had one so far:

P = Fn(X,Y )

the set of partial functions from X to Y with finite domain, where X,Y ∈M .
We proved that if G is P-generic over M , then

⋃
G =: fG : X → Y is surjective.

So if X = N, then M [G] � Y is countable. In particular, if Y = ℵM1 , which
is clearly uncountable in M , then forcing with Fn(N,ℵM1 ) will collapse ℵM1 :
M [G] � ℵM1 is a countable ordinal.

Excursion on forcing a model of CH: Suppose M � 2ℵ0 = ℵ2 and P = Fn(N,ℵM1 ).
(diagram)
If ℵM1 is no longer a cardinal in M [G], then the original bijection f : RM → ℵM2
will be a bijection between RM and an ordinal which can be at best ℵM [G]

1 .

Since ℵM1 < ℵM [G]
1 , we know RM [G] ) RM (sheet 1 Q10).

In order to make this into a proof of M [G] � CH, we need two things:
(1) M [G] � ℵM2 is a cardinal =⇒ M [G] � ℵM2 = ℵ1;
(2) M [G] � |R| = |RM |.
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But of course we’ve already proved there is a model for CH, so maybe we don’t
need to use forcing to force a model; but if we had the two above we get a
consistency proof of ZFC + CH + V 6= L.

Back to forcing ¬CH: instead, take P := Fn(N × ℵM2 ,N). It’s also splitting,
and if G is a P-generic filter then it gives a surjection fG :=

⋃
G : N× ℵM2 → N.

Define in M [G] for α < ℵM2 ,

fα(n) := f(n, α)

So fα is a function N→ N. We’ll show that if α 6= β, then fα 6= fβ . In particular,
the map

α→ fα

gives an injection from ℵM2 to NN. In particular, M [G] � |ℵM2 | ≤ 2ℵ0 .

Proof of injection. Fix α 6= β, and define

Dα,β := {p ∈ P : ∃n ∈ N p(n, α) 6= p(n, β)}

We claim that Dα,β is dense: fix p ∈ P arbitrarily. Then dom(p) is finite, so we
can find n ∈ N s.t. both (n, α) and (n, β) 6∈ dom(p). Now define

q := p ∪ {((n, α), 0), ((n, β), 1)}

So q(n, α) 6= q(n, β). So q ≤ p and q ∈ Dα,β .
So we can find p ∈ G ∩ Dα,β . Then fG =

⋃
G with p ∈ G, so there is n s.t.

fG(n, α) 6= fG(n, β). So fα(n) 6= fβ(n), i.e. fα 6= fβ .

To summarise, if G is Fn(N× ℵM2 ,N)-generic over M , then M [G] � 2ℵ0 ≥ |ℵM2 |.

We need, therefore, that ℵM1 = ℵM [G]
1 and ℵM2 = ℵM [G]

2 in order to get M [G] �
2ℵ ≥ ℵ2. So if we could prove that this forcing preserves these two cardinals,
then we have constructed a model of ¬CH.

Definition. Let M countable transitive model, P ∈M . We say that P preserves
cardinals if for all α ordinals and all P -generic filters G over M , we have

M � α is a cardinal ⇐⇒ M [G] � α is a cardinal

Note that ⇐ is always true since M ⊆M [G], and the property ’is a cardinal’ is
Π1 so downward absolute.

Theorem. If M � P has the ccc, then P preserves cardinals.
Remember from Sheet 3 we know if Y is countable, then P = Fn(X,Y ) has the
ccc (in ZFC). Certainly N is countable in any model. So Fn(N×ℵM2 ,N) has ccc
in every model M of ZFC.

Putting these together, we get that ℵM1 and ℵM2 are cardinals in M [G], and
nothing else between them can be a cardinal since ’being a cardinal’ is Π1, so

ℵM [G]
1 = ℵM1 and ℵM [G]

2 = ℵM2 .
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Corollary. With P, G,M as above, M [G] � ¬CH.

Corollary. If M is a countable transitive model of ZFC, then there is M [G] �
ZFC + ¬CH countable transitive.

So we now need to prove the theorem above. We’ll need a technical lemma:

Lemma. Suppose M � P has ccc, A,B ∈ M , f : A → B, f ∈ M [G]. Then
there is a function F ∈M with
(a) dom(F ) = A;
(b) ∀a ∈ A F (a) ⊆ B;
(c) ∀a ∈ A M � F (a) is countable;
(d) ∀a ∈ A f(a) ∈ F (a).

So in some sense we can approximate f by giving some F above and say that
f(a) is one of those countably many values in F (a).

Proof of theorem from lemma. Suppose M � λ is a cardinal, M [G] � λ is not
carinal. So M [G] � ∃γ < λ ∃f bijection, f : γ → λ. Now apply the lemma with
A = γ, B = λ, f = f . We then get an F ∈ M with those properties. Since
f is surjective, λ =

⋃
α<γ F (α). But γ < λ and each of F (α) is countable, so

M � |λ| ≤ |ω × γ| < λ, contradiction.

So we only need to prove the lemma. We’ll do it on Monday.

—Lecture 22—

Remember that our ultimate goal is to prove that CH is independent from ZFC.
We had the partial order

P := {p : p is a partial function from ℵM2 × N→ N, |dom(p)| < ω}

We’ve seen that if G is P-generic over M , then in M [G] there is an injection

from ℵM2 into R. If ℵM1 = ℵM [G]
1 and ℵM2 = ℵM [G]

2 , then M [G] � 2ℵ0 ≥ ℵ2.

We had a theorem that if M � P has ccc, then P preserves cardinal. On sheet
3 we actually checked that M � P has ccc, so we’re done if we could prove the
theorem. We’ve also reduced the theorem to the last lemma we stated in the
previous lecture.

Proof. (of lemma.)
Fix a name τ for f . Let τ : Ǎ → B̌ be the sentence in the forcing language
that expresses ’τ is a function from Ǎ to B̌’. By FT, we can find p ∈ G s.t.
p  τ : Ǎ→ B̌. We now define

F (a) := {b ∈ B : ∃q ≤ p(q  τ(ǎ) = b̌}

where by τ(ǎ) = b̌, we really mean the sentence in the forcing language that
expresses ’the value of τ at ǎ is b̌.
Let’s now check the properties:
(a) and (b) are trivial by our definition of F . For (d), let b̄ := f(a) ∈ B. Then
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M [G] � b̄ = f(a), i.e. τ(ǎ) = ˇ̄b. By FT we find q ∈ G s.t. q  τ(ǎ) = ˇ̄b. Since G
is a filter, we find q′ ≤ q, p, q′ ∈ G. But now q′ witnesses that f(a) = b̄ ∈ F (a).
For (c), if we pick, for each b ∈ F (a), a qb witnessing that b ∈ F (a), i.e.
qb  τ(ǎ) = b̌, then if b 6= b′ then qb ⊥ qb′ . Thus the set

{qb : b ∈ F (a)}

is an antichain in P. So we know it’s countable in M by ccc. So F (a) is countable
in M .

So in some sense we’ve achieved the goal of this course. Let’s spend some time
to spell this out because this is an important moment:

Corollary. If there is a transitive set model of ZFC, then there is:
(a) a transitive set model of ZFC + CH;
(b) a transitive set model of ZFC + ¬CH.

We’re not yet finished because there are still 1.5 lectures to go. A natrual
question is to ask: if we have a model of ZFC + ¬CH, then what is the size
of 2ℵ0 in that model (is it ℵ2, or something else)? So far we only knew that
2ℵ0 ≥ ℵ2 but nothing else. But we will show that if M � CH, then M [G] for
G P-generic over M for P = Fn(ℵM2 × N,N) is a model of 2ℵ0 = ℵ2. For this,
we need to count the names for subsets of N. We’ve already seen that there’s
a proper class of them, so we probably shouldn’t really count them; but we’ll
restrict to a set of names that are particularly nice and count those.

Definition. A name τ for a subset of N is called nice if for any n ∈ N there is
an antichain in An ⊆ P s.t.

τ = {(ň, p) : p ∈ An}

How many nice names are there? This is (sort of) related to the question of
how many antichains there are. We know that any antichain is countable, so the
number of antichains can be at most |Pℵ0 |, the number of all countable subsets
of P. Now |P| = ℵ2 (think), the above upper bound is actually ℵℵ02 .
What is ℵℵ02 ? We have Hausdroff’s Formula:

ℵℵβα+1 = ℵα+1 · ℵ
ℵβ
α

So

ℵℵ02 = ℵ2 · ℵℵ01

= ℵ2 · ℵ1 · ℵℵ00

= ℵ2 · 2ℵ0
in M
= ℵ2 · ℵ1 = ℵ2

A nice name is essentially a countable collection of antichains, so (running the
same argument again) we know there are at most ℵ2 = ℵ2 nice names.

Theorem. If x ⊆ N in M [G], then there is a nice name τ s.t.

x = val(τ,G)
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Proof. Fix a name µ for x. For every n ∈ N, construct an antichain An with the
properties
(a) ∀p ∈ An p  µ̌ ∈ µ;
(b) An is an antichain;
(c) An is maximal w.r.t. (a) and (b).

Now we write

τ := {(ň, p) : p ∈ An}

which is a nice name. We claim that M [G] � τ = µ.
⊆: Let y ∈ val(τ,G). So there is some n ∈ N s.t. y = n. We find p ∈ An ∩G
that witnesses y ∈ val(τ,G). Since p ∈ An, p  ň ∈ µ. But p was in G, so
M [G] � n ∈ val(µ,G).
⊇: Let y ∈ val(µ,G). Since y = n ∈ N, y = val(ň, G). We know that (ň, p) ∈ τ
for every p ∈ An. If there’s a p ∈ An ∩G, then n ∈ val(τ,G) and we’re done.
Otherwise, if An ∩G = φ (remember question 24 on sheet 3), there is q ∈ G s.t.
∀p ∈ An p ⊥ q, contradicting the maximality of An (in the sense of (c)), as we
can still add q into it.

So we’ve shown that |2ℵ0 | can be ℵ2.

—Lecture 23—

We’ve reached the final lecture, and I’m trying to wrap up a number of topics
that we have pointers to in the course. There should be four things:

• Possible size of 2ℵ0 . We’ve seen in the previous lecture that it can be ℵ2. What
else can it be?

• V = L and CH. We’ll see that is it not a must to have V = L to get a model
of CH.

• Forcing CH.

• What about 2κ for κ > ℵ0?

(1.) We’ve seen that if M � CH, G is Fn(ℵM2 × N,N)-generic over M , then
M [G] � 2ℵ0 = ℵ2.
The proof is via nice names: there are ℵℵ02 many nice names for Fn(ℵM2 ×N,N).
With CH, we can calculate ℵℵ02 = ℵ2 by Hausdorff’s Formula.
If you replace ℵM2 by ℵMn (n > 0) in the forcing, we get ℵℵ0n nice names: by CH
+ Hausdorff, this is ℵn. So the same proof with P = Fn(ℵMn × N,N) gives: if
M � CH, then M [G] � 2ℵ0 = ℵn.
What about ℵω? It is not a successor cardinal so our previous argument doesn’t
work because we can’t use Hausdorff’s formula. The answer is no: there is a
ZFC-theorem called König’s lemma: κcf(κ) > κ.
Let’s see how König’s lemma implies 2ℵ0 6= ℵω. Suppoes they are equal. Then

cf(2ℵ0) = cf(ℵω) = ℵ0
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But then

2ℵ0 = 2ℵ0ℵ0 = (2ℵ0)ℵ0 > 2ℵ0

The proof of König’s lemma in this particular case: ℵℵ0ω > ℵω. Suppose F : ℵω →
ℵℵ0ω . We’ll show (by a version of diagonlisatoin) that this is not a surjection.
If α < ℵω =

⋃
n∈N ℵn, then we find a unique n s.t. ℵn ≤ α < ℵn+1. If we think

of Fn : ℵω → ℵω which maps α→ F (α, n) (thinking ℵℵ0ω as set of functions from
ℵ0 → ℵω). Now Rn = {Fn(α),ℵn ≤ α < ℵn+1} 6= ℵω. So pick bn s.t. bn 6∈ Rn.
We claim that b : n→ bn, b ∈ ℵℵ0ω , but b 6∈ ran(F ).
Suppose it is. Find α < ℵω s.t. b = F (α). Find m s.t. ℵn ≤ α < ℵn+1. Then
bn = b(n) 6∈ Rn, so bn 6= F (α, n).

Now we know that ℵω is impossible. Does that mean that we’ve hit an impossible
obstacle (because our induction cannot go beyond limits)? How many nice names
does Fn(ℵMω ×N,N) have? It still has the ccc, so there are ℵℵ0ω many. So this is
really the heart of problem, because we don’t know what the cardinality of this
is. Obviously we’ll need more assumptions for working further.

What if we in addition assume GCH (which is true in L)? We then know

ℵℵ0ω ≤ (2ℵω )ℵ0 = 2ℵωℵ0 = 2ℵω = ℵω+1

So we know exactly that

ℵℵ0ω = ℵω+1

Corollary. If M � 2ℵ0 = ℵ1 ∧ 2ℵω = ℵω+1, and G is Fn(ℵMω × N,N)-generic
over M , then M [G] � 2ℵ0 = ℵω+1.

In general, if κ > ℵ0 is regular and M � GCH, then κℵ0 = κ, and thus forcing
with Fn(κ × N,N) gives a model of 2ℵ0 = κ. This has to be taken as a bit of
salt: κ is not really definable, unlike things like ℵω+1 which is the successor of
the first limit cardinal, so κ may not be absolute between models. The way we
read this should be: we fix a model first, then we take an element and claim
that we can make 2ℵ0 to be the cardinality of that (if it’s regular).

(2.) We’ve seen that V = L =⇒ CH. What about the converse?
We’ve also seen that forcing with any splitting poset forces V 6= L. The only
thing that we need to make sure is that we force with something that has very
few nice names. Let’s take the smallest forcing that we could imagine: consider
P = Fn(N, 2) which has the ccc (we can’t make it much smaller: if we reduce
either of the component, then the po is no longer splitting). This has ℵℵ00 many
nice names. So if we start from a model of CH, then this is ℵ1, so forcing with
P over M � CH will preserve CH. However P is splitting, so in particular M [G]
is not a model of V 6= L. Putting everything together, we get

M [G] � CH + V 6= L

(3.) If you listened to my excursion on Friday then you know this is going to be
expected: we looked at

P := Fn(ℵ0,ℵ1)
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which is rather different from what we’ve tried. This doesn’t have ccc and quite
obviously does not preserve cardinals: it introduces a surjection ℵ0 → ℵ1.
(Just for a sanity check, what is an antichain here? If pα := {(0, α)}, then
{pα : α ∈ ℵ1} is an antichain of size ℵ1.)
Let me remind you what the excursion was: assume M � 2ℵ0 = ℵ2, G is P-generic
over M . Try to prove that M [G] � CH. The idea is that we collapsed ℵ1 so
that it’s no longer a cardinal, so ℵ2 becomes ℵ1. But for this argument to work,
we needed:
(a) ℵ2 stays a cardinal;
(b) |RM [G]| = |RM |.
(a) actually follows from what you’ve done (or will do) on sheet 4: show that
Fn(ℵ0,ℵ1) has the ℵ2-cc (use κ-cc to mean every antichain has size less than
κ. So ccc should really mean ℵ1-cc); thus by sheet 4 it preserves cardinal ≥ ℵ2.
That gives us (a).
(b) Count nice names: how many nice names are there? ℵℵ11 (= 2ℵ1) many.
If M � 2ℵ0 = ℵ1∧2ℵ1 = ℵ3, then this doesn’t help us at all: it could be that we’ve
added ℵ3 many reals, and so (b) is broken, and we’ll only get M � 2ℵ0 ≤ ℵM3 .
If we knew that M � 2ℵ0 = 2ℵ1 = ℵ2, then we’d be done. But is this even
consistent? In non-set theorists’ view this is obviously inconsistent, but of course
we all know it is possible. This leads to our last point:

(4.) What about 2κ in general for κ > ℵ0? We would look at Fn)κ× ℵ − 1, 2),
which is the canonical poset for adding κ many subsets of ℵ1 (for each element
in κ, we get a characteristic function of ℵ1). This still has ccc; analysis of nice
names (assuming that M � GCH) will still give M [G] � 2ℵ1 = κ.

That all I want to say, I think we’ve done a lot. We’ll see each other tomorrow,
and on the revision class in Easter.
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3 Example Class 1

3.1 Question 1

The answer to this question really depends on how we formulate the axioms. For
example, the pairing axiom

∀x∀y∃p∀z(z ∈ p↔ z = x ∨ z = y)

is sometimes formulated with the ↔ changed to →, but of course they are
equivalent with extensionality.

So there is no definite answer to this question; the message I want to convey
here is that the axioms really only make sense when you have a set of those.

3.2 Question 2

Note that (a) is not ∆0, although it is ∆0 under some first order logic.

3.3 Question 3

(d) if z is a function then P(
⋃⋃

z) is enough to bound the range and domain of
the function.

3.4 Question 6

Example given on lecture: X = {(x, y) : x < ωy ∈ {0, 1}};
R = {(a, b) : a, b = X, a = (a1, a2), b = (b1, b2), (b2 = a2 ∧ a1 < b1) ∨ (b2 > a2)}.
Both of them are in Vω+1, and (X,R) ∈ Vω+4 or so.

3.5 Question 8

The general case is the fixed point theorem for normal functions. A normal
function is a function F : Ord→ Ord that is
• increasing: ∀α α < F (α);
• continuous: ∀λ limits, F (λ) = ∪α<λF (α).

Define γ0 := γ, γn+1 := F (γn), γω :=
⋃
n∈N F (γn). We basically just need to

check that the fixed point happens at the third case (so that the cofinality is ω).
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3.6 Question 9

(crude notes on board) κ is uncountable and regular. So we know Hκ � ZFC −
PowerSet, Vκ � ZFC −Replacement. Let λ < κ be a cardinal. Then λ ∈ Hκ

and every subset of λ is in Hκ. So Hκ � Powerset =⇒ P (λ) ∈ Hκ, and
|P (λ)| ≤ |tcl(P (λ))| < κ. So κ is a strong limit.•

3.7 Question 10

Remember Hartog’s theorem: ∀x∃α a ordinal s.t. there is no injection from α
into X; remember that this is true in ZF.
Let Ω := {R : R is a binary relation on X, (X,R) is a well-order},
Ω̄ := {α : ∃R ∈ Ω, (α,∈) ∼= (X,R)}.

Note that this also tells us that, if we have two models of set theory which agree
on real numbers, then they agree on the size of ℵ1.

3.8 Question 11

It’s worth notice that Φ is not absolute in general (because we need strong limit
for inaccessible cardinals).
For the last part just take Vκ2 . Also note that the statement holds for any finite
number, or even countably many.

We can consider other set theories like ZFC + ∞IC: ∀α∃κ > α s.t. κ is
inaccessible, or ZFC+ there is a cardinal κ which is inaccessible and ∀λ <
κ∃λ < κ′ < κ s.t. κ′ is inaccessible (so κ is an inaccessible limit of inaccessible
cardinals).

3.9 Question 12

The idea is almost the same as the one we looked in class: build the Skolem Hull
starting from quantifier-free formulas, adding witnesses of existential formulas
at each step. By induction we get a countable elementary substructure. Now
instead of that, for each step in building the skolem hull we take the Vαi s.t. our
structure is contained in Vαi . By regularity of κ we know we won’t reach Vκ
in the end, say our supremum is αω. Note that it’s possible that we’ve hit an
inaccessible cardinal en route. So we need to ensure that we go up by at least
one level at each stage to ensure that we’re actually moving. Then use similar
argument as q8.



4 EXAMPLE CLASS 2 53

4 Example Class 2

4.1 Question 15

One major problem is that we can’t refer to truth of existential formulas to
decide whether we want to add witnesses. This is one of the googlable things so
lecturer decided not to spend half an hour on this. This is closely related to q16.

4.2 Question 20

Note that if x is infinite, then L0(x) = |x|, L1(x) = D(x) still has cardinality
|x|, and so on; and at Lω(x) still has cardinality |x| = ℵ0.
What if x is not countable? If |x| = ℵ1, we then have L0(x) = ... = Lω(x) = ℵ1,
and it keeps this cardinality at Lω1

(x), and only changes to ℵ2 at Lω2
(x).

This is instructive enough for question 21.

4.3 Question 22

The given statement is equivalent to ∀X ∈ Lκ s.t. V � X is countable (regularity
is downward absolute); PLκ(X) is also countable. Let α ∈ Lκ be countable
(in V ), and a cardinal in Lκ. x ⊆ ω codes a well-ordering of ω of type α.
L(x) � α is countable; using the form of condensation lemma we had in q21

we get L(x) � CH. So ℵL(x)
1 = |P(ω)|L(x) = |P(α)|L(x) ≥ |PLκ(α)|L(x). LHS is

countable, so the last expression is also countable.

2017. 3. iv: Obvious choice for G0 and G1; for last part, take D ⊆ D dense in
M [G0], say with name δ. Find p ∈ G0 s.t. p  ’δ is dense’. Consider

D̄ := {(p′, q′) : p′  q̌′ ∈ δ, δ is dense }

prove that this is dense below (p, 1Q) ∈ H. Then take the second component?

The same proof won’t work to prove that G0 is P-generic over M [G0] because
we can’t go back to the product order?
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