Representation Theory

March 1, 2018

Contents

0	Introduction	4
1	Group actions	5
2	Basic Definitions	7
	2.1 Representations	7
	2.2 Equivalent representations	8
	2.3 Subrepresentations	10
3	Complete reducibility and Maschke's theorem	12
4	Schur's lemma	15
5	Character theory	19
6	Proofs and orthogonality	23
7	Permutation representations	25
	7.1 Alternating groups	26
8	Normal subgroups and lifting characters	28
9	Dual spaces and tensor products of representations	30
	9.1 tensor products	30
	9.2 Symmetric and extreior powers	35
	9.3 Tensor algebra	35
10	Restriction and induction	37
	10.1 Induced representations	40
11	Frobenius groups	42

2

CONTENTS

12 The missing lecutre: Mackey Theory	45
13 Integrality in the group algebra	48
13.1 The centre of $\mathbb{C}G$. 48
14 Burnside's theorem	51

0 Introduction

Representait on theory is the theory of how groups act as groups of linear transformations on $vector\ spaces.$

Here the groups are either *finite*, or *compact topological groups* (infinite), for example, SU(n) and O(n). The vector spaces we conside are finite dimensional, and usually over \mathbb{C} . Actions are *linear* (see below).

Some books: James-Liebeck (CUP); Alperin-Bell (Springer); Charles Thomas, Representations of finite and Lie groups; Online notes: SM, Teleman; P.Webb A course in finite group representation theory (CUP); Charlie Curtis, Pioneers of representation theory (history).

1 Group actions

Throughout this course, if not specified otherwise:

F is a field, usually C, R or Q. When the field is one of these, we are discussing ordinary representation theory. Sometimes F = F_p or F
_p (algebraic closure, see Galois Theory), in which case the theory is called modular representation theory;
V is a vector space over F, always finite dimensional; GL(V) = {θ : V → V, θ linear, invertible}, i.e. det θ ≠ 0.

Recall from Linear Algebra:

If $\dim_F V = n < \infty$, choose basis $e_1, ..., e_n$ over F, so we can identify it with F^n . Then $\theta \in GL(V)$ corresponds to an $n \times n$ matrix $A_{\theta} = (a_{ij})$, where $\theta(e_j) = \sum_i a_{ij}e_i$. In fact, we have $A_{\theta} \in GL_n(F)$, the general linear group.

(1.1) $GL(V) \cong GL_n(F)$ as groups by $\theta \to A_\theta$ $(A_{\theta_1\theta_2} = A_{\theta_1}A_{\theta_2}$ and bijection). Choosing different basis gives different isomorphism to $GL_n(F)$, but:

(1.2) Matrices A_1, A_2 represent the same element of GL(V) w.r.t different bases iff they are conjugate (similar), i.e. $\exists X \in GL_n(F)$ s.t. $A_2 = XA_1X^{-1}$.

Recall that $tr(A) = \sum_{i} a_{ii}$ where $A = (a_{ij})$, the *trace* of A.

(1.3) $\operatorname{tr}(XAX^{-1}) = \operatorname{tr}(A)$, hence we can define $\operatorname{tr}(\theta) = \operatorname{tr}(A_{\theta_1})$ independent of basis.

(1.4) Let $\alpha \in GL(V)$ where V in f.d. over \mathbb{C} , with $\alpha^m = \iota$ for some m (here ι is the identity map). Then α is diagonalisable.

Recall EndV is the set of all ilnear maps $V \to V$, e.g. $End(F^n) = M_n(F)$ some $n \times n$ matrices.

(1.5) Proposition. Take V f.d. over \mathbb{C} , $\alpha \in End(V)$. Then α is diagonalisable iff there exists a polynomial f with distinct linear factors with $f(\alpha) = 0$. For example, in (1.4), where $\alpha^m = \iota$, we take $f = X^m - 1 = \prod_{j=0}^{m-1} (X - \omega^j)$ where $\omega = e^{2\pi i/m}$ is the (m^{th}) root of unity. In fact we have:

 $(1.4)^*$ A finite family of commuting separately diagonalisable automorphisms of a \mathbb{C} -vector space can be simultaneously diagonalised (useful in abelian groups).

Recall from Group Theory:

(1.6) The symmetric group, $S_n = Sym(X)$ on the set $X = \{1, ..., n\}$ is the set of all permutations of X. $|S_n| = n!$. The alternating group A_n on X is the set of products of an even number of transpositions (2-cycles). $|A_n| = \frac{n!}{2}$.

(1.7) Cyclic groups of order m: $C_m = \langle x : x^m = 1 \rangle$. For example, $(\mathbb{Z}/m\mathbb{Z}, +)$; also, the group of m^{th} roots of unity in \mathbb{C} (inside $GL_1(\mathbb{C}) = \mathbb{C}^*$, the multiplicative group of \mathbb{C}). We also have the group of rotations, centre O of regular m-gon in \mathbb{R}^2 (inside $GL_2(\mathbb{R})$).

(1.8) Dihedral groups D_{2m} of order $2m = \langle x, y : x^m = y^2 = 1, yxy^{-1} = x^{-1} \rangle$. Think of this as the set of rotations and reflections preserving a regular *m*-gon. (1.9) Quaternion group, $Q_8 = \langle x, y | x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$ of order 8. For example, in $GL_2(\mathbb{C})$, put $i = {\binom{i \ 0}{0}}, j = {\binom{0 \ 1}{-1 \ 0}}, k = {\binom{0 \ i}{i \ 0}},$ then $Q_8 = \{\pm I_2, \pm i, \pm j, \pm k\}.$

(1.10) The conjugacy class (ccls) of $g \in G$ is $C_G(g) = \{xgx^{-1} : x \in G\}$. Then $|\mathcal{C}_G(g)| = |G : C_G(g)|$, where $C_G(g) = \{x \in G : xg = gx\}$, the centraliser of $g \in G$.

(1.11) Let G be a group, X be a set. G acts on X if there exists a map $\cdot : G \times X \to X$ by $(g, x) \to g \cdot x$ for $g \in G$, $x \in X$, s.t. $1 \cdot x = x$ for all $x \in X$, $(gh) \cdot x = g \cdot (h \cdot x)$ for all $g, h \in G, x \in X$.

(1.12) Given an action of G on X, we obtain a homomorphism $\theta: G \to Sym(X)$, called the *permutation representation* of G.

Proof. For $g \in G$, the function $\theta_g : X \to X$ by $x \to gx$ is a permutation on X, with inverse $\theta_{g^{-1}}$. Moreover, $\forall g_1, g_2 \in G$, $\theta_{g_1g_2} = \theta_{g_1}\theta_{g_2}$ since $(g_1g_2)x = g_1(g_2x)$ for $x \in X$.

2 Basic Definitions

2.1 Representations

Let G be finite, F be a field, usually \mathbb{C} .

Definition. (2.1)

Let V be a f.d. vector space over F. A (linear, in some books) representation of G on V is a group homomorphism

$$\rho = \rho_V : G \quad \to GL(V)$$

Write ρ_g for the image $\rho_V(g)$; so for each $g \in G$, $\rho_g \in GL(V)$, and $\rho_{g_1g_2} = \rho_{g_1}\rho_{g_2}$, and $(\rho_g)^{-1} = \rho_{g^{-1}}$. The dimension (or degree) of ρ is dim_F V.

(2.2) Recall ker $\rho \triangleleft G$ (kernel is a normal subgroup), and $G/\ker \rho \cong \rho(G) \leq GL(V)$ (1st isomorphism theorem). We say ρ is *faithful* if ker $\rho = 1$.

An alternative (and equivalent) approach is to observe that a representation of G on V is "the same as" a *linear action* of G:

Definition. (2.3)

G acts linearly on V if there exists a linear action

$$\begin{array}{l} G \times V \rightarrow V \\ (g,v) \rightarrow gv \end{array}$$

By linear action we mean: (action) $(g_1g_2)v = g_1(g_2v)$, $1v = v \ \forall g_1, g_2 \in G, v \in V$, and (linear) $g(v_1 + v_2) = gv_1 + gv_2$, $g(\lambda v) = \lambda gv \ \forall g \in G, v_1, v_2 \in V, \lambda \in F$. Now if G acts linearly on V, the map

$$\begin{array}{l} G \rightarrow GL(V) \\ g \rightarrow \rho_g \end{array}$$

with $\rho_g : v \to gv$ is a representation of G. Conversely, given a representation $\rho : G \to GL(V)$, we have a linear action of G on V via $g \cdot v := \rho(g)v \ \forall v \in V, g \in G$.

(2.4) In (2.3) we also say that V is a G-space or that V is a G-module. In fact if we define the group algebra FG, or F[G], to be $\{\sum \alpha_j g : \alpha_j \in F\}$ with natural addition and multiplication, then V is actually a FG-module (in the sense from GRM).

(2.5) R is a matrix representation of G of degree n if R is a homomorphism $G \to GL_n(F)$. Given representation $\rho: G \to GL(V)$ with $\dim_F V = n$, fix basis B; we get matrix representation

$$G \to GL_n(F)$$

 $g \to [\rho(g)]_B$

Conversely, given matrix representation $R: G \to GL_n(F)$, we get representation

$$\rho: G \to GL(F^n)$$
$$g \to \rho_g$$

via $\rho_g(v) = R_g v$ where R_g is the matrix of g.

Example. (2.6)

Given any group G, take V = F the 1-dimensional space, and

$$\rho: G \to GL(F)$$
$$g \to (id: F \to F)$$

is known as the trivial representation of G. So deg $\rho = 1$ (dim_F F = 1).

Example. (2.7)

Let $G = C_4 = \langle x : x^4 = 1 \rangle$. Let n = 2, and $F = \mathbb{C}$. Note that any $R : x \to X$ will determine $x^j \to X^j$ as it is a homomorphism, and also we need $X^4 = I$. So we can take X to be diagonal matrix – any such with diagonal entries a root to $x^4 = 1$, i.e. $\{\pm 1, \pm i\}$, or if X is not diagonal then it will be similar to a diagonal matrix by (1.4) $(X^4 = I)$.

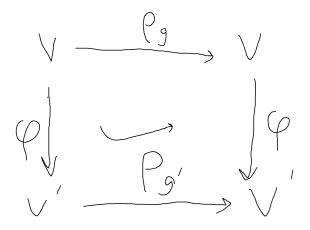
2.2 Equivalent representations

Definition. (2.8)

Fix G, F. Let V, V' be F-spaces, and $\rho : G \to GL(V), \rho' : G \to GL(V')$ which are representations of G. The linear map $\phi : V \to V'$ is a G-homomorphism if

$$\phi\rho(g) = \rho'(g)\phi\forall g \in G(*)$$

We can understand this more by the following diagram:



2 BASIC DEFINITIONS

We say ϕ intertwines ρ, ρ' . Write $Hom_G(V, V')$ for the *F*-space of all these. ϕ is a *G*-isomorphism if it is also bijective; if such ϕ exists, ρ, ρ' are isomorphic/equivalent representations. If ϕ is a *G*-isomorphism, we can write (*) as $\rho' = \phi \rho \phi^{-1}$.

Lemma. (2.9)

The relation "being isomorphic" is an equivalent relation on the set of all representations of G (over F).

Remark. (2.10)

If ρ, ρ' are isomorphic representations, they have the same dimension.

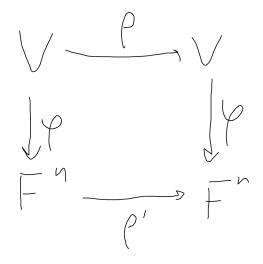
The converse may be false: C_4 has four non-isomorphic 1-dimensional representations: if $\omega = e^{2\pi i/4}$ then they are $\rho_j(x^i) = \omega^{ij}$ $(0 \le i \le 3)$.

Remark. (2.11)

Given G, V over F of dimension n and $\rho: G \to GL(V)$. Fix basis B for V: we get a linear isomorphism

$$\phi: V \to F^n$$
$$v \to [v]_B$$

and we get a representation $\rho': G \to GL(F^n)$ isomorphic to ρ :



(2.12) In terms of matrix representations, we have

$$R: G \to GL_n(F)$$
$$R': G \to GL_n(F)$$

are (G)-isomorphic or equivalent if there exists a nonsingular matrix $X \in GL_n(F)$ with $R'(g) = XR(g)X^{-1} \ \forall g \in G$.

In terms of linear G-actions, the actions of G on V, V' are G-isomorphic if there exists isomorphisms $\phi: V \to V'$ such that $g: \phi(v) = \phi(gv) \ \forall v \in V, g \in G$.

2.3 Subrepresentations

Definition. (2.13)

Let $\rho: G \to GL(V)$ be a representation of G. We say $W \leq V$ is a G-subspace if it's a subspace and it is $\rho(G)$ -invariant, i.e. $\rho_g(W) \leq W \forall g \in G$. Obviously $\{0\}$ and V are G-subspaces, however.

 ρ is *irreducible/simple* representation if there are no proper G-subspaces.

Example. (2.14)

Any 1-dimensional representation of G is irreducible, but not conversely, e.g. D_8 has 2-dimensional \mathbb{C} -irreducible representation.

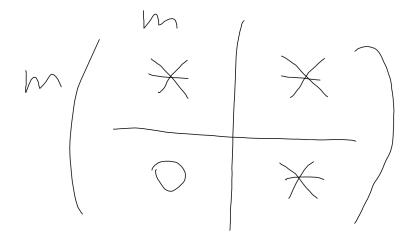
(2.15) In definition (2.13), if W is a G-subspace, then the corresponding map

$$G \to GL(W)$$
$$g \to \rho(g)|_W$$

is a representation of G, a subrepresentation of ρ .

Lemma. (2.16)

In definition (2.13), given $\rho: G \to GL(V)$, if W is a G-subspace of V and if $B = \{v_1, ..., v_n\}$ is a basis containing basis $B_1 = \{v_1, ..., v_m\}$ of W (0 < m < n) then the matrix of $\rho(g)$ w.r.t. B has block upper triangular form as the graph below, for



each $g \in G$.

Example. (2.17)

(i) The irreducible representations of $C_4 = \langle x : x^4 = 1 \rangle$ are all 1-dimensional and four of these are $x \to i, x \to -1, x \to -i, x \to 1$. In general, $C_m = \langle x : x^m = 1 \rangle$ has precisely *m* irreducible complex representations, all of dimension 1. In fact, all complex irreducible representations of a finite abelian group are 1-dimensional (use (1.4)* or see (4.4) below).

(ii) $G = D_6$: any irreducible C-representation has dimension ≤ 2 .

Let $\rho: G \to GL(V)$ be irreducible *G*-representation. Let r, s be rotation and reflection in D_6 respectively. Let *V* be eigenvector of $\rho(r)$. So $\rho(r)v = \lambda v$

2 BASIC DEFINITIONS

for some $\lambda \neq 0$. Let $W = span\{v, \rho(s)v\} \leq V$. Since $\rho(s)\rho(s)v = v$ and $\rho(r)\rho(s)v = \rho(s)\rho(r)^{-1}v = \lambda^{-1}\rho(s)v$, both of which are in W; so W is *G*-invariant, i.e. a *G*-subspace. Since V is irreducible, W = V.

Definition. (2.18)

We say at $\rho : G \to GL(V)$ is *decomposable* if there are proper *G*-invariant subspaces U, W with $V = U \oplus W$. Say ρ is direct sum $\rho_U \oplus \rho_W$. If no such decomposition exists, we say that ρ is *indecomposable*.

Lemma. (2.19)

Suppose $\rho : G \to GL(V)$ is decomposable with *G*-invariant decomposition $V = U \oplus W$. If *B* is a basis $\{\underbrace{u_1, ..., u_k}_{B_1}, \underbrace{w_1, ..., w_l}_{B_2}\}$ of *V* consisting of basis of *U* and basis of *W*, then w.r.t. *B*, $\rho(g)_B$ is a block diagonal matrix $\forall g \in G$ as

The basis of
$$W$$
, then with D , $p(y)_B$ is a block diagonal matrix $\forall y \in C$

$$\rho(g)_B = \begin{pmatrix} [\rho_W(g)]_{B_1} & 0\\ 0 & [\rho_W(g)]_{B_2} \end{pmatrix}$$

Definition. (2.20)

If $\rho: G \to GL(V), \, \rho': G \to GL(V')$, the direct sum of ρ, ρ' is

$$\rho \oplus \rho' : G \to GL(V \oplus V')$$

where $\rho \oplus \rho'(g)(v_1 + v_2) = \rho(g)v_1 + \rho'(g)v_2$, a block diagonal action. For matrix representations $R: G \to GL_n(F), R': G \to GL_{n'}(F)$, define $R \oplus R': G \to GL_{n+n'}(F)$:

$$g \to \begin{pmatrix} R(g) & 0\\ 0 & R'(g) \end{pmatrix}$$

3 Complete reducibility and Maschke's theorem

Definition. (3.1)

A representation $\rho: G \to GL(V)$ is completely reducible, or semisimple, if it is a direct sum of irreducible representations. Evidently, irreducible implies completely reducible (lol).

Remark. (3.2)

(1) The converse is false;

(2) See sheet 1 Q3: \mathbb{C} -representation of \mathbb{Z} is not completely reducible and also representation of C_p over \mathbb{F}_p is not c.r..

From now on, take G finite and char F = 0.

Theorem. (3.3)

Every f.d. representation V of a finite group over a field of char 0 is completely reducible, i.e.

$$V \cong V_1 \oplus \ldots \oplus V_r$$

is a direct sum of representations, each V_i irreducible.

It is enough to prove:

Theorem. (3.4 Maschke's theorem, 1899) Let G be finite, $\rho: G \to GL(V)$ a f.d. representation, char F = 0. If W is a G-subspace of V, then there exists a G-subspace U of V s.t. $V = W \oplus U$, a direct sum of G-subspaces.

Proof. (1)

Let W' be any vector subspace complement of W in V, i.e. $V = W \oplus W'$ as vector spaces, and $W \cap W' = 0$. Let $q: V \to W$ be the projection of V onto W along W' (ker q = W'), i.e. if v = w + w' then q(v) = w. Define

$$\bar{q}: v \to \frac{1}{|G|} \sum_{g \in G} gq(g^{-1}v)$$

the 'average' of q over G. Note that in order for $\frac{1}{|G|}$ to exists, we need char F = 0. It still works if char $F \nmid |G|$.

Claim (1): $\bar{q}: V \to W$: For $v \in V$, $g(q^{-1}v) \in W$ and $gW \leq W$; Claim (2): $\bar{q}(w) = w$ for $w \in W$:

$$\bar{q}(w) = \frac{1}{|G|} \sum_{g \in G} gq(g^{-1}w) = \frac{1}{|G|} \sum g(g^{-1}w) = \frac{1}{|G|} \sum w = w$$

So these two claims imply that \bar{q} projects V onto W.

Claim (3) If $h \in G$ then $h\bar{q}(v) = \bar{q}(hv)$ $(v \in V)$:

$$\begin{split} h\bar{q}(v) &= h \frac{1}{|G|} \sum_{g} g \cdot q(g^{-1}v) \\ &= \frac{1}{|G|} \sum_{g} hgq(g^{-1}v) \\ &= \frac{1}{|G|} \sum_{g} (hg)q((hg)^{-1}hv) \\ &= \frac{1}{|G|} \sum_{g} gq(g^{-1}(hv)) \\ &= \bar{q}(hv) \\ &= \bar{q}(hv)) \end{split}$$

We'll then show that the kernel of this map is G-invariant, so this gives a G-summand on Thursday.

Let's now show ker \bar{q} is *G*-invariant. If $v \in \ker \bar{q}$, then $h\bar{q}(v) = 0 = \bar{q}(hv)$, so $hv \in \ker \bar{q}$. Thus $V = im\bar{q} \oplus \ker \bar{q} = W \oplus \ker \bar{q}$ is a *G*-subspace decomposition.

We can deduce (3.3) from (3.4) by induction on dim V. If dim V = 0 or V is irreducible, then result is clear. Otherwise, V has non-trivial G-invariant subspace, W. Then by (3.4), there exists G-invariant complement U s.t. $V = U \oplus W$ as representations of G. But dim U, dim $W < \dim V$. So by induction they can be broken up into direct sum of irreducible subrepresentations. \Box

The second proof uses inner products, hence we need to take $F = \mathbb{C}$ and can be generalised to compact groups in section 15.

Recall, for V a \mathbb{C} -space, \langle, \rangle is a Hermitian inner product if

- (a) $\langle w, v \rangle = \langle v, w \rangle \ \forall v, w \text{ (Hermitian)};$
- (b) linear in RHS (sesquilinear);

(c) $\langle v, v \rangle > 0$ iff $v \neq 0$ (positvie definite).

Additionally, \langle, \rangle is *G*-invariant if (d) $\langle gv, gw \rangle = \langle v, w \rangle \ \forall v, w \in V, g \in G.$

Note if W is G-invariant subspace of V, with G-invariant inner product, then W^{\perp} is also G-invariant, and $V \oplus W^{\perp}$. For all $v \in W^{\perp}$, $g \in G$, we have to show that $gv \in W^{\perp}$. But $v \in W^{\perp} \iff \langle v, w \rangle = 0 \forall w \in W$. Thus by (d), $\langle gv, gw \rangle = 0 \forall g \in G \forall w \in W$. Hence $\langle gv, w' \rangle = 0 \forall w' \in W$. Since we can choose $w = g^{-1}w' \in W$ by G-invariance of W. Thus $gv \in W^{\perp}$ since g was arbitrary.

Hence if there is a G-invariant inner product on any G-space, we get another proof of Maschke's theorem:

 (3.4^*) (Weyl's unitary trick)

Let ρ be a complex representation of the finite group G on the \mathbb{C} -space V. Then there is a G-invariant Hermitian inner product on V.

Remark. Recall the unitary group U(V) on V: $\{f \in GL(V) : (fu, fv) = (u, v) \forall u, v \in V\} = \{A \in GL_n(\mathbb{C}) : A\bar{A}^T = I\} (= U(n))$ by choosing orthonormal

basis.

Sheet 1 Q.12: any finite subgroup of $GL_n(\mathbb{C})$ is conjugate to a subgroup of U(n).

Proof. (2)

There exist an inner product on V: take basis $e_1, ..., e_n$ and define $(e_i, e_j) = \delta_{ij}$, extended sesquilinearly. Now

$$\langle v,w\rangle:=\frac{1}{|G|}\sum_{g\in G}(gv,gw)$$

we claim that \langle , \rangle is sesquilinear, positive definite and G-invariant: if $h \in G$, then

$$\begin{split} \langle hv, hw \rangle &= \frac{1}{|G|} \sum_{g \in G} ((gh)v, (gh)w) \\ &= \frac{1}{|G|} \sum_{g' \in G} (g'v, g'w) \\ &= \langle v, w \rangle \end{split}$$

for all $v, w \in V$.

Definition. (3.5, the regular representation) Recall group algebra of G is F-space $FG = span\{e_g : g \in G\}$. There is a linear G-action

$$h \in G, h \sum_{g \in G} a_g e_g = \sum_{g \in G} a_g e_{hg} (= \sum_{g' \in G} a_{h^{-1}g'} e_{g'})$$

 ρ_{reg} is the corresponding representation, the regular representation of G. This is faithful of dim |G|. FG is the regular module.

Proposition. Let ρ be an irreducible representation of G over a field of characteristic 0. Then ρ is isomorphic to a subrepresentation of ρ_{reg} .

Proof. Take $\rho : G \in GL(V)$ irreducible and let $0 \neq v \in V$. Let $\theta : FG \to V$ by $\sum a_g e_g \to \sum a_g gv$. Check this is a *G*-homomorphism. Now *V* is irreducible so $im\theta = V$ (since $im\theta$ is a *G*-subspace).

Also ker θ is *G*-subspace of *FG*. Let *W* be *G*-complement of ker θ in *FG* (Maschke), so that W < FG is *G*-subspace and $FG = \ker \theta \oplus W$. Thus $W \cong FG / \ker \theta \cong (G - isomorphism)im \theta \cong V$.

More generally,

Definition. (3.7)

Let F be a field. Let G act on set X. Let $FX = span\{e_x : x \in X\}$ with G-action

$$g(\sum a_x e_x) = \sum a_x e_{gx}$$

The representation $G \to GL(V)$ where V = FX is the corresponding *permutation* representation. See section 7.

4 Schur's lemma

It's really unfair that such an important result is only remembered by a lemma, so we shall call it a theorem.

Theorem. (4.1, Schur)

(a) Assume V, W are irreducible G-spaces over field F. Then any G-homomorphism $\theta: V \to W$ is either 0 or an isomorphism.

(b) Assume F is algebraically closed, and let V be an irreducible G-space. Then any G-endomorphism $V \to V$ is a scalar multiple of the identity map ι_V .

Proof. (a) Let $\theta: V \to W$ be a *G*-homomorphism. Then ker θ is *G* subspace of *V* and, since *V* is irreducible, we get ker $\theta = 0$ or ker $\theta = V$.

And $im\theta$ is G-subspace of W, so as W is irreducible, $im\theta$ is either 0 or W. Hence, either $\theta = 0$ or θ is injective and surjective, hence isomorphism.

(b) Since F is algebraically closed, θ has an eigenvalue, λ . Then $\theta - \lambda \iota$ is singular G-endomorphism of V, but it cannot be an isomorphism, so it is 0 (by (a)). So $\theta = \lambda \iota_V$.

Recall from (2.8), the *F*-space $Hom_G(V, W)$ of all *G*-homomorphisms $V \to W$. Write $End_G(V)$ for the *G*-endomorphisms of *V*.

Corollary. (4.2)

If V, W are irreducible complex G-spaces, then

 $\dim_{\mathbb{C}} Hom_G(V,W) = \begin{cases} 1 & \text{if } V, W \text{ are } G - \text{ isomorphic} \\ 0 & \text{otherwise} \end{cases}$

Proof. If V, W are not G-isomorphic then the only G-homomorphism $V \to W$ is 0 by (4.1). Assume $v \cong_G W$ and $\theta_1, \theta - 2 \in Hom_G(V, W)$, both non-zero. Then θ_2 is invertible by (4.1), and $\theta_2^{-1}\theta_1 \in End_G(V)$, and non-zero, so $\theta_2^{-1}\theta_1 = \lambda \iota_V$ for some $\lambda \in \mathbb{C}$. Hence $\theta_1 = \lambda \theta_2$.

Corollary. (4.3)

If finite group G has a faithful complex irreducible representation, then Z(G), the centre of the group, is cyclic. Note that the converse is false (Sheet 1, Q10).

Proof. Let $\rho: G \to GL(V)$ be faithful irreducible complex representation. Let $z \in Z(G)$, so $zg = gz \ \forall g \in G$, hence the map $\phi_z: v \to z(v) \ (v \in V)$ is *G*-endomorphism of *V*, hence is multiplication by scalar μ_z , say. By Schur's lemma, $z(v) = \mu_z v \ \forall v$. Then the map

$$Z(G) \to \mathbb{C}^* \text{ (multiplicative group)}$$
$$z \to \mu_z$$

is a representation of Z and is faithful, since ρ is. Thus Z(G) is isomorphic to some finite subgroup of \mathbb{C}^* , so is cyclic.

4 SCHUR'S LEMMA

Let's now consider representation of finite abelian groups.

Corollary. (4.4)

The irreducible \mathbb{C} -representations of a finite abelian group are all 1-dimensional.

Proof. Either: use $(1.4)^*$ to invoke simultaneous diagonalisation: if v is an eigenvector for each $g \in G$, and if V is irreducible, then $V = \langle v \rangle$. *Or*: Let V be an irreducible \mathbb{C} -representation. For $g \in G$, the map

$$\begin{array}{ccc} \theta_g : V & \to v \\ v & \to gv \end{array}$$

is a *G*-endomorphism of *V*, and as *V* irreducible, $\theta_g = \lambda_g \iota_V$ for some $\lambda_g \in \mathbb{C}$. Thus $gv = \lambda_g v$ for any $g \in G$ (so $\langle v \rangle$ is a *G*-subspace of *V*). Thus as $0 \neq V$ is irreducible, $V = \langle v \rangle$, which is 1-dimensional.

Remark. Schur's lemma fails over non-algebraically closed field, in particular, over \mathbb{R} . For example, let's consider the cyclic group C_3 . It has 2 irreducible \mathbb{R} -representations, one of dimension 1 (maps everything to 1) and one of dimension 2(imo consider \mathbb{C} as a dimension 2 space over \mathbb{R} , then map the generator to the 3rd root of unity?) (so 'contradicting' with Schur's lemma via the corollary above).

Recall that every finite abelian group G is isomorphic to a product of cyclic groups (see GRM). For example, $C_6 = C_2 \times C_3$. In fact, it can be written as a product of $C_{p^{\alpha}}$ for various primes p and $\alpha \geq 1$, and the factors are uniquely determined up to reordering.

Proposition. (4.5)

The finite abelian group $G = C_{n_1} \times ... \times C_{n_r}$ has precisely |G| irreducible \mathbb{C} -representations, as described below:

Proof. Write $G = \langle x_1 \rangle \times ... \langle x_r \rangle$ where $|x_j| = n_j$. Suppose ρ is irreducible, so by (4.4), it's 1-dimensional: $\rho : G \to \mathbb{C}^*$.

Let $\rho(1, ..., x_j, ..., 1)$ (all 1 apart from the j^{th} entry) be λ_j . Then $\lambda_j^{n_j} = 1$, so λ_j is a n_j -th root of unity. Now, the values $(\lambda_1, ..., \lambda_r)$ determine ρ :

$$\rho(x_1^{j_1}, ..., x_r^{j_r}) = \lambda_1^{j_1} ... \lambda_r^{j_r}$$

thus $\rho \leftrightarrow (\lambda_1, ..., \lambda_r)$ with $\lambda_j^{n_j} = 1 \forall j$; we have $n_1 ... n_r$ such *r*-tuples, each giving 1-dimensional representation.

Example. (4.6)

Consider $G = C_4 = \langle x \rangle$. We could have $\rho_1(x) = 1$, $\rho_2(x) = i$, $\rho_3(x) = -1$, $\rho_4(x) = -i$.

Warning: There is no "natural" 1-1 correspondence between the elements of G and the representations of G (*G*-finite abelian). If you choose an isomorphism $G \cong C_{a_1} \times \ldots \times C_{a_r}$, then we can identify the two sets (elements of groups and representations of G), but it depends on the choice of isomorphism.

Isotypical decomposition:

Recall any diagonalisable endomorphism $\alpha : V \to V$ gives eigenspace decomposition of $V \cong \bigoplus_{\lambda} V(\lambda)$, where $V(\lambda) = \{v : \alpha v = \lambda v\}$. This is *caconical* (one of the three useless words: *arbitrary*(anything), *canonical*(only one choice), *uniform*(you can choose, but it doesn't really matter)), in the sense that it depends on α alone (and nothing else).

There is no canonical eigenbasis of V: must choose basis in each $V(\lambda)$.

We know that in *char* 0 every representation V decomposes as $\oplus n_i V_i$, V_i irreducible, $n_i \ge 0$. How unique is this?

We have this wishlist (4.7):

(a) Uniqueness: for each V there is only one way to decompose V as above. However, this doesn't work obviously.

(b) Isotypes: for each V, there exists a unique collection of subrepresentations $U_1, ..., U_k$ s.t. $V = \oplus U_i$ and, if $V_i \subseteq U_i$ and $V'_j \subseteq U_j$ are irreducible subrepresentations, then $V_i \cong V'_j$ iff i = j.

(c) Uniqueness of factors: If $\bigoplus_{i=1}^{k} V_i \cong \bigoplus_{i=1}^{k} V'_i$ with V_i, V'_i irreducible, then k = k', and $\exists \pi \in S_k$ such that $V'_{\pi(i)} \cong V_i$ (Krull-Schimdt theorem). For (b),(c) see Teleman section 5.

Lemma. (4.8) Let V, V_1, V_2 be G-spaces over F. (i) $Hom_G(V, V_1 \oplus V_2) \cong Hom_G(V, V_1) \oplus Hom_G(V, V_2);$ (ii) $Hom_G(V_1 \oplus V_2, V) \cong Hom_G(V_1, V) \oplus Hom_G(V_2, V);$

Proof. (i) Let $\pi_i : V_1 \oplus V_2 \to V_i$ be *G*-linear projections onto V_i , with kernel V_{3-i} (i = 1, 2). Consider

$$Hom_G(V, V_1 \oplus V_2) \to Hom_G(V, V_1) \oplus Hom_G(V, V_2)$$
$$\phi \to (\pi_1 \phi, \pi_2 \phi)$$

This map has inverse $(\psi_1, \psi_2) \rightarrow \psi_1 + \psi_2$). Check details. (ii) The map $\phi \rightarrow (\phi|_{V_1}, \phi|_{V_2})$ has inverse $(\psi_1, \psi_2) \rightarrow \psi_1 \pi_1 + \psi_2 \pi_2$.

Lemma. Let F be algebraically closed, $V = \bigoplus_{i=1}^{n} V_i$ a decomposition of G-space into irreducible summands. Then, for each irreducible representation S of G,

$$\#\{j: V_j \cong S\} = \dim Hom_G(S, V)$$

where # means 'number of times'. This is called the *multiplicity* of S in V.

Proof. Induction on n. n = 0, 1 are trivial. If n > 1, $V = \bigoplus_{i=1}^{n-1} V_i \oplus V_n$. By (4.8) we have

$$\dim Hom_G(S, \oplus_1^{n-1}V_i \oplus V_n) = \dim Hom(S, \oplus_1^{n-1}V_i) + \underbrace{\dim Hom_G(S, V_n)}_{\text{Schur's lemma}}$$

Definition. (4.10)

A decomposition of V as $\oplus W_j$ where each $W_j \cong n_j$ copies of irreducible representations S_j (each non-isomorphic for each j) is the *canonical decomposition* or the decomposition into *isotypical components* W_j . For F algebraically closed, $n_j = \dim Hom_G(S_j, V)$.

5 Character theory

We want to attach invariants to representation ρ of a finite group G on V. Matrix coefficients of $\rho(q)$ are basis dependent, so not true invariants.

Let's take $F = \mathbb{C}$, G finite, $\rho = \rho_V : G \to GL(V)$ be a representation of G.

Definition. (5.1)

The character $\chi_{\rho} = \chi_V = \chi$ is defined as $\chi(g) = \operatorname{tr} \rho(g) = \operatorname{tr} R(g)$ where R(g) is any matrix representation of $\rho(g)$ w.r.t. any basis.

The degree of χ_V is dim_{\mathbb{C}} V.

Thus χ is a function $G \to \mathbb{C}$. χ is *linear* (not a universal name) if dim V = 1, in which case χ is a homomorphism $G \to \mathbb{C}^*$ (= $GL_1(\mathbb{C})$).

 χ is irreducible if ρ is; χ is faithful if ρ is; and, χ is trivial, or principal, if ρ is the trivial representation (2.6). We write $\chi = 1_G$ in that case.

 χ is a complete invariant in the sense that it determines ρ up to isomorphism – see (5.7).

Theorem. (5.2, first properties)

(i) $\chi_V(1) = \dim_{\mathbb{C}} V$; (clear: tr $I_n = n$)

(ii) χ_V is a *class function*, via it is conjugation-invariant:

$$\chi_V(hgh^{-1}) = \chi_V(g) \forall g, h \in G$$

Thus χ_V is constant on conjugacy classes.

(iii) $\chi_V(g^{-1}) = \chi_V(g)$, the complex conjugate;

(iv) For two representations $V, W, \chi_{V \oplus W} = \chi_V + \chi_W$.

Proof. (ii) $\chi(hgh^{-1}) = \operatorname{tr}(R_h R_g R_h^{-1}) = \operatorname{tr}(R_g) = \chi(g).$

(iii) Recall $g \in G$ has finite order, so we can assume $\rho(g)$ is represented by a diagonal matrix $Diag(\lambda_1, ..., \lambda_n)$. Then $\chi(g) = \sum \lambda_i$. Now g^{-1} is represented by the matrix $Diag(\lambda_1^{-1}, ..., \lambda_n^{-1})$, and hence $\chi(g^{-1}) = \sum \lambda_i^{-1} = \sum \overline{\lambda_i} = \overline{\chi(g)}$ (since λ_i 's are roots of unity – since $g^k = 1$ for some k!(I mean an exclamation mark here to express surprise) and by homomorphism we know that).

(iv) Suppose $V = V_1 \oplus V_2$, $\rho_i : G \to GL(V_i)$, $\rho : G \to GL(V)$. Take basis $B = B_1 \cup B_2$ of V w.r.t B, $\rho(g)$ has matrix of block form $Diag([\rho_1(g)]_{B_1}, [\rho_2(g)]_{B_2})$ and as $\chi(g)$ is the trace of the above matrix, it is equal of $\operatorname{tr} \rho_1(g) + \operatorname{tr} \rho_2(g) =$ $\chi_{\rho_1}(g) + \chi_{\rho_2}(g).$

Remark. We see later that χ_1, χ_2 character of G implies that $\chi_1\chi_2$ is also a character of G: uses tensor products, see (9.6).

Lemma. (5.3)

Let $\rho: G \to GL(V)$ be a copmlex representation affording the character χ (i.e. χ is a character of ρ). Then $|\chi(g)| \leq \chi(1)$, with equality iff $\rho(g) = \lambda_I$ for some $\lambda \in \mathbb{C}$, a root of unity. Moreover, $\chi(g) = \chi(1)$ iff $g \in \ker \rho$.

Proof. Fix g. W.r.t. basis of V of eigenvalues $\rho(g)$, the matrix of $\rho(g)$ is $Diag(\lambda_1, ..., \lambda_n)$. Hence $|\chi(g)| = |\sum \lambda_i| \leq \sum |\lambda_i| = \sum 1 = \dim V = \chi(1)$. Equality holds iff all λ_i are equal (to λ , say). If $\chi(g) = \chi(1)$, then $\rho(g) = \lambda \iota$ has $\chi(g) = \lambda \chi(1)$.

5 CHARACTER THEORY

Lemma. (5.4)

(a) If χ is a complex irreducible character of G, so is $\overline{\chi}$;

(b) Under the same assumption, so is $\varepsilon \chi$ for any linear character ε of G.

Proof. If $R: G \to GL_n(\mathbb{C})$ is a complex irreducible representation then so is $\overline{R}: G \to GL_n(\mathbb{C})$ by $g \to \overline{R}(g)$. Similarly for $R': g \to \varepsilon(g)R(g)$ for $g \in G$. Check the details.

Definition. (5.5)

 $\mathcal{C}(G) = \{f : G \to \mathbb{C} : f(hgh^{-1}) = f(g) \forall h, g \in G\}, \text{ the } \mathbb{C}\text{-space of class functions}$ (we call it a space since $f_1 + f_2 : g \to f_1(g) + f_2(g), \lambda f : g \to \lambda f(g)$ are still in $\mathcal{C}(G)$), so this is a vector space.

Let k = k(G) be the number of ccls of G. List the ccls $C_1, ..., C_k$. Conventionally we choose $g_1 = 1, g_2, ..., g_k$, representatives of the ccls (hence $C_1 = \{1\}$). Note that $\dim_{\mathbb{C}} C(G) = k$ (the characteristic functions δ_j of each ccl which maps any element in the ccl to 1 and others to 0 form a basis). We define Hermitian inner product on C(G):

$$\begin{split} \langle f, f' \rangle &= \frac{1}{|G|} \sum_{g \in G} \overline{f(G)} f'(g) \\ &= \frac{1}{|G|} \sum_{j=1}^{k} |\mathcal{C}_j| \overline{f(g_j)} f'(g_j) \\ &= \sum_{j=1}^{k} \frac{1}{|C_G(g_j)} \overline{f(g_j)} f'(g_j) \end{split}$$

using $|\mathcal{C}_x| = |G : C_g(x)|$, where \mathcal{C}_x is the ccl of x, $C_G(x)$ is the centraliser of x. For characters

$$\langle \chi, \chi' \rangle = \sum \frac{1}{|C_G(g_j)|} \chi(g_j^{-1}) \chi'(g_j)$$

is a real symmetric form (in fact, $\langle \chi, \chi' \rangle \in \mathbb{Z}$ – see later).

Theorem. (5.6)

The \mathbb{C} -irreducible characters of G form an orthonormal basis of $\mathcal{C}(G)$. Moreover, (a) If $\rho : G \to GL(V), \rho' : G \to GL(V')$ are irreducible representations of G affording characters χ, χ' respectively, then

$$\langle \chi, \chi' \rangle = \begin{cases} 1 & \rho, \rho' \text{ are isomorphic representations} \\ 0 & \text{otherwise} \end{cases}$$

we call this 'row orthogonality'.

(b) Each class function of G can be expressed as a linear combination of G. This will be proved later in section 6.

Corollary. (5.7)

Complex representations of *finite* groups are characterised by their characters. We emphasise on finiteness here: for example, $G = \mathbb{Z}$, consider $1 \to I_2$, $1 \to \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ are non-isomorphic but have same character.

Proof. Let $\rho: G \to GL(V)$ be representation affording χ (G finite over \mathbb{C}). (3.3) says

$$\rho = m_1 \rho_1 \oplus \ldots \oplus m_k \rho_k$$

where $\rho_1, ..., \rho_k$ are irreducible, and $m_j \ge 0$. Then $m_j = \langle \chi, \chi_j \rangle$ where χ_j is afforded by ρ_j : we have $\chi = m_1 \chi_1 + ... + m_k \chi_k$, but the ρ_i 's are orthonormal. \Box

Corollary. (5.8, irreduciblility criterion) If ρ is \mathbb{C} -representation of G affording χ , then ρ irreducible $\iff \langle \chi, \chi \rangle = 1$.

Proof. Forward is just the statement of orthonormality. Conversely, assume $bra\chi, \chi\rangle = 1$. Now take a (complete) decomposition of ρ and take characters of it we get $\chi = \sum m_j \chi_j$ with χ_j irreducible and $m_j \ge 0$. Then $\sum m_j^2 = 1$. Hence $\chi = \chi_j$ for some j (since the m_j 's are obviously integers), so is irreducible. \Box

Corollary. (5.9)

If the irreducible \mathbb{C} -representations of G are $\rho_1, ..., \rho_k$ have dimensions $n_1, ..., n_k$, then

$$|G| = \sum_{i=1}^{k} n_i^2$$

Proof. Recall from (3.5), $\rho_{reg}; G \to GL(\mathbb{C}G)$, the regular representation G of dimension |G| (where $\mathbb{C}G$ is just a G-space with basis $\{e_g : g \in G\}$ and any $h \in G$ permutes the $e_g: e_g \to e_{hg}$).

Let π_{reg} be its charcter, the regular character of G. Claim 1: $\pi_{reg}(1) = |G|, \pi_{reg}(h) = 0$ if $h \neq 1$.

This is clear: take $h \in G, h \neq 1$, then we always have 0 down the diagonal since h permutes things around, so the trace is 0; if h = 1 then we have an identity matrix so trace is dim $\rho = |G|$.

Claim 2: $\pi_{reg} = \sum n_j \chi_j$ with $n_j = \chi_j(1)$. This is because $n_i = \langle \pi_{reg}, \chi_i \rangle$

$$j = \langle \pi_{reg}, \chi_j \rangle$$
$$= \frac{1}{|G|} \sum_{g \in G} \overline{\pi_{reg}(g)} \chi_j(g)$$
$$= \frac{1}{|G|} \cdot |G| \chi_j(1) = \chi_j(1)$$

(all the other $\pi_{reg}(g)$ are zero by claim 1). Our corollary is then obvious by just calculating $|G| = \pi_{reg}(1)$.

Corollary. (5.10)

Number of irreducible characters of G (up to equivalence) = k (=number of ccls).

Corollary. (5.11)

Elements $g_1, g_2 \in G$ are conjugate iff $\chi(g_1) = \chi(g_2)$ for all irreducible characters of G.

5 CHARACTER THEORY

Proof. Forward: characters are class functions;

Backward: Let δ be the characteristic function of the class of g_1 . In particular, δ is a class function, so can be written as a linear combination of the irreducible characters of G. Hence $\delta(g_2) = \delta(g_1) = 1$, so $g_2 \in C_G(g_1)$.

In the end let's introduce a good friend which will be around for the next few lectures:

Recall from (5.5), the inner product on $\mathcal{C}(G)$ and the real symmetric form \langle, \rangle on characters:

Definition. The character table of G is the $k \times k$ matrix (where k is the number of ccls) $X = [\chi_i(g_j)]$, the i^{th} character on the j^{th} class, where we let $\chi_1 = 1_G, \chi_2, ..., \chi_k$ are the irreducible characters of G, and $\mathcal{C}_1 = \{1\}, ..., \mathcal{C}_k$ are the ccls with $g_j \in \mathcal{C}_j$ (as we defined in 5.5). So the $(i, j)^{th}$ entry of X is just $\chi_i(g_j)$.

Example. (5.13)

(a) $C_3 = \langle x : x^3 = 1 \rangle$. The character table is

where $\omega = e^{2\pi i/3}$.

(b) $G = D_6 \cong S_3 = \langle r, s : r^3 = s^2 = 1, sr^{-1} = r^{-1} \rangle$. ccls of G: $C_1 = \{1\}, C_2 = \{r, r^{-1}, C_3 = \{s, sr, sr^2\}$. We have 3 irreducible representations over \mathbb{C} : 1_G (trivial); \mathcal{S} (sign): $x \to 1$ for x even, $x \to -1$ for x odd; and W (2-dimensional): sr^i acts by matrix with eigenvalues ± 1 ; r^k acts by the matrix

$$\frac{\cos 2k\pi/3}{\sin 2k\pi/3} - \frac{\sin 2k\pi/3}{\cos 2k\pi/3}$$

so $\chi_w(sr^i) = 0 \ \forall j, \ \chi_w(r^k) = 2\cos 2k\pi/3 = -1 \ \forall k$. So the charactable is:

$$\begin{array}{ccccc} & \mathcal{C}_1 & \mathcal{C}_2 & \mathcal{C}_3 \\ 1_G & 1 & 1 & 1 \\ \chi_s & 1 & -1 & 1 \\ \chi_w & 2 & 0 & -1 \end{array}$$

6 Proofs and orthogonality

We want to prove (5.6): irreducible characters form orthonormal basis for the space of \mathbb{C} -class functions.

Proof. (of 5.6 (a))

Fix bases of V and V'. Write R(g), R'(g) for matrices of $\rho(g)$, $\rho'(g)$ w.r.t. these bases, respectively. Then

$$\begin{aligned} \langle \chi', \chi \rangle &= \frac{1}{|G|} \chi'(g^{-1}) \chi(g) \\ &= \frac{1}{|G|} \sum_{g \in G, i, j \ s.t.1 \le i \le n', 1 \le j \le n} R'(g^{-1})_{ii} R(g)_{jj} \end{aligned}$$

the trick is to define something that annhibites almost the whole thing. Let $\phi:V\to V'$ be linear and define

$$\tilde{\phi}: V \to V'$$
$$v \to \frac{1}{|G|} \sum_{g \in G} \rho'(g^{-1}) \phi \rho(g) v$$

We claim that this is a G-homomorphism: if $h \in G$, let's calculate

$$\rho'(h^{-1})\tilde{\phi}\rho(h)(v) = \frac{1}{|G|} \sum_{g \in G} \rho'(gh)^{-1} \phi\rho(gh)(v)$$
$$= \frac{1}{|G|} \sum_{g' \in G} \rho'(g'^{-1}) \phi\rho(g')(v)$$
$$= \tilde{\phi}(v)$$

(when g runs through $G,\,gh$ runs through G as well). So (2.8) is satisfied, i.e. ϕ is a G-homomorphism.

Case 1: ρ, ρ' are not isomorphic. Schur's lemma says $\tilde{\phi} = 0$ for any given linear $\phi : V \to V'$. Take $\phi - \varepsilon_{\alpha\beta}$, having matrix $E_{\alpha\beta}$ (w.r.t our basis). This is 0 everywhere except 1 in the (α, β) -position. Then $\tilde{\varepsilon_{\alpha\beta}} = 0$. So $\frac{1}{|G|} \sum_{g \in G} (R'(g^{-1}) E_{\alpha\beta} R(g))_{ij} = 0$. So $\frac{1}{|G|} \sum R'(G^{-1})_{i\alpha} R(g)_{\beta j} = 0 \quad \forall i, j$, with $\alpha = i, \beta = j$. Now $\frac{1}{|G|} \sum_{g \in G} R'(g^{-1})_{ii} R(g)_{jj} = 0$ sum over i, j. Then $\langle \chi', \chi \rangle = 0$. Case 2: ρ, ρ' isomorphic. So $\chi = \chi'$; take $V = V', \rho = \rho'$. If $\phi : V \to V$ is linear endomorphism, we claim tr $\phi = \operatorname{tr} \phi$:

$$\operatorname{tr} \tilde{\phi} = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr}(\rho(g)^{-1} \phi \rho(g)) = \frac{1}{|G|} \sum_{g \in G} \operatorname{tr} \phi = \operatorname{tr} \phi$$

By Schur's lemma, $\tilde{\phi} = \lambda \iota_V$ for some $\lambda \in \mathbb{C}$ (depending on ϕ). Then $\lambda = \frac{1}{n} \operatorname{tr} \phi$. Let $\phi = \varepsilon_{\alpha\beta}$. So $\operatorname{tr} \phi = \delta_{\alpha\beta}$. Hence $\varepsilon_{\tilde{\alpha}\beta} = \frac{1}{n} \delta_{\alpha\beta} \iota_v = \frac{1}{|G|} \sum_{g \in G} \rho(g^{-1}) \varepsilon_{\alpha\beta} \rho(g)$. In terms of matrices, take (i, j)-entry: $\frac{1}{|G|} \sum_j R(g^{-1})_{i\alpha} R(g)_{\beta j} = \frac{1}{n} \delta_{\alpha\beta} \delta_{ij} \quad \forall i, j$. Put $\alpha = i, \beta = j$ to get $\frac{1}{|G|} \sum_g R(g^{-1})_{ii} R(g)_{jj} = \frac{1}{n} \delta_{ij}$. Finally sum over i, j to get $\langle \chi, \chi \rangle = 1$.

6 PROOFS AND ORTHOGONALITY

Before proving (b), let's prove column orthogonality: **Theorem.** (6.1, column orthogonality relations)

$$\sum_{i=1}^{k} \overline{\chi_i(g_j)} \chi_i(g_l) = \delta_{jl} |C_G(g_j)|$$

having an easy corollary

Corollary. (6.2) $|G| = \sum_{i=1}^{k} \chi_i^2(1).$

Proof. (of (6.1)) $\delta_{ij} = \langle \chi_i, \chi_j \rangle = \sum \overline{\chi_i(g_l)} \chi_j(g_l) / |C_G(g_l)|. \text{ Consider the character table } X = (\chi_i(g_j)). \text{ Then } \overline{X} D^{-1} X^T = I_{k \times k} \text{ where } D = Diag(|C_G(g_1)|, ..., |C_G(g_k)|).$ Since X is quare, it follows that $d6 - 1\overline{X}^T$ is the inverse of X, so $\overline{X}^T X = D.$

Proof. (of (5.6(b)))

The χ_i generate \mathcal{C}_G . Let all the irreducible characters $\chi_1, ..., \chi_l$ of G: claim these generate \mathcal{C}_G , the \mathbb{C} -space of class functions on G. It's enough to show that the orthogonal complement to $span\{\chi_1, ..., \chi_l\}$ in \mathcal{C}_G is $\{0\}$. To see this, assume $f \in \mathcal{C}_G$ with $\langle f, \chi_j \rangle = 0 \forall j$. Let $\rho : G \to GL(V)$ be irreducible representation affording $\chi \in \{\chi_1, ..., \chi_l\}$. Then $\langle f, \chi \rangle = 0$. Consider

$$\frac{1}{|G|}\sum_{G}\overline{f(g)}\rho(g):V\to V$$

This is a G-homomorphism, so as ρ is irreducible, it must be λ_{ι} for some $\lambda \in \mathbb{C}$. Now

$$\begin{split} n\lambda &= \mathrm{tr} \; \frac{1}{|G|} \sum_{g} \overline{f(g)} \rho(g) \\ &= \frac{1}{|G|} \sum_{g} \overline{f(g)} \chi(g) = 0 = \langle f, \chi \rangle \end{split}$$

So $\lambda = 0$. Hence $\sum \overline{f(g)}\rho(g) = 0$, the zero endomorphism on V for all representations ρ (complete reducibility).

Take $\rho = \rho_{reg}$ where $\rho_{reg}(g) : e_1 \to e_g \ (g \in G)$. So

$$\sum_{g} \overline{f(g)} \rho_{reg}(g) : e_1 \to \sum_{g} \overline{f(g)} e_g$$

So it follows $\sum_{g} \overline{f(g)} e_g = 0$. So $\overline{f(g)} = 0 \forall g \in G$, so $f \equiv 0$.

Variuous corollaries now follow:

- The number of irreducible representations of G = number of ccls; (5.10)
- Column orthogonality (6.1);
- $|G| = \sum n_i^2$ (6.2);
- $g_1 \tilde{G} g_2 \iff \chi(g_1) = \chi(g_2)$ for all irreducible χ (5.11); If $g \in G$, $g \tilde{G} g^{-1} \iff \chi(g) \in \mathbb{R}$ for all irreducible χ .

7 Permutation representations

Preview was given in (3.7). Recall: • G finite group acting on finite set $X = \{x_1, ..., x_n\};$

• $\mathbb{C}X = \mathbb{C}$ -space, with basis $\{e_{x_1}, ..., e_{x_n}\}$ of dimension |X|, so is $\{\sum_j a_j e_{x_j} : a_j \in \mathbb{C}\};$

• corresponding permutation representation $\rho_X : G \to GL(\mathbb{C}X)$ by $g \to \rho(g)$, where $\rho(g)$ sends $e_{x_i} \to e_{gx_i}$, extending linearly.

ρ_X is the *permutation representation* corresponding to the action of G on X.
 matrices representing ρ_X(g) w.r.t. basis {e_x}_{x∈X} are permutation matrices: 0 except for one 1 in each row and column, and (ρ(g))_{ij} = 1 iff gx_j = x_i. Consider its character:

(7.1) Permutation character, π_X , is

$$\pi_X(g) = |Fix_X(g)| = |\{x \in X : gx = x\}|.$$

(7.2) ρ_X always contains 1_G : $span\{e_{x_1} + \ldots + e_{x_n}\}$ is a trivial *G*-subspace of $\mathbb{C}X$ with *G*-invariant complement $span\{\sum a_x e_x : \sum a_x = 0\}$.

Lemma. (7.3, Burnside's lemma, after Cauchy, Frobenius) $\langle \pi_X, 1 \rangle$ = number of orbits of G on X.

Proof. If $X = X_1 \cup ... \cup X_l$ disjoint union of orbits, then $\pi_X = \pi_{X_1} + ... + \pi_{X_l}$, with π_{X_j} permutation character of G on X_j , so to prove the claim it's enough to show that if G is transitive on X then $\langle \pi_X, 1 \rangle = 1$. Assume G is transitive on X. Now

$$\langle \pi_X, 1 \rangle = \frac{1}{|G|} \sum_g \pi_X(g) = \frac{1}{|G|} |\{(g, x) \in G \times X : gx = x\}|$$
$$= \frac{1}{|G|} \sum_{x \in X} |G_x| = \frac{1}{|G|} |X| |G_x| = \frac{1}{|G|} |G| = 1$$

(Note the use of orbit-stabilizer theorem).

Lemma. (7.4)

Let G act on the sets X_1, X_2 . Then G acts on $X_1 \times X_2$ via $g(x_1, x_2) = (gx_1, gx_2)$. The character $\pi_{X_1 \times X_2} = \pi_{X_1} \pi_{X_2}$ and so $\langle \pi_{X_1}, \pi_{X_2} \rangle$ = number of orbits of G on $X_1 \times X_2$.

Proof. If $g \in G$ then $\pi_{X_1 \times X_2}(g) = \pi_{X_1}(g)\pi_{X_2}(g)$. And we have

$$\langle \pi_{X_1}, \pi_{X_2} \rangle = \langle \pi_{X_1} \pi_{X_2}, 1 \rangle = \langle \pi_{X_1 \times X_2}, 1 \rangle = (7.3)$$
 number of orbits of G on $X_1 \times X_2$

Definition. (7.5)

Let G act on X, |X| > 2. Then G is 2-transitive on X if G has precisely two orbits on $X \times X : \{(x, x) : x \in X\}$ and $\{x_1, x_2) : x_i \in X, x_1 \neq x_2\}$.

Lemma. (7.6)

Let G act on X, |X| > 2. Then $\pi_X = 1 + \chi$ with χ irreducible $\iff G$ is 2-transitive on X.

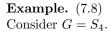
Proof. $\pi_X = m_1 1 + m_2 \chi_2 + ... + m_l \chi_l$ with $1, \chi_2, ..., \chi_l$ distinct irreducible characters and $m_i \in \mathbb{N}$. Then

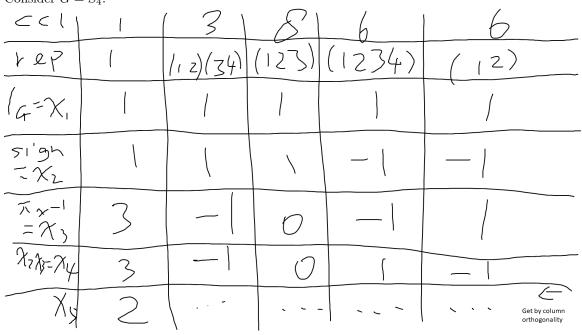
$$\langle \pi_X, \pi_X \rangle = \sum_{i=1}^l m_i^2$$

hence G is 2-transitive on $X \iff l = 2, m_1 = m_2 = 1.$

Example. (7.7)

Consider S_n acting on $X = \{1, ..., n\}$ which is 2-transitive. Hence $\pi_X = 1 + \chi$ with χ irreducible of degree n - 1. Similarly for A_n (n > 3).





Last lecture we were talking about using column orthogonality to find χ_5 . Indeed we have

 $\chi_{reg} = \chi_1 + \chi_2 + 3\chi_3 + 3\chi_4 + 2\chi_5$

So we can use this to find χ_5 . Also, $S_4/V_4 \cong S_3$ by 'lifting' – see next chapter.

7.1 Alternating groups

Suppose $g \in A_n$. In 1A we've known that $|\mathcal{C}_{S_n}(g)| = |S_n : C_{S_n}(g)|$ and $|\mathcal{C}_{A_n}(g)| = |A_n : C_{A_n}(g)|$.

7 PERMUTATION REPRESENTATIONS

These are not necessarily equal. For example, $\sigma = (123) \in A_3$, $\mathcal{A}_3(\sigma) = \{\sigma\}$, but $\mathcal{S}_{\ni}(\sigma) = \{\sigma, \sigma^{-1}\}$.

Lemma. (7.9)

Let $g \in A_n$. Then if g commutes with some odd permutation in S_n then $\mathcal{C}_{S_n}(g) = \mathcal{C}_{A_n}(g)$; otherwise $\mathcal{C}_{S_n}(g)$ splits into two ccls in A_n of equal size.

For example, consider $G = A_4$, so |G| = 12.

Note that if we ignore the second row and first column, the table becomes identical to that of $C_3 \cong G/V_4$. This is not a coincident, and is actually called *lifting*.

8 Normal subgroups and lifting characters

Lemma. (8.1)

Let $N \triangleleft G$. Let $\tilde{\rho} : G/N \to GL(V)$ be a representation of G/N. Then

is a representation of G, where $\rho(g) := \tilde{\rho}(gN)$. Moreover, ρ is irreducible iff $\tilde{\rho}$ is irreducible.

The corresponding characters satisfy $\chi(g) = \tilde{\chi}(gN)$. We say that $\tilde{\chi}$ lifts to χ . The lifting $\tilde{\chi} \to \chi$ is a bijection between irreducible representations of G/N and irreducible representations of G with N in ker.

Well this looks like Q4/Q12 in the first example sheet.

Proof. Note $\chi(g) = \operatorname{tr}(\rho(g)) = \operatorname{tr}(\tilde{\rho}(gN)) = \tilde{\chi}(gN) \forall g$, and $\chi(1) = \tilde{\chi}(N)$. SO have some degree (?).

Bijection: if $\tilde{\chi}$ is a charcter of G/N-representation and χ is its lift to G, then $\chi(N) = \chi(1)$. Also, if $k \in N$ then

$$\chi(k) = \tilde{\chi}(kN) = \tilde{\chi}(N) = \chi(1)$$

So $N \leq \ker \chi$.

Now let χ be character of G with $N \leq \ker \chi$. Suppose $\rho: G \to GL(V)$ affords χ . Define $\tilde{\rho}: G/N \to GL(V)$

Check this is well-defined (uses $N \leq \ker \chi$) and $\tilde{\rho}$ is homomorphism, hence gives representation of G/N. If $\tilde{\chi}$ is the character of $\tilde{\rho}$ then $\tilde{\chi}(gN) = \chi(g) \ \forall g \in G$. So $\tilde{\chi}$ lifts to χ .

Check irreducibility.

Lemma. (8.2)

The derived subgroup, $G' = \langle [a, b], a, b \in G \rangle$ of G is the unique minimal normal subgroup of G s.t. G/G' is abelian, i.e. G/N is abelian $\implies G' \leq N$ and $G^{ab} = G/G'$ is abelian, where G^{ab} is the *abelianisation* of G.

G has precisely l = |G/G'| representations of dim 1, all with kernel containing G' and obtained by lifting from G/G'. In particular, l||G|.

Proof. $G' \triangleleft G$ is an easy exercise.

Let $N \triangleleft G$. Let $h, g \in G$, so

$$g^{-1}h^{-1}gh \in N \iff (gh)N = (hg)N$$
$$[g,h] \iff (gN)(hN) = (hN)(gN)$$

So $G' \leq N \iff G/N$ is abelian. Since $G' \triangleleft G$ we deduce G/G' is abelian.

By (4.5), G/G' has exactly l irreducible characters $\tilde{\chi}_1, ..., \tilde{\chi}_l$ all of degree 1. The lifts of these to G also have degree 1 and by (8.1) these are precisely the irreducible characters χ_i of G s.t. $G' \leq \ker \chi_i$. But any linear character of G is a homomorphism $\chi : G \to \mathbb{C}^*$, hence $G' \leq \ker \chi$ ($\chi(ghg^{-1}h^{-1}) = \chi(g)\chi(h)\chi(g^{-1}\chi(h)^{-1} = 1)$, so the $\chi_1, ..., \chi_l$ are all the linear characters of G.

Examples:

(a) If $G = S_n$, show $s'_n = A_n$. Thus since $G/G' \cong C_2$, S_n must have exactly two linear characters.

(b) Consider $G = A_4$. We've seen previously that this can be lifted from C_3 using (8.1),(8.2).

Lemma. (8.4)

G is not simple iff $\chi(g) = \chi(1)$ for some irreducible character $\chi \neq 1_G$ and some $1 \neq g \in G$.

Any normal subgroup of G is the intersection of the kernels of some of the irreducible characters of G:

$$N = \bigcap_{i} \ker \chi_i$$

Proof. If $\chi(g) = \chi(1)$ for some non-trivial irreducible character χ (afforded by ρ , say). Then $g \in \ker \rho$ (5.3), so if $g \neq 1$, then $1 \neq \ker \rho \neq G$.

If $1 \neq N \neq G$, take irreducible $\tilde{\chi}$ of G/N, $\tilde{\chi}$ non-trivial. Lift to get an irreducible χ , afforded by ρ of G, then $N \leq \ker \rho \triangleleft G$. So $\chi(g) \ chi(1)$ for $g \in N$.

We claim that, if $1 \neq N \triangleleft G$, then N is the intersection of the kernels of the lifts of all the irreducibles of G/N.

 \leq is clear from (8.1). If $g \in G \setminus N$, then $gN \neq N$. so $\tilde{\chi}(gN) \neq \tilde{\chi}(N)$ for some irreducible $\tilde{\chi}$ of G/N. Lifting $\tilde{\chi}$ to χ , we have $\chi(g) \neq \chi(1)$.

Recall $\ker \chi = \{g \in G : \chi(g) = \chi(1)\}$. (5.3) $: g \in \ker \chi \iff g \in \ker \rho$.

9 Dual spaces and tensor products of representations

Recall (5.5):

• $\mathcal{C}(G)$ is \mathbb{C} -space of class functions on G;

• endowed with irreducible product, $\dim \mathcal{C}(G) = k$, orthonormal basis of irreducible characters of G (5.6)l

• there exists an involution (ring homomorphism of order 2): $f \to f^*$ where $f^*(g) = f(g^{-1})$.

Lemma. (9.1)

Let $\rho: G \to GL(V)$, representation over F, and let $V^* = Hom_F(V, F)$, dual space of V. Then V^* is a G-space under

$$(\rho^*(g)\phi)(v) = \phi(\rho(g^{-1})v)$$

called the *dual representation* to ρ . Its charcater is $\chi_{\rho^*}(g) = \chi_{\rho}(g^{-1})$.

Proof.

$$\rho^*(g_1)(\rho^*(g_2)\phi)(v) = (\rho^*(g_2)\phi)(\rho(g_1^{-1})(v))$$

= $\phi(\rho(g_2^{-1})\rho(g_1^{-1})v)$
= $\phi(\rho(g_1g_2)^{-1}(v))$
= $(\rho^*(g_1g_2)\phi)(v)$

So this is a representation. For its character, fix $g \in G$ and let $e_1, ..., e_n$ be basis of V of eigenvectors of $\rho(g)$, say $\rho(g)e_j = \lambda_j e_j$. Let $\varepsilon_1, ..., \varepsilon_n$ be dual basis. We claim that $\rho^*(g)\varepsilon_j = \lambda_j^{-1}\varepsilon_j$:

$$(\rho^*(g)\varepsilon_j)(e_i) = \varepsilon_j(\rho(g^{-1})e_i) = \varepsilon_j\lambda_i^{-1}e_i = \lambda_j^{-1}\varepsilon_je_i\forall i$$

So $\chi_{\rho^*}(g) = \sum \lambda_j^{-1} = \chi_{\rho}(g^{-1}).$

Definition. (9.2)

 $\rho: G \to GL(V)$ is *self-dual* if $V \cong V^*$ (as *G*-spaces). Over \mathbb{C} , this holds iff $\chi_{\rho}(g) = \chi_{\rho}(g^{-1}) (= \overline{\chi_{\rho}(g)}) \ \forall g$, iff $\chi_{\rho}(g) \in \mathbb{R}$ for all g.

Exercise: all irreducible representations of S_n are self-dual (the ccls are determined by cycle type, so g, g^{-1} are always S_n -conjugate. Not always true for A_n .

9.1 tensor products

Let V, W be F-spaces, dim V = m, dim W = n. Fix bases $v_1, ..., v_m$ and $w_1, ..., w_n$ of V, W respectively. The *tensor product space* $V \otimes_F W$ is an *nm*-dimensional F-space with basis $\{v_i \otimes w_j : 1 \le i \le m, 1 \le j \le n\}$. Thus (a) $V \otimes W = \{\sum_{i=1}^{N} \lambda_{i:i} : i \le m, i \le j \le n\}$ with 'obvious' addition and scalar

(a) $V \otimes W = \{\sum_{i,j} \lambda_{ij} v_i \otimes w_j : \lambda_{ij} \in F\}$ with 'obvious' addition and scalar multiplication;

(b) If $v = \sum_{i} \alpha_{i} v_{i} \in V$, $w = \sum_{j} \beta_{j} w_{j} \in W$, define $v \otimes w := \sum_{i,j} \alpha_{i} \beta_{j} (v_{i} \otimes w_{j})$.

Remark. Not all elements of $V \otimes W$ are of this form: some are combinations, e.g. $v_1 \otimes w_1 + v_2 \times w - 2$, which can't be further simplified. (like entangled)

Lemma. (9.3)

(i) For $v \in V$, $w \in W$, $\lambda \in F$, $(\lambda v) \otimes w = \lambda(v \otimes w) = v \otimes (\lambda w)$; (i) If $x_1, x_2, x \in V$, $y_1, y_2, y \in W$, then

$$(x_1 + x_2) \otimes y = (x_1 \otimes y) + (x_2 \otimes y),$$

$$x \otimes (y_1 + y_2) = (x \otimes y_1) + (x \otimes y_2)$$

Proof. (i) $v = \sum \alpha_i v_i$, $w = \sum \beta_j w_j$. Then just multiply out everything we get the desired equality. (ii) is similar.

Lemma. (9.4)

If $\{e_1, ..., e_m\}$ is a basis of V, $\{f_1, ..., f_n\}$ is a basis of W, then $\{e_i \otimes f_j : 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis of $V \otimes W$.

Proof. Writing $v_k = \sum_i \alpha_{ik} e_i$, $w_l = \sum_j \beta_{jl} f_j$, we have

$$v_k \otimes w_l = \sum \alpha_{ik} \beta_{jl} e_i \otimes f_j$$

Hence $\{e_i \otimes f_j\}$ spans $V \otimes W$ and, since we have nm of them, they form a basis.

Remark. One can define $V \otimes W$ in a basis-independent way in the first place, see Teleman chapter 6.

Proposition. (9.5)

Let $\rho: G \to GL(V), \rho': G \to GL(V')$ be representations of G. Define $\rho \otimes \rho': G \to GL(V \otimes V')$ by

$$(\rho \otimes \rho')(g) : \sum \lambda_{ij} v_i \otimes w_j \to \sum \lambda_{ij} \rho(g) v_i \otimes \rho'(g) w_j$$

Then $\rho \otimes \rho'$ is a representation of G with character

$$\chi_{\rho\otimes\rho'}(g) = \chi_{\rho}(g)\chi_{\rho'}(g) \forall g \in G$$

Hence product of two characters of G is still a character of G.

Proof. On Tuesday.

(After lecture 11: this is the first notes to get beyond 1000 lines!)

Remark. (9.6)

Sheet 1, Q2 says ρ irreducible, ρ' of degree 1, then $\rho \otimes \rho'$ irreducible; if ρ' is not of deg 1 this is usually false.

Proof. (of 9.5)

It's clear that $(\rho \otimes \rho')(g) \in GL(V \otimes V') \forall g \in G$ and so $\rho \otimes \rho'$ is a homomorphism $G \to GL(V \otimes V')$. Let $g \in G$. Let $V_1, ..., v_m$ be basis of V of eigenvectors of $\rho(g)$; let $w_1, ..., w_n$ be a basis of V'. Say:

$$\rho(g)v_j = \lambda_j v_j, \rho'(g)w_j = \mu_j w_j$$

Then

$$(\rho \otimes \rho')(g)(v_i \otimes w_j) = \rho(g)v_i \otimes \rho'(g)w_j$$
$$= \lambda_i v_i \otimes \mu_j w_j$$
$$= (\lambda_i \mu_j)(v_i \otimes w_j)$$
So $\chi_{\rho \otimes \rho'}(g) = \sum_{i,j} \lambda_i \mu_j = (\sum \lambda_i)(\sum \lambda_j) = \chi_{\rho}(g)\chi_{\rho'}(g)$

Now work over \mathbb{C} . Take V = V' and define $V^{\otimes 2} = V \otimes V$. Let

$$\tau:\sum \lambda_{ij}v_i\otimes v_j\to \sum \lambda_{ij}\lambda_j\otimes v_i$$

which is a linear G-endomorphism of $V^{\otimes 2}$, s.t. $\tau^2 = 1$ (so eigenvalues ± 1).

Definition. (9.7)

$$S^{2}V = \{ v \in V^{\otimes 2} : \tau(x) = x \},\$$

$$\wedge^{2}V = \{ x \in V^{\otimes 2} : \tau(x) = -x \}$$

known as the symmetric square of V and exterior square of V respectively.

Lemma. (9.8)

 S^2V and \wedge^2V are *G*-subspaces of $V^{\otimes 2}$ and $V^{\otimes 2} \cong S^2V \otimes \wedge^2V$. S^2V has basis $\{v_iv_j := v_i \otimes v_j + v_j \otimes v_i : 1 \leq i \leq j \leq n\}$, and \wedge^2V has basis $\{v_i \wedge v_j := v_i \otimes v_j - v_j \otimes v_i : 1 \leq i < j \leq n\}$. Hence we have dim $S^2V = \frac{1}{2}n(n+1)$ and dim $\wedge^2V = \frac{1}{2}n(n-1)$.

Proof. Exercise in linear algebra. To show $V^{\otimes 2}$ is reducible, write $x \in V^{\otimes 2}$ as $x = \frac{1}{2}(x + \tau(x)) + \frac{1}{2}(x - \tau(x))$, which is in S^2V and \wedge^2V respectively. \Box

In fact, $V^{\otimes 2}$, $V^{\otimes 3} = V \otimes V \otimes V$, ...,etc. are never irreducible if dim V > 1.

Lemma. (9.9)

If $\rho: G \to GL(V)$ is a representation affording character χ , then $\chi^2 = \chi_S + \chi_{\wedge}$ where $\chi_s \ (=S^2\chi)$ is the character of G in the subrepresentation S^2V , and χ_{\wedge} $(=\wedge^2\chi)$ is the character of G in the subrepresentation \wedge^2V . Moreover, for $g \in G$,

$$\chi_s(g) = \frac{1}{2}(chi^2(g) + \chi(g^2)), \chi_{\wedge}(g) = \frac{1}{2}(\chi^2(g) - \chi(g^2)).$$

Proof. Let's compute the characters χ_s, χ_{\wedge} . Fix $g \in G$. Let $v_1, ..., v_n$ be a basis of eigenvectors of $\rho(g)$, say $\rho(g)v_i = \lambda_i v_i$ (we drop the ρ to write $gv_i = \lambda_i v_i$ for simplicity below). Then

$$gv_iv_j = \lambda_i\lambda_jv_iv_j$$
$$gv_i \wedge v_j = \lambda_i\lambda_jv_i \wedge v_j$$

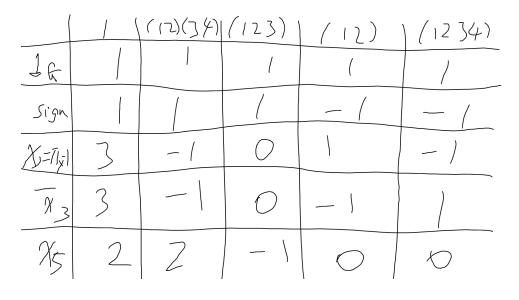
Hence $\chi_s(g) = \sum_{1 \le i \le j \le n} \lambda_i \lambda_j$ and $\chi_{\wedge}(g) = \sum_{1 \le i < j \le n} \lambda_i \lambda_j$. Now,

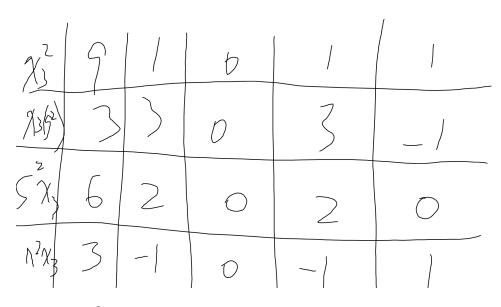
$$(\chi(g))^2 = (\sum \lambda_i)^2$$
$$= \sum \lambda_i^2 + 2 \sum_{i < j} \lambda_i \lambda_j$$
$$= \chi(g^2) + 2 \sum_{i < j} \lambda_i \lambda_j$$
$$= \chi(g^2) + 2\chi_{\wedge}(g)$$

So $\chi_{\wedge}(g) = \frac{1}{2}(\chi^2(g) - \chi(g^2))$. But $\chi^2 = \chi_s + \chi_{\wedge}$ so we get the expression for $\chi_s(g)$.

Example. (9.10)

Consider our usual example $G = S_4$ (see 7.8).





Notice that $\wedge^2 \chi_3 = \bar{\chi}_3$ (irreducible since $\langle \chi_{\wedge}, \chi_{\wedge} \rangle = 1$), $S^2 \chi_3 = 1 + \chi_3 + \chi_5$: The inner product is 3 and it contains 1, χ_3 , so the one left is χ_5 .

Characters of $G \times H$ (seen in (4.5) for abelian groups):

Proposition. (9.11)

If G, H are finite groups with irreducible characters $\chi_1, ..., \chi_k$ and $\psi_1, ..., \psi_r$ respectively, then the irreducible characters of the direct product $G \times H$ are precisely $\{\chi_i \psi_j : 1 \le i \le k, 1 \le j \le r\}$, where $\chi_i \psi_j(g, h) = \chi_i * g(\psi_j(h))$.

Proof. If $\rho: G \to GL(V), \rho': H \to GL(W)$ affording χ and ψ respectively, then

$$\rho \otimes \rho' : G \times H \to \quad GL(V \otimes W)$$

(g,h) \to
$$\rho(g) \otimes \rho'(h) \quad v_i \otimes w_j \to \rho(g) v_i \otimes \rho'(h) w_j$$

is a representation of $G \times H$ on $V \otimes W$ by (9.5), and $\chi_{\rho \otimes \rho'} = \chi \psi$, again by (9.5). We claim that $\chi_i \psi_j$ are distinct and irreducible:

$$\begin{split} \langle \chi_i \psi_j, \chi_r \psi_s \rangle_{G \times H} &= \frac{1}{|G \times H|} \sum_{(g,h)} \overline{\chi_i \psi_j(g,h)} \chi_r \psi_s(g,h) \\ &= (\frac{1}{|G|} \overline{\chi_i(g)} \chi_r(g)) (\frac{1}{|H|} \sum_h \overline{\psi_j(h)} \psi_s(h)) \\ &= \delta_{ir} \delta_{js} \end{split}$$

...tbc.

Let's complete on $\chi_i \psi_j$ being distinct and irreducible: Complete set: $\sum_{i,j} (\chi_i \psi_j)(1)^2 = \sum_i \chi_i(1)^2 \sum_j \psi_j(1)^2 = |G||H| = |G \times H|$ \Box

9.2 Symmetric and extreme powers

Let V be a vector space, $\dim_F V = d$, with basis $\{v_1, ..., v_d\}$. Let $V^{\otimes n} = V \otimes ... \otimes V$, with basis $\{v_{i_1} \otimes ... \otimes v_{i_n} : (i_1, ..., i_n) \in \{1, ..., d\}^n\}$, so $\dim V^{\otimes n} = d^n$.

 S_n -action: for any $\sigma \in S_n$, we can define linear map

$$\begin{split} \sigma: & V^{\otimes n} \to V^{\otimes n} \\ v_1 \otimes \ldots \otimes v_n \to & v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)} \end{split}$$

for $v_1, ..., v_n \in V$, permuting positums of vectors in a tensor.

For example, $(12)(v_1 \otimes v_2 \otimes v_3) = v_2 \otimes v_1 \otimes v_3$, $(13)(v_2 \otimes v_1 \otimes v_3) = v_3 \otimes v_1 \otimes v_2$.

Check that this defines a representation of S_n on $V^{\otimes n}$ (extended linearly).

G-action: given representation $\rho: G \to GL(V)$, then the action of G on $V^{\otimes n}$ is

 $\rho^{\otimes n}(g): v_1 \otimes \ldots \otimes v_n = \rho(g)v_1 \otimes \ldots \otimes \rho(g)v_n$

extended linearly, and this commutes with the S_n -action. We can decompose $V^{\otimes n}$ as S_n -module, and each isotypical component (4.?) is G-invariant subspace of $V^{\otimes n}$. In particular:

Definition. (9.12)

For G-space V, define

(i) the *n*th symmetric power of V, $S^n V = \{x \in V^{\otimes n} : \sigma(x) = x \forall \sigma \in S_n\}$; (ii) the *n*th exterior power of V, $\wedge^n V = \{x \in V^{\otimes n} : \sigma(x) = sign(\sigma)x \forall \sigma \in S_n\}$. Both are *G*-subspaces of $V^{\otimes n}$, but for n > 2, $S^n V \oplus \wedge^n V \lneq V^{\otimes n}$, so in general there are lots of others for the S_n -action.

(9.13) See Sheet 3 Q7 for bases of $S^n V$, $\wedge^n V$ and their characters.

9.3 Tensor algebra

Take charF = 0.

Definition. (9.14) Let $T^n V = V^{\otimes n}$. The tensor algebra of V is $TV := \bigoplus_{n \ge 0} T^n V$, $T^0 V = F$. This is F-space and is a (non-commutative) graded ring with product $x \in T^n V$, $y \in T^m V$, $x \cdot y = x \otimes y \in T^{n+m} V$. There are two graded quotient rings

$$SV = TV/(\text{ideal generated by all } U \otimes V - V \otimes U)$$

 $\wedge V = TV/ \text{ ideal generated by all } V \otimes V$

called the symmetric algebra and exterior algebra respectively.

Definition. (9.15)

The 2-submodule of $\mathcal{C}(G)$ spanned by irreducible characters of G is the character

ring of G, R(G). Elements of R(G) are called generalised/virtual characters if $\psi = \sum n_{\chi} \chi, n_{\chi} \in \mathbb{Z}$ correspondingly.

• R(G) is a commutative ring and any generalised character is a difference of two characters, $\psi = \alpha - \beta$:

 $\begin{array}{l} \alpha = \sum_{n_{\chi} \geq 0} n_{\chi} \chi, \beta = -\sum_{n_{\chi} < 0} n_{\chi} \chi. \\ \text{The } \{\chi_i\} \text{ form a } \mathbb{Z}\text{-basis for } R(G) \text{ as a free } \mathbb{Z}\text{-module.} \end{array}$

• Suppose ψ is virtual character and $\langle \psi, \psi \rangle = 1$ and $\psi(1) > 0$. Then ψ is actually the character of an irreducible representation of G.

List irreducible characters of $G: \chi_1, ..., \chi_k, \psi = \sum n_i \chi_i$; orthonormality says $\langle \psi, \psi \rangle = \sum n_i^2$, so $\sum n_i^2 = 1$, meaning $n_i = \pm 1$ for exactly one *i* and $n_j = 0$ for $j \neq i$. Since $\psi(1) > 0$, we must have $n_i = +1$.

• Henceforth we don't distinguish between a character and its negative and we often study generalised characters of norm 1 rather than irreducible characters.

10 Restriction and induction

Throughout we set $H \leq G$, $F = \mathbb{C}$.

Definition. (10.1, restriction)

Let $\rho : G \to GL(V)$ be representation affording χ . We can think of V as a H-space by restricting attention to $h \in H$. We then get

$$Res^G_H \rho : H \to GL(V)$$

This is sometimes written as ρ_H or $\rho \downarrow_H$, the restriction of ρ to H. It affords the character $\operatorname{Res}_H^G \chi = \chi_H = \chi \downarrow_H$.

Lemma. (10.2)

If ψ is any non-zero character of $H \leq G$, then there exists irreducible character χ of G s.t. $\langle Res_{H}^{G}\chi, \psi \rangle_{H} \neq 0$. We say ψ is a constituent of $Res_{H}^{G}\chi$.

Proof.

$$0 \neq \frac{|G|}{|H|}\psi(1) = \langle \pi_{reg} \downarrow_H, \psi \rangle = \sum_1^k \deg \chi_i \langle \chi_i \downarrow_H, \psi \rangle$$

where ψ_i are irreducible characters of G.

Lemma. (10.3)

Let χ be irreducible character of G, and let $Res_H^G \chi = \sum c_I \chi_i$ with χ_i irreducible characters of H, $c_i \in \mathbb{Z}_{\geq 0}$. Then

$$\sum c_I^2 \le |G:H|$$

with equality iff $\chi(g) = 0 \ \forall g \in G \setminus H$.

Proof.

$$\sum c_i^2 = \langle Res_H^G \chi, Res_H^G \chi \rangle_H = \frac{1}{|H|} \sum_{h \in H} |\chi(h)|^2$$

 But

$$\begin{split} 1 &= \langle \chi, \chi \rangle G = \frac{1}{|G|} \sum_{g \in G} |\chi(g)|^2 \\ &= \frac{1}{|G|} (\sum_{h \in H} |\chi(h)|^2 + \sum_{g \in G \setminus H} |\chi(g)|^2) \\ &= \frac{|H|}{|G|} \sum c_i^2 + \underbrace{\frac{1}{|G|} \sum_{g \in G \setminus H} |\chi(g)|^2}_{\geq 0} \end{split}$$

So $\sum c_i^2 \leq |G:H|$, with equality holds iff $\chi(g) = 0$. $\forall g \in G \setminus H$.

Example. Let $G = S_5$, $H = A_5$. This has 7 representations of degree 1, 1, 4, 4, 5, 5, 6 respectively, where if we restrict to H, the two representations of degree 1, 4, 5 combines into one of the same degree respectively; however, the

degree 6 representation splits into two irreducible representations of degree 3. In the first case we have $\chi(g) \neq 0$ somewhere outside H; for the degree 6 representation, $\chi(g) = 0 \ \forall g \in S_5 \setminus A_5$. All restrictions are irreducible if |G:H| = 2 which is the case here. Fact: $\chi \downarrow_H$ all constituents have same degree if $H \triangleleft G$ (Janes-Liebeck, chapter 20).

Let's talk about induced characters.

Definition. (10.4) If $\psi \in \mathcal{C}(H)$, define $Ind_{H}^{G}\psi(g) = \frac{1}{|G|}\sum_{\chi \in G} \mathring{\psi}(x^{-1}gx)$, where

$$\psi(g) = \begin{cases} \psi(g) & g \in H \\ 0 & g \notin H \end{cases}$$

We also write $Ind_{H}^{G}\psi(g)$ as $\psi\uparrow^{G}=\psi^{G}$.

Lemma. (10.5) If $\psi \in \mathcal{C}(H)$ then $Ind_{H}^{G}\psi \in \mathcal{C}(G)$ and $Ind_{H}^{G}\psi(1) = |G:H|\psi(1)$.

Proof. This is clear, noting that $Ind_{H}^{G}\psi(1) = \frac{1}{H}\sum \mathring{\psi}(1) = |G:H|\psi(1).$

Let n = |G: H|. Let $1 = t_1, t_2, ..., t_n$ be a *left transversal* of H in G (complete set of coset representatives), so that $t_1H = H, t_2H, ..., t_nH$ are precisely the n left cosets of H in G.

Lemma. (10.6) Given left transversal as above,

$$Ind_{H}^{G}\psi(g) = \sum_{i=1}^{n} \mathring{\psi}(t_{i}^{-1}gt_{i})$$

Proof. For $h \in H$, $\psi((t_i h)^{-1}g(t_i h)) = \psi(t_i^{-1}gt_i)$ as ψ is a class function on H.

Theorem. (10.7, Frobenius reciprocity) $H \leq G. \ \psi$ is a class function for H, ϕ is a class function for G. Then

$$\langle \underbrace{\operatorname{Res}_{H}^{G}\phi}_{in \ \mathcal{C}(H)}, \psi \rangle_{H} = \langle \phi, \underbrace{\operatorname{Ind}_{H}^{G}\psi}_{in \ \mathcal{C}(G)} \rangle_{G}$$

Proof. We want to show $\langle \phi_H, \psi \rangle_H = \langle \phi, \psi^G \rangle_G$:

$$\langle \phi, \psi^G \rangle = \frac{1}{|G|} \sum_{g \in G} \overline{\phi(g)} \psi^G(g) = \frac{1}{|G||H|} \sum_{g, x \in G} \overline{\phi(g)} \mathring{\psi}(x^{-1}gx)$$

Put $y = x^{-1}gx$. The above then equals

$$\frac{1}{|G||H|}\sum_{x,y\in G}\overline{\phi(y)}\dot{\psi}(y) = \frac{1}{|H|}\sum_{y\in G}\overline{\phi(y)}\dot{\psi}(y)$$

which is independent of x, and then equals

$$\frac{1}{|H|} \sum_{y \in H} \overline{\phi(y)} \psi(y) = \langle \phi_H, \psi \rangle_H$$

Corollary. (10.8)

If ψ is a character of H, then $Ind_{H}^{G}\psi$ is a character of G.

Proof. Let χ be an irreducible character of G. Then

$$\langle Ind_H^G\psi, \chi \rangle = \langle \psi, Res_H^G\chi \rangle \in \mathbb{Z}_{\geq 0}$$

since ψ and $Res_{H}^{G}\chi$ are characters. Hence $Ind_{H}^{G}\psi$ is a linear combination of irreducible characters with non-negative coefficients, hence a character. \Box

Lemma. (10.9)

Let ψ be a character of $H \leq G$, and let $g \in G$. Let

$$\mathcal{C}_G(g) \cup H = \bigcup_{i=1}^m \mathcal{C}_H(x_i)$$

(disjoint union), where the x_i are representatives of the *H*-ccls of elements of *H* conjugate to *g*.

If m = 0, then $Ind_H^G \psi(g) = 0$. Otherwise

$$Ind_H^G\psi(g) = |C_G(g)| \cdot \sum_{i=1}^m \frac{\psi(x_i)}{|C_H(x_i)|}$$

Proof. Assume m > 0. Let $X_i = \{x \in G : x^{-1}gx \in H \text{ and is conjugate} in H to <math>x_i\} \forall 1 \leq i \leq m$. The X_i are pairwise disjoint, and their union is $\{x \in G : x^{-1}gx \in H\}$. By definition,

$$Ind_{H}^{G}\psi(g) = \frac{1}{|H|} \sum_{\alpha \in G} \mathring{\psi}(x^{-1}gx)$$
$$= \frac{1}{|H|} \sum_{i=1}^{m} \sum_{x \in X_{i}} \psi(x^{-1}gx)$$
$$= \frac{1}{|H|} \sum_{i=1}^{m} \sum_{x \in X_{i}} \psi(x_{i})$$
$$= \sum_{i=1}^{m} \frac{|X_{i}|}{|H|} \psi(x_{i})$$

and evaluate $\frac{|X_i|}{|H|}$ to get what we want... although a bit tedious: Fix $1 \le i \le m$ and choose some $g_i \in G$ s.t. $g_i^{-1}gg_i = x_i$ so $\forall c \in C_G(g)$ and $h \in H$,

$$(cg_ih)^{-1}g(cg_ih) = h^{-1}g_i^{-1}c^{-1}gcg_ih$$

= $h^{-1}g_i^{-1}c^{-1}cgg_ih$
= $h^{-1}g_i^{-1}gg_ih$
= $h^{-1}x_ih \in H$

10 RESTRICTION AND INDUCTION

i.e. $cg_ih \in X_i$, hence $C_G(g)g_iH \subseteq X_i$;

Convertly, if $x \in X_i$ then $x^{-1}gx = h^{-1}x_ih = h^{-1}(g_i^{-1}gg_i)h$ for some $h \in H$; thus $xh^{-1}g_i^{-1} \in C_G(g)$. So $x \in C_G(g)g_ih \subseteq C_G(g)g_iH$. Conclude $X_i = C_G(g)g_iH$, thus

$$|X_i| = |C_G(g)g_iH| = \frac{|C_G(g)||H|}{|H \cap g_i^{-1}C_G(g)g_i|}$$

(see notes at end). Finally $g_i^{-1}C_G(g)g_i = C_G(g_i^{-1}gg_i) = C_G(x_i)$. Thus

$$|X_i| = |H : H \cup C_G(x_i)||C_G(g)| = |H : C_H(x_i)||C_G(g)|$$

Thus,

$$\frac{|X_i|}{|H|} = \frac{|H: C_H(x_i)||C_G(g)|}{|H|} = \frac{|C_G(g)|}{|C_H(x_i)|}$$

for each $1 \leq i \leq m$.

Note: if $H, K \leq G$, a double coset of H and K in G is a set $HgK = \{hgk : h \in \}$ $H, k \in K$ for some $g \in G$.

Facts:

- two double cosets are either disjoint or equal; $|HgK| = \frac{|H||K|}{|H \cap gKg^{-1}} = \frac{|H||K|}{|g^{-1}Hg \cap K|}$ (prove this: it's a bit like |HK|).

Example. Consider $H = C_4 = \langle (1234) \leq G = S_4$, of index 6. Char of induced representation $Ind_{H}^{G}(\alpha)$ wher |alpha| is faithful 1-dim representation of C_{4} . If $\alpha((1234)) = i$, then char of α is $(1 \ i \ -1 \ i)$ for (1), (1234), (13)(24), (1432). The induced representation of S_4 , we know $Ind_{C_4}^{S_4}\chi_{\alpha}$ evaluates to 6 at (1) (by (10.5)) and to 0 at (12) and (123).

For (12)(34) only one of the three elements of S_4 it's conjugate to, lies in H, namely (13)(24). So $Ind_H^G \chi_{\alpha}((12)(34)) = 8(-1/4) = -2.$

For (1234), it is conjugate to 6 elements of S_4 of which two are in C_4 , namely (1234) and (1432). So $Ind_H^G \chi_\alpha(1234) = 4(\frac{i}{4} - \frac{i}{4}) = 0.$

10.1Induced representations

Let $H \leq G$, of index n. Let $1 = t_1, t_2, ..., t_n$ transversal, i.e. $H, t_2H, ..., t_nH$ are left cosets of H. Let W be a H-space.

Lemma. (10.10) $Ind_{\{1\}}^{G} 1 = \rho_{reg}.$

Definition. (10.11) Let $V := W \oplus t_2 \otimes W \oplus ... \oplus t_n \otimes W = \bigoplus_{t_i} t_i \otimes W$, where $t_i \otimes W = \{t_i \otimes w : w \in W\}$. So dim $V = n \dim W$. We write $V = Ind_H^G W$.

10 RESTRICTION AND INDUCTION

G-action: Let $g \in G$. $\forall i \exists$ unique j with $t_j^{-1}gt_i \in H$ (namely t_jH is the coset containing gt_i). You got to understand where did this g come from, otherwise you can't make progress. Define

$$g(t_i \otimes W) = t_j \otimes ((t_i^{-1}gt_i)w)$$

We drop \otimes from now. Check this is a *G*-action. Then

$$g_1(g_2t_iw) = g_1(t_j(t_j^{-1}g_2t_i)w)$$

= $t_l((t_l^{-1}g_1t_j)(t_j^{-1}g_2t_i)w)$
= $t_l(t_l^{-1}(g_1g_2)t_i)w = (g_1)(g_2)(t_iw)$

where j and l are the unique ones such that $g_2 t_i H = t_j H$ and $g_1 t_j H = t_l H$.

It has the 'right' character: $g: t_i w \to t_j \underbrace{(t_j^{-1}gt_i)_{\in H}w}_{i \in H}$, so the contribution to the character is 0 unless j = i, i.e. if $t_i^{-1}gt_i \in H$, in which case it contributes $\psi(t_i^{-1}gt_i)$. So

$$Ind_{H}^{G}\psi(g) = \sum_{1}^{m} \mathring{\psi}(t_{i}^{-1}gt_{i}) \ (10.6)$$

Remark. (10.12)

There is Frobenius Reciprocity,

$$Hom_H(W, Res_H^G V) \cong Hom_G(Ind_H^G W, V)$$

naturally as vector spaces (W is a H-space, V is a G-space).

Lemma. (10.13) (i) $Ind_{H}^{G}(W_{1} \oplus W_{2}) \cong Ind_{H}^{G}W_{1} \otimes Ind_{H}^{G}W_{2}$; (ii) dim $Ind_{H}^{G}W = |G:H| \dim W$. (iii) If $H \leq K \leq G$, then $Ind_{K}^{G}Ind_{H}^{K}W \cong Ind_{H}^{G}W$. (lecture had (10.10) here because he missed it previously, and labelled (iii) as (iv) while (10.10) as (iii)).

Proof. (10.10):

$$Ind_{H}^{G}\psi(g) = \sum_{i=1}^{n} \mathring{\psi}(t_{i}^{-1}gt_{i})$$

= $\sum_{1}^{n} \mathring{1}_{H}(e_{i}^{-1}gt_{i})$
= $|\{i: t_{i}^{-1}gt_{i} \in H\}|$
= $|\{i: g \in t_{i}Ht_{i}^{-1}\}| = |fix_{X}(g)| = \pi_{X}$

Remark. $\langle \psi_X, 1_G \rangle_G = \langle Ind_H^G 1_H, 1_G \rangle_G = \langle 1_H, 1_H \rangle = 1$ as predicted in chapter 7.

11 Frobenius groups

Theorem. (11.1, Frobenius theorem, 1891)

Let G be a transitive permutation group on a finite X, say |X| = n. Assume that each non-identity element of G fixes at most one element of X. Then

$$K = \{1\} \cup \{g \in G : g\alpha \neq \alpha \forall \alpha \in X\}$$

is a normal subgroup of G of order n.

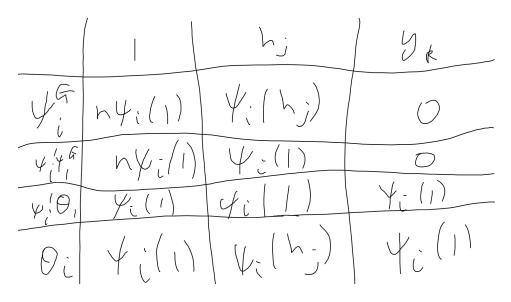
Note that G is necessarily finite, being isomorphic to a subgroup of S_X .

Proof. (method of exceptional characters, due to M. Isaacs - chapter 7 books) We have to show $K \triangleleft G$. Let $H = G_{\alpha}$ the stabiliser of $\alpha \in X$ for some $\alpha \in X$, i.e. $gG_{\alpha}g^{-1} = G_{g\alpha}$. Conjugates of H are stabiliers of single elements of X. No two conjugates can share a non-identity elment (by hypothesis), so H has n distinct conjugate, and G itself has n(|H| - 1) elements that fix exactly one element of X. But |G| = |X||H = n|H| (X and G/H are isomorphic (because transitive action) as G-sets). Hence |K| = |G| - n(|H| - 1) = n. Let $1 \neq h \in H$. Suppose $h = ghg^{-1}$ for some $g \in G, h' \in H$. Then h lies in both $H = G_{\alpha}$ and $gHg^{-1} = G_{g\alpha}$; by hypothesis $g\alpha = \alpha$, hence $g \in H$. Therefore, the ccls in G of h is precisely the ccls in H. Similarly oif $g \in C_G(h)$, then $h = ghg^{-1} \in G_{g\alpha}$ and hence $g \in H$. We conclude $C_G(h) = C_H(h)$ ($1 \neq h \in H$). Every element of G either belongs to K or lies in one of the n stabilisers, each of which is conjugate to H. So evergy element of $G \setminus K$ is conjugate with a non-identity element of H. So $\{1, h_2, ..., h_t, y_1, ..., y_u\}$ (the representations of H-ccls and representations of ccls of G which comprise $K \setminus \{1\}$ respectively) is a set of ccls reps for G.

Take $\theta_1 = 1_G$. $\{1_H = \psi_1, ..., \psi_t\}$ be irreducible characters of H. Fix $1 \le i \le t$. Then, if $g \in G$, we know

$$Ind_{H}^{G}\psi_{i}(g) = \begin{cases} |G:H|\psi_{i}(1) = n\psi_{i}(1) & g = 1\\ \psi_{i}(h_{j}) & g = h_{j}(2 \le j \le t)\\ 0 & g = y_{k}(1 \le k \le u) \end{cases}$$

where in the second case we appeal to $C_G(h_j) = C_H(h_j)$ and (10.9). Now fix some $2 \le i \le t$ and put $\theta_i = \psi_i^G - \psi_i(1)\psi_1^G + \psi_i(1)\theta_1 \in R(G)$ by (9.15). Values for $2 \le j \le t$, $1 \le k$ lequ:



Now calculate

$$\begin{split} \langle \theta_i, \theta_i \rangle &= \frac{1}{|G|} \sum_{g \in G} |\theta_i(g)|^2 \\ &= \frac{1}{|G|} \left(\sum_{g \in K} |\theta_i(g)|^2 + \sum_{\alpha \in X} \sum_{1 \neq g \in G_\alpha} |\theta_i(g)|^2 \right) \\ &= \frac{1}{|G|} (n\psi_i^2(1) + n \sum_{1 \neq h \in H} |\theta_i(h)|)^2 \\ &= \frac{1}{|H|} \sum_{h \in H} |\psi_i(h)|^2 \\ &= \langle \psi_i, \psi_i \rangle \\ &= 1 \end{split}$$

As ψ_i is irreducible. So (by (9.15)), either θ_i or $-\theta_i$ is a character. Since $\theta_i(1) > 0$, it's $+\theta_i$, an actual character. Let $\theta = \sum_{i=1}^t \theta_i(1)\theta_i$. Column orthogonality gives $\theta(h) = \sum_{i=1}^t \psi_i(1)\psi_i(h) = 0$ $(1 \neq h \in H)$, and for any $y \in K$, $\theta(y) = \sum_{i=1}^t \psi_i^2(1) = |H|$. Hence

$$\theta(g) = \begin{cases} |H| & g \in K \\ 0 & g \notin K \end{cases}$$

So $K = \{g \in G : \theta(g) = \theta(1)\} \triangleleft G$.

Definition. (11.2)

A Frobenius group is a group G having subgroup H s.t. $H \cap gHg^{-1} = 1 \ \forall g \notin H$. H is the Frobenius complement of G.

Proposition. (11.3)

Any finite Frobenius group satisfies the hypothesis of (11.1). The normal subgroup K is a Frobenius Kernel of G.

Proof. Let G be Frobenius, with complement H. Then action of G on G/H is transitive and faithful. Furthermore, if $1 \neq g \in G$ fixes both xH and yH, then $g \in xHx^{-1} \cap yhy^{-1} \implies H \cap (y^{-1}x)H(y^{-1}x)^{-1} \neq 1 \implies xH = yH$. \Box

Example: If p, q distinct primes, $p \equiv 1 \pmod{q}$, the unique non-abelian group of order pq is a Frobenius group (see James-Liebeck chapter 25 or Teleman chapter 11).

Remarks:

Thompson (thesis, 1959) proved any finite group having fixed point free automorphism of prime power order is nilpotent. This implied that in finite Frobenius group, K is nilpotent (iff K is a direct product of its sylow subgroups).
There is no profo of (11.1) known in which character theory is not required.

12 The missing lecutre: Mackey Theory

Let's work over \mathbb{C} . Mackey Theory describes restriction to a subgroup $K \leq G$ of an irreducible representation $Ind_{H}^{G}W$. Here K, H are unrelated, but usually we take K = H, in which case we can characterise when $Ind_{H}^{G}W$ is irreducible. (?)

Special case: $W = 1_H$ (trivial *H*-space of dimension 1). Then $Ind_H^G W$ is the permutation representation of *G* on G/H (by 10.10, action on left cosets of *H* in *G*).

Recall: if G is transitive on a set X and $H = G_{\alpha}$ for some $\alpha \in X$, then the action of G on X is isomorphic to the action of G on G/H, namely

$$g \cdot \alpha \leftrightarrow gH (12.1)$$

$$\in X \qquad \in G/H$$

is a well-defined bijection and commutes with G-actions $(x(g\alpha) = (xg)\alpha \leftrightarrow x(gH) = (xg)H)$.

Consider the action of G on G/H and let $K \leq G$. G/H splits into K-orbits: these correspond to *double cosets* $KgH = \{KgH : k \in K, h \in H\}$, namely the K-orbit containing gH contains precisely all kgH with $k \in K$ (bunches of some gH cosets together).

Notation. (12.2)

 $K \setminus G/H$ is the set of (K, H)-double cosets; they partition G. Note that $|K \setminus G/H| = \langle \pi G/K, \pi G/H \rangle$ as in (7.4). Let S be the set of representations.

Clearly $G_{gH} = gHg^{-1}$, so $K_{gH} = gHg^{-1} \cap K = Hg$.

So by (12.1), the action of K on the orbit containing gH is isomorphic to the action of K on K/Hg. From this, using $Ind_{H}^{G}1_{H} = \mathbb{C}(G/H)$ and, if $X = \bigcup X_{i}$ a decomposition into orbits, then $\mathbb{C}X = \bigoplus_{i} \mathbb{C}X_{i}$, we get

Proposition. (12.3)

G is a finite group, $H, K \leq G$. Then

$$\operatorname{Res}_{K}^{G}\operatorname{Ind}_{H}^{G}1 \cong \bigoplus_{g \in S} \operatorname{Ind}_{gHg^{-1}}^{K}1$$

I think this is some application:

Let $S = \{g_1 = 1, g_2, ..., g_r\}$ be s.t. $G = \bigcup_i K g_i H$. Write $H_g = g H g^{-1} \cap K$ $(\leq K)$. (ρ, W) is representation of H. For $g \in G$, define (ρ_g, W_g) to be the representation of Hg with the same underlying vector space W, but now the Hg-action is $\rho_g(x) = \rho(h)$, where $x \in g H g^{-1}$. Since $H_g \leq K$, we obtain an induced representation $Ind_{H_g}^G W_g$ from this.

Theorem. (12.4) (Mackey's restriction formula) G finite, $H, K \leq G$ and W H-space. Then

$$Res_K^G Ind_H^G W = \bigoplus_{g \in S} Ind_{H_g}^K W_g$$

as K-modules. We'll prove this later. **Corollary.** (12.5, character version of (12.4)) If ψ is a character of a representation of H, then

$$es^G_K Ind^G_H \psi = \sum_{g \ni S} Ind^K_{H_g} \psi_g$$

where ψ_g is the character of H_g given as $\psi_g(x) = \psi(g^{-1}xg)$.

Corollary. (12.6, Mackey's irreducibility criterion) Let $H \leq G$, W be a H-vector space. Then $V = Ind_{H}^{G}W$ is irreducible iff (i) W is irreducible;

(ii) for each $g \in S \setminus H$, the two Hg- spaces Wg and $Res_{H_g}^H W$ have no irreducible constitutes in common (they're 'disjoint' representations).

Proof. Let W afford character ψ . Recall W irreducible $\iff \langle \psi, \psi \rangle = 1$. Take K = H in (12.4), so $Hg = gHg^{-1} \cap H$. Then

$$\langle Ind_{H}^{G}\psi, Ind_{H}^{G}\psi\rangle_{G} = \langle \psi, Res_{H}^{G}Ind_{H}^{G}\psi\rangle_{H}$$

by (10.7), then by (12.5) is equal to

$$\sum_{g \in S} \langle \psi Ind_{H_g}^H \psi_g \rangle_H = \sum_{g \in S} \langle Res_{H_g}^H \psi, \psi_g \rangle_{H_g}$$
$$= \langle \psi, \psi \rangle_H + \sum_{g \in S, g \notin H} d_g$$

where $d_g = \langle Res_{H_g}^H \psi, \psi_g \rangle \ (g \neq 1).$

For g = 1 we have $H_g = H$, hence we get a sum of non-negative integers which is ≥ 1 . So Ind_H^{ψ} is irreducible iff $\langle \psi, \psi \rangle = 1$ and all the other terms in the sum are 0. In other words, W is irreducible representation of H and $\forall g \notin H$, W and W_g are disjoint representations of $H \cap gHg^{-1}$.

Remark. Set S of representations was arbitrary, so could demand $g \in G \setminus H$ in (ii) but in fact suffices to check for $g \in S \setminus H$.

Corollary. (12.7)

If $H \triangleleft G$, assume ψ is an irreducible character of H. Then $Ind_{H}^{G}\psi$ is irreducible $\iff \psi$ is distinct from all its conjugates ψ_{q} for all $g \in G \setminus H$ ($\psi_{q}(h) = \psi(ghg^{-1})$).

Proof. Again take K = H, noting double cosets \equiv left cosets. Also, Hg = H $\forall g$ (as $H \triangleleft G$). Moreover, Wg is irreducible since W is irreducible. So by (12.6), $Ind_{H}^{G}W$ is irreducible precisely when $W \not\cong Wg \; \forall g \in G \setminus H$. This is equivalent to $\psi \neq \psi g$. \Box

Remark. Again could check conditions on a set of representatives.

Proof. (of 12.4) Write $V = Ind_{H}^{G}W$. Fix $g \in G$. Now V is a direct sum of $x \oplus W$ with x running

through representations of left cosets of H in G (10.11). $V = \bigoplus_{x \in J} x \otimes W$. Consider a particular coset $KgH = K \setminus G/H$. The terms

$$V(g) = \bigoplus_{x \text{ rep of H in } G, x \in KgH} x \otimes W$$

forms a subspace invariant under the action of K (it's a direct sum of an orbit of subspaces permuted by K). Now viewing V as a K-space (forget G-structure), $Res_K^G V = \bigoplus_{g \in S} V(g)$, so we need to show $V(g) = Ind_{H_g}^K W_g$ as K-spaces for each $g \in S$.

Now, $Stab_K(g \otimes W) = \{k \in K : kg \otimes W = g \otimes W\} = \{k \in K : g^{-1}kg \in Stab_G(1 \otimes W) = H\} = K \cap gHg^{-1} (= Hg)$. This implies if x = kgh, x' = k'gh', then $x \otimes W = x' \otimes W$ iff k, k' lie in same coset in K/Hg, hence V(g) is direct sum $\bigoplus_{k \in K/Hg} k \otimes (g \otimes W)$. Therefore, as a representation of K, this subspace is

$$V(g) \cong Ind_{H_g}^K(g \otimes W)$$

But $g \otimes W \cong Wg$ as a representation of Hg ($w \to g \otimes W$ is an isomorphism). Putting everything together we are done.

13 Integrality in the group algebra

Definition. (13.1)

 $a \in \mathbb{C}$ is an algebraic integer if: a is a root of a monic polynomial in $\mathbb{Z}[x]$. Equivalently, the subring of \mathbb{C} generated by $\mathbb{Z}[a] = \{f(a) : f(x) \in \mathbb{Z}[x]\}$ is a finitely generated \mathbb{Z} -module.

Fact 1: The algebraic integers form a subring of \mathbb{C} (see number fields); Fact 2: If $a \in \mathbb{C}$ is both an algebraic integer and a rational number, then it's an integer (see number fields);

Fact 3: Any subring of \mathbb{C} which is a finitely-generated \mathbb{Z} -module consists of algebraic integers.

Proposition. (13.2)

If χ is character of G and $g \in G$, then $\chi(g)$ is an algebraic integer.

Proof. $\chi(g)$ is a sum of *n*th roots of unity (n = |g|). Each root of unity is an algebraic integer, and any sum of algebraic integers is an algebraic integer by fact 1.

Corollary. There are no entries in the chracter rables of any finite group which are rational but not integers, by Fact 2.

13.1 The centre of $\mathbb{C}G$

Recall from (2.4), the group algebra $\mathbb{C}G = \{\sum \alpha_g g : \alpha_g \in \mathbb{C}\}\$ of finite group, the \mathbb{C} -space with basis G. Also a ring, hence a finite-dimensional \mathbb{C} -algebra.

List $\{1\} = C_1, ..., C_k$ the *G*-ccls. Define the class sums:

$$C_j = \sum_{g \in \mathcal{C}_j} g \in \mathbb{C}G$$

Claim, each $C_j \in Z(\mathbb{C}G)$, the centre of $\mathbb{C}G$ (Note: this is not the same as $\mathbb{C}(Z(G))!$).

Proposition. (13.3)

 $C_1, ..., C_k$ is a basis of $Z(\mathbb{C}G)$. There exist non-negative integers a_{ijl} $(1 \le i, j, l \le k)$ with

$$C_i C_j = \sum_l a_{ijl} C_l$$

These are called the class algebra constants for $Z(\mathbb{C}G)$.

Remember last time we had $C_j = \sum_{g \in C_j} g$ $(= \sum_{k=1}^r x_k^{-1} g_j x_k)$. We claimed that $c_1, ..., c_k$ are basis for $Z(\mathbb{C}G)$. Let's now prove it.

Proof. Check that $gC_jg^{-1} = C_j \ \forall g \in G$. So $C_j \in Z(\mathbb{C}G)$. Clear that the C_j are linearly independent (because the \mathcal{C}_J are pairwise disjoint). Now suppose $z \in Z(\mathbb{C}G), \ z = \sum_{g \in G} \alpha_g g$. Then $\forall h \in G$ we have $\alpha_{h^{-1}gh} = \alpha_g$. So the function $g \to \alpha_g$ is constant on G-conjugacy classes. Wrigting $\alpha_g = \alpha_j$ for $g \in \mathcal{C}_j$, then $z = \sum_{i=1}^{k} \alpha_j C_j$. Finally, $Z(\mathbb{C}G)$ is a \mathbb{C} -algebra, so $C_i C_j = \sum_{l=1}^{k} a_{ijl} C_l$, as the C_l

span. We claim $a_{ijl} \in \mathbb{Z}_{\geq 0} \ \forall i, j, l$: Fix $g_l \in \mathcal{C}_l$. Then

$$a_{ijl} = \text{number of}\{(x, y \in \mathcal{C}_i \times \mathcal{C}_j : xy = g_l\} \in \mathbb{Z}_{\geq 0}$$

Definition. (13.4)

Let $\rho: G \to GL(V)$ be an irreducible representation over \mathbb{C} , affording character χ . Extend by linearity to $\rho: A = \mathbb{C}G \to End_{\mathbb{C}}V$, an algebra homomorphism. Any homomorphism of algebras $A \to EndV$ is called a representation of A. A *central character* of A is a ring homomorphism $Z(A) \to \mathbb{C}$. Let $z \in Z(\mathbb{C}G)$. Then $\rho(z)$ commutes with all $|rho(g)|(g \in \mathbb{C}G)$, so by Schur's lemma, $\rho(z) = \lambda_z I$ for some $\lambda_z \in \mathbb{C}$. Now consider the algebra homomorphism $\omega_{\chi} = \omega: Z(\mathbb{C}G) \to \mathbb{C}$ by $z \to \lambda_z$. Now $\rho(C_i) = \omega(C_i)I$, so, taking traces,

$$\chi(1)\omega(C_i) = \sum_{g \in \mathcal{C}_i} \chi(g) = |\mathcal{C}_i|\chi(g_i)$$

where g_i is a representation of C_i . So $\omega(C_i) = \frac{\chi(g_i)}{\chi(1)} |C_i|$.

Lemma. (13.5) The values $\omega(C_i) = \frac{\chi(g)}{\chi(1)} |\mathcal{C}_i|$ are algebraic integers.

ω

Proof. Since ω is an algebra homomorphism and using (13.3),

$$\omega(C_i)\omega(C_j) = \sum_{l=1}^k a_{ijl}\omega(C_l)$$

where $a_{ijl} \in \mathbb{Z}_{\geq 0}$. Thus the span $\{\omega(C_l) : 1 \leq l \leq k\}$ is a subring of \mathbb{C} and is a finitely-generated abelian group, so by Fact 3, consists of algebraic integers. [A bit of explanations:

$$\omega(C_i)\omega(C_j) = \sum a_{ijl}\omega(C_l)$$
$$\omega(C_i) \begin{pmatrix} \omega(C_1) \\ \dots \\ \omega(C_k) \end{pmatrix} = (a_{ijk}) \begin{pmatrix} \omega(C_1) \\ \dots \\ \omega(C_k) \end{pmatrix}$$

 $\omega(C_i)$ is eigenvalue of the integer matrix (a_{ijl}) so an algebraic integer by definition.]

Exercise (Burnside, 1911):

Show that a_{ijl} can be obtained from the charcater table. In fact, $\forall i, j, l$,

$$a_{ijl} = \frac{|G|}{|C_G(g_i)||C_G(g_j)|} \sum_{s=1}^{k} \frac{\chi_s(g_i)\chi_s(g_j)\chi_s(g_l^{-1})}{\chi_s(1)}$$

for $g_i \in C_i$, $1 \le i \le l$. (proof uses column orthogonality, JL 30.4).

Theorem. (13.6)

The degree of any irreducible charcaters of G divides |G|.

Proof. Given irreducible charcater χ , apply orthogonality,

$$\begin{aligned} \frac{|G|}{\chi(1)} &= \frac{1}{\chi(1)} \sum_{g \in G} \chi(g) \chi(g^{-1}) \\ &= \frac{1}{\chi(1)} \sum_{i=1}^{k} |\mathcal{C}_i| \chi(g_i) \chi(g_i^{-1}) \\ &= \sum_{i=1}^{k} \frac{|\mathcal{C}_i \chi(g_i)|}{\chi(1)} \chi(g_i^{-1}) \end{aligned}$$

where in the last summand, the first fraction is an algebraic integer by (13.5), and $\chi(g_i^{-1})$ is sum of roots of unity so an algebraic integer. LHS is clearly also rational, so it's an integer.

Example. (13.7)

(a) If G is a p-group, then χ(1) is a p-power (χ irreducible). In particular, if |G| = p², then χ(1) = 1 (since we already have a trivial character – the idea is actually similar to the proof in Groups 1A), hence G abelian.
(b) If G = S_n then every prime dividing the degree of an irreducible character of G also divides n!.

Theorem. (13.8, Burnside, 1904) If χ is irreducible, then $\chi(1)|\frac{|G|}{|Z|}$.

The proof is left as an exercise. As a hint, it uses tensor products.

14 Burnside's theorem

Theorem. (14.1)

Let p, q be primes, let $|G| = p^a q^b$, where $a, b \in \mathbb{Z}_{\geq 0}$, with $a + b \geq 2$. Then G is not simple.

Proof. The theorem gollows from 2 lemmas. We will prove this on Saturday. \Box

Remark. (1) In fact, even more is true: G is soluble.

(2) Result is best possible, in the sense that $|A_5| = 60 = 2^2 \cdot 3 \cdot 5$ has 3 prime factors, and is simple (actually there are 8 non-soluble groups of order $p^a q^b r^c$ for p, q, r primes).

(3) If either a or b is 0 then G is a p group, so is nilpotent, so soluble.

(4) In 1963, Feit and Thompson proved that every group of odd order was soluble.