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Exercise classes: Sat 3 Nov 11am MR4, Sat 24 Nov 11am MR4, early next term
(tba).
Thursday 8 November lecture is moved to Saturday 10 November 11am (still
MR4).

—Lecture 2—

1 1

Recall that we have an oracle Uf for f : ZM → ZN periodic, with period r,
A = M/r. We want to find r in O(poly(m)) time where m = logM .

1.1 The quantum algorithm

Work on state space HM ⊗N with basis {|i〉|k〉}i∈ZM ,k∈ZN .

• Step 1. Make staet 1√
M

∑M−1
i=0 |i〉|0〉.

• Step 2. Apply Uf to get 1√
M

∑M−1
i=0 |i〉|f(i)〉.

• Step 3. Measure the 2nd register to get a result y. By Born rule, the first
register collapses to all those i’s (and only those) with f(i) equal to the seen y,
i.e. i = x0, x0 +r, ..., x0 +(A−1)r, where 0 ≤ x0 < r in 1st period has f(m) = y.

Discard 2nd register to get |per〉 = 1√
A

∑A−1
j=0 |x0 + jr〉.

Note: each of the r possible function values y occurs with same probability 1/r,
so 0 ≤ x0 < r has been chosen uniformly at random.
If we now measure |per〉, we’d get a value x0 + jr for uniformly random j, i.e.
random element (xth0 ) of a random period (jth), i.e. random element of Zm, so
we could get no information about r.
• Step 4. Apply quantum Fourier transform mod M (QFT) to |per〉. Recall the

definition of QFT: QFT : |x〉 →
∑M−1
y=0 ωxy|y〉 for all x ∈ ZM where ω = e2πi/M

is the Mth root of unity. The existing result is that QFT mod M can be
implemented in O(M2) time.
Then we get

QFT |per〉 =
1√
MA

A−1∑
j=0

(
M−1∑
y=0

ω(x0+jr)y|y〉

)

=
1√
MA

M−1∑
y=0

ωx0y

A−1∑
j=0

ωjry

 |y〉 (∗)

where we group all the terms with the same |y〉 together. One good thing
is that the sum inside the square bracket is a geometric series, with ratio
α = ωry = e2πiry/M = (e2πi/A)y.
Hence term inside bracket = A if α = 1, i.e. y = kA = kMr , k = 0, 1, ..., (r − 1),
and equals 0 otherwise when α 6= 1. Now
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QFT |per〉 =

√
A

M

r−1∑
k=0

ωx0k
M
r |kM

r
〉

The random shift x0 now appears only in phase, so measurement probabilities
are now independent of x0!

Measuring QFT |per〉 gives a value c, where c = k0
M
r with 0 ≤ k0 ≤ r− 1 chosen

uniformly at random. Thus k0
r = c

M , note that c,M are known, r is unknown
(what we want), and k0 is unknown but uniformly random.

So note that if we are lucky and get a k0 that is coprime to r then we could
just simplify c

M to get r. Obviously we cannot be always lucky every time,
but by theorem in number theory, the number of integers < r coprime to r
grows as O(r/ log log r) for large r, so we know probability of k0 coprime to r is
O( 1

log log r ).

Then by some probability calculation we know that O(1/p) trials are enough to
achieve 1− ε probability of success.

So afer Step 4, cancel c/M to the lowest terms a/b, giving r as denominator b
(if k0 is coprime to r). Check b value by computing f(0) and f(b), since b = r iff
f(0) = f(b).

Repeating K = O(log log r) times gives r with any desired probability.

Further insights into utility of QFT here:
Write R = {0, r, 2r, ..., (A − 1)r} ⊆ ZM . |R〉 = 1√

A

∑A−1
k=0 |kr〉, and |per〉 =

|x0 +R〉 = 1√
A

∑A−1
k=0 |x0 + br〉 where x0 is the random shift that caused problem

previously.
For each x0 ∈ ZM , consider mapping k → k + x0 (shift by x0) on ZM , which is
a 1-1 invertible map.

So linear map U(x0) on HM defined by U(x0) : |k〉 → |k + x0〉 is unitary, and
|x0 +R〉 = U(x0)|R〉.

Since (ZM ,+) is abelian, U(x0)U(x1) = U(x0 + x1) = U(x1)U(x0) i.e. all
U(x0)’s commute as operators on HM .
So we have orthonormal basis of common eigenvectors |χk〉}k∈ZM , called shift
invariant states.

U(x0)|χk〉 = ω(x0, k)|χk〉 for all x0, k ∈ ZM with |ω(x0, k)| = 1. Now consider
|R〉 written in |χ〉 basis,

|R〉 =
∑M−1
k=0 ak|χk〉 where ak’s depending on r (not x0).

Then |per〉 = U(x0)|R〉 =
∑M−1
k=0 akω(x0, k)|χk〉, and measurement in the χ-

basis has prob(k) = |akω(x0, k)|2 = |ak|2 which is independent of x0, i.e. giving
information about r!

—Lecture 3—

Recall last time we had HM : shift operations U(x0)|y〉 = |y + x0〉 for x0, y ∈
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ZM , which all permute, so have a common eigenbasis (shift invariant states)
{|χk〉}k∈ZM , U(x0)|xk〉 = ω(x0, k)|χk〉.
Measurement of |x0 + R〉 = 1√

A

∑A−1
l=0 |x0 + lr〉 = U(x0)|R〉 in |χ〉 basis has

output distribution independent of x0, therefore gives information about r.

Introduce QFT as the unitary mapping that rotates χ-basis to standard basis, i.e.
define QFT |χk〉 = |k〉. So QFT followed by measurement implements χ-basis
measurement.

Explicit form of |χk〉 eigenspaces (!): consider

|χk〉 =
1√
M

M−1∑
l=0

e−2πikl/M |l〉

Then

U(x0)|χk〉 =
1√
M

M−1∑
l=0

e−2πikl/M |l + x0〉

=
1√
M

M−1∑
l̃=0

e−2πik(l̃−x0)/M |l̃〉 where l̃ = l + x0

= e2πikx0/M · |χk〉

i.e. these are the shift invariant staets, eigenvalues ω(x0, k) = e2πikx0/M .

Matrix of QFT: So

[QFT−1]lk =
1√
M
e−2πilk/M

(componets of |χk〉 = QFT−1|k〉 as kth column). So

[QFT ]kl =
1√
M
e2πilk/M

as expected.
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2 The hidden subgroup problem (HSP)

Let G be a finite group of size |G|. Given (oracle for) function f : G→ X (X is
some set), and promise that there is a subgroup K < G such that f is constant
on (left) cosets of K in G, and f is distinct on distinct cosets.
The problem: determine the hidden subgroup K (e.g. output a set of generators,
or sample uniformly from K).
We want to solve in time O(poly(log |G|)) (an efficient algorithm) with any
constant probability 1− ε.

Examples of problems that can be cast(?) as HSPs:
(i) periodicity: f : ZM → X, periodic with period r. Let G = (Zm,+), the
hidden subgroup is K = {0, r, 2r, ...} < G, cosets x0+K = {x0, x0+r, x0+2r, ...}.
The period r is generator of K.
(ii) discrete logarithm: for prime p, Z∗p = {1, 2, ..., p− 1} with multiplication mod
p. g ∈ Z∗p is a generator (or primitive root mod p). If powers generate all of Z∗p,
Z∗p = {g0 = 1, g1, ..., gp−2}, then also gp−1 ≡ 1 (mod p) (easy number theory).
Fact: the generator always exists if p is prime. So any x ∈ Z∗p can be written
x = gy for some y ∈ Zp−1, write y = logg x called the discrete log of x to base g.

Discrete log problem: given a generator g and x ∈ Z∗p, compute y = logg x
(classically hard).
To express as HSP, consider f : Zp−1 × Zp−1 → Z∗p: f(a, b) = gax−b mod p =

ga−yb mod p.
Then check: f(a1, b1) = f(a2, b2) iff (a2, b2) = (a1, b1) + λ(y, 1) where λ ∈ Zp−1.

So if G = Zp−1 × Zp−1, K = {λ(y, 1) : λ ∈ Zp−1} < G. Then f is constant and
distinct on the cosets of K in G, and generator (y, 1) gives y = logg x.

(iii) graph problems (G non-abelian now): consider undirected graph A = {V,E},
|V | = n, with at most one edge between any two vertices. Label vertices by
[n] = {1, 2, ..., n}.
Introduce the permutation group Pn of [n]. Define Aut(A) to be the group
of automorphisms of A, which is a subgroup of Pn, containing exactly the
permutations π ∈ Pn such that for all i, j ∈ [n], (i, j) ∈ E ⇐⇒ (π(i), π(j)) ∈ E,
i.e. the labelled graph π(A) obtained by permuting labels of A by π is the same
labelled graph as A.

Associated HSP: Take G = Pn. Let X be set of all labelled graphs on n vertices.
Given A, consider fA : Pn → X by fA(π) = π(A), A with labels permuted by π.
The associated hiiden subroup is Aut(A) = K.

Application: if we can sample uniformly from this K, then we can solve graph
isomorphism problem (GI): two labelled graphs A,B are isomorphic if there is
1-1 map π : [n]→ [n] such that for all i, j ∈ [n], i, j is an edge in A iff π(i), π(j)
is an edge in B, i.e. A and B are the same graph but just labelled differently.

—Lecture 4—
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Let’s come back to the graph isomorphism problem.

Problem: given A,B, decide if A ∼= B or not. This can be expressed as anon-
abelian HSP (on example sheet), no known classical polynomial time algorithm.
However it is in NP, but it is not believed to be NP-complete.
Recent result (2017): a quasi-poly time classical algorithm (L.Babai).

Quantum algorithm for finite abelian HSP:
Write group (G,+) additively.

Construction of shift invariant states and FT for G:
Let’s introduce some representation theory for abelian group G. Consider
mapping χ : G→ C∗ = (C \ {0}, ·) satisfying χ(g1 + g2) = χ(g1)χ(g2), i.e. χ is
a group homomorphism. Such χ’s are called irreducible representations of G.
We have the following properties (without proof), which we’ll call Theorem A
later when we refer to it:
(i) any value χ(g) is a |G|th root of unity (so χ: G→ S1 = unit circle in C);
(ii) (Schur’s lemma, orthogonality): If χi and χj are representations, then∑

g∈G χi(g)χ̄j(g) = δij |G|;
(iii) there are always exactly |G| different representations χ (well, this is a special
case of general representation theory).

By (iii), we can label χ’s as χg for g ∈ G. For example, χ(g) = 1 for all g ∈ G is
always an irreducible representation (the trivial representation), labelled χ0;
Then by orthogonality (ii) for any χ 6= χ0 gives

∑
g∈G χ(g) = 0.

Shift invariant states: in space H|G| with basis {|g〉}g∈G, introduce shift operators
U(k) for k ∈ G defined by U(k) : |g〉 → |g + k〉. Clearly these all commute, so
there is simultaneous eigenbasis:
For each χk, k ∈ G, consider state |χk〉 = 1√

|G|

∑
g∈G χ̄k(g)|g〉. Then theorem

A(ii) implies these form orthonormal basis, and U(g)|χk〉 = χk(g)|χk〉.

Proof.

U(g)|χk〉 =
1√
|G|

∑
h∈G

¯χk(h)|h+ g〉

h′=h+g
=

1√
|G

∑
h′∈G

¯χk(h′ − g)|h′〉

This implies that

χk ∗ −g) = (χk(g))−1 = ¯χk(g),

¯χk(h′ − g) = ¯χk(h′) ¯χk(−g) = χk(h′)χk(g)

So

U(g)|χk〉 =
1√
|G|

=
∑
h′∈G

χk(g)χ̄k(h′)|h′〉 = χk(g)|χk〉

So |χk〉’s are common eigenspaces, called shift-invariant states.
Introduce (define) Fourier transform QFT for group G as the unitary that
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QFT |χg〉 = |g〉 for all g ∈ G.
In |g〉−basis matrices, kth column of (QFT−1) =components of |χk〉, i.e. 1√

|G|
χ̄k(g) =

[QFT−1]gk.

So [QFT ]†kg = 1√
|G|
χk(g), and so QFT |g〉 = 1√

|G|

∑
k∈G χk(g)|k〉.

Example. G = ZM . Check χa(b) = e2πiab/M , a, b ∈ ZM is a representation.
Similarly, for G = ZM1

× ... × ZMr
, (a1, ..., ar) = g1, (b1, ..., br) = g2 where

g1, g2 ∈ G,

χg1(g2)
def
= e

2πi
(
a1b1
M1

+...+ arbr
Mr

)
is a representation of G. And we get

QFTG = QFTM1
⊗ ...⊗QFTMr

on H|G| = HM1
⊗ ...⊗HMr

.
This is exhaustive, since by classification theorem, every finite abelian group G
is isomorphic to a direct product of the form G ∼= ZM1

× ...×ZMr
. Furthermore,

we can insist that Mi are prime powers psii , where pi are not necessarily distinct.

Quantum algorithm for finite abelian HSP:
Let f : G → X, hidden subgroup K < G. We have cosets K = 0 + K, g2 +
K, ..., gm+K, wherem = |G|/|K|. State space as usual, with basis {|g〉, |x〉}g∈G,x∈X .
• make the state 1√

|G|

∑
g∈G |g〉|0〉;

• Apply oracle Uf , get 1√
|G|

∑
g∈G |g〉|f(g)〉;

measure second register to see a value f(g0).
Then first register gives coset state (remember the function is constant on each
coset). |g0 +K〉 = 1√

|K|

∑
k∈K |g0 +K〉 = U(g0)|K〉.

Apply QFT and measure to obtain result g ∈ G.

—Lecture 5—

Last time we disccused how to solve the abelian HSP problem. Now how does
the output g related to K?
• the output distribution of g is independent of g0, so same as that obtained
from QFT |K〉 (i.e. g0 = 0) since:
write |K〉 in shift invariant basis |χg〉’s, |K〉 =

∑
g ag|χg〉, then |g0 + K〉 =

U(g0)|K〉 =
∑
ag χg(g0)|χg〉︸ ︷︷ ︸

=U(g0)|χg〉

; but QFT |χg〉 = |g〉, so Prob(g) = |agχg(g0)|2 =

|ag|2 as χg(g0)| = 1.

Thus look at QFT |K〉. Recall QFT |k〉 = 1√
|G|

∑
l∈G χl(k)|l〉, so QFT |K〉 =

1√
|G|

1√
|K|

∑
l∈G

[∑
k∈K χl(k)

]
|l〉.

The terms in [...] involves irreducible representation χl of G restricted to subgroup
K < G, which is an irreducible representation of K. Hence∑
k∈K

χl(k) =

{
|K| χl restricts to trivial irreducible representation on K
0 otherwise
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and

QFT |K〉 =

√
|K|
|G|

∑
l∈G with χl reducing to trivial irreducible representation of K

|l〉

So measurement gives a uniformly random choice of l such that χl(k) = 1 for all
k ∈ K.
e.g. If K has generators k1, k2, ..., kM , M = O(log |K|) = O(log |G|), then output
has χl(ki) = 1 for all i.

It can be shown that if O(log |G|) such l’s are chosen uniformly at random, then
with probability > 2/3 they suffice to determine a generating set for K via
equations χl(k) = 1.
(see example sheet 1 for particular examples).

Example. If G = ZM1
× ...× ZMq

.
We had for l = (l1, ..., lq), g ∈ (b1, ..., bq) ∈ G,

χl(g) = e
2πi(

l1k1
M1

+...+
lqbq
Mq

)

So for k = (k1, ..., kq), χl(k) = 1 becomes

l1k1
M1

+ ...+
lqkq
Mq
≡ 0 (mod 1)

(i.e. is an integer), a homogeneous linear equation on K, and O(log |K|) is
independent such that equations determine K as null space.

Some remarks on HSP for non-abelian groups G (write multiplicatively):
As before, can easily generate coset states

|g0K〉 =
1√
|K|

∑
k∈K

|g0K〉

where g0’s are randomly chosen. But problems arise with QFT construction,
because now there’s no basis of shift-invariant states exists! (this is since U(g0)’s
don’t commute anymore, so no common full eigenbasis).

Construction of non-abelian Fourier Transform (some more representation the-
ory):
• d-dimensional representation of G is a group homomorphism χ : G →
U(d) where U(d) is the space of d × d unitary matrices acting on Cd, by
χ(g1g2)χ(g1)χ(g2). (see part II representation theory for the general form)
• χ is irreducible representation if no subspace of Cd is left invariant under χ(g)
for all g ∈ G (i.e. cannot simultaneously block diagonalise all χ(g)’s by a basis
change).
• a complete set of irreducible representation: set χ1, ..., χm such that any
irreducible representation is unitarily equivalent to one of them (equivalence
χ→ χ′ = V χV T ).

Theorem. (non-abelian version of theorem A – properties of representations)
If d1, ..., dm are dimensions of a complete set of irreducible representations
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χ1, ..., χm, then:
(i) d21 + ...+ d2m = |G|;
(ii) Write χi(g)jk for the (j, k)th entry of matrix χi(g), where j, k = 1, ..., di.
Then (Schur orthogonality):∑

g

χi(g)jkχ̄i′(g)j′k′ = |G|δii′δjj′δkk′

Hence states

|χi,jk〉 ≡
1√
|G|

∑
g∈G

χ̄i(g)jk|g〉

is an orthonomal basis.

• QFT on G defined to be the unitary that rotates {|χijk〉} basis into stan-
dard basis {|g〉}. However, |χijk〉 are not shift invariant for all U(g0)’s, and
consequently measurement of coset state |g0K〉 in |χ〉-basis gives an output
distribution not independent of g0.

However, partial shift invariance survives: Consider the incomplete measurement
Mrep on |g0K〉 that distinguishes only the irreducible representations (i.e. i
values) and not all (i, j, k)’s.
i.e. with measurement outcome i associated to d2i -dimensional orthogonal sub-
spaces spanned by {|χ(i),jk〉}j,k=1,...,di .
Then χi(g1, g2) = χi(g1)χi(g2) implies output distribution of i values is indepen-
dent of g0, giving direct, albeit imcomplete, information about K.
E.g. conjugate subgroups K and = g0Kg

−1
0 for some g0 ∈ G give same output

distribution.

—Lecture 6—
Non-abelian HSP/FT remarks:
For efficient HSP algorithm, we also need QFT to be efficiently implementable,
i.e. poly(log |G|)-time.
This is true for any abelian G and some non-ablien G’s (such as Pn), but even
in latter case there’s no known efficient HSP algorithm.

Some known result:
for normal subgroups, i.e. gK = Kg for all g ∈ G:

Theorem. (Hallgrer, Russell, Tashma, SIAM J.Comp 32 p916-934 (2003))
Suppose G has efficient QFT. Then if hidden subgroup K is normal, then there
is an efficient HSP quantum algorithm.
(Construct coset state |g0K〉, perform Mrep on it.)
Repeat O(log |G|) times. Then K normal implies outputs suffice to determine
K.

Theorem. (Ettinger, Hoyer, Knill)
For general non-abelian HSP,M = O(poly(log |G|)) random coset states |g1K〉,...,gMK〉
suffice to determine K from M coset states, but it’s not efficient.
See example sheet for a proof – construct a measurement procedure on |g1K〉 ⊗
...⊗ gMK〉 to determine K, but it takes exponential time in log |G|.
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The phase estimation algorithm:
• a unifying principle for quantum algorithms, uses QFT2n again.
• many applications, e.g. an alternative efficient factoring algorithm (A.Kitaev).

Given unitary operator U and eigenstate |vφ〉 · U|vφ〉 = e2πiφ|vφ〉, we want to
estimate phase φ, where 0 ≤ φ < 1 (to some precision, say to n binary digits).

We’ll need controlled-Uk for integers k, writte C − Uk, which satisfies c −
Uk|0〉|ξ〉 = |0〉|ξ〉, C − Uk|1〉|ξ〉 = |1〉Uk|ξ〉, where |ξ〉 in general has dimension
d.
Note Uk|vφ〉 = e2πikφ|vφ〉, C − (Uk) = (C − U)k.

Remark. Given U as a formula or (arant?) description, we can readily imple-
ment C − U , e.g. just control each gate of U ’s circuit.
However, if U is given as a black box, we need further info:
• it suffices to have an eigenstate |α〉 with known eigenvalue U |α〉 = eiα|α〉:
We can consider

Where we get CU |a〉|ξ〉 at the first two row and the third row |α〉 is always
unchanged.
To see how it works, just check circuit action. (...)

We’ll actually want generalised controlled-U with |x〉|ξ〉 → |x〉Ux|ξ〉, where |x〉
has n qubits, i.e. x ∈ Z2n .
We can make this thing from C − (Uk) as follows:
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We get |x〉Ux|ξ〉, where x = xn−1...x1x0 binary, Ux = U2xn−1
...U2x1U2x0 .

Note: if input |ξ〉 = |vφ〉, then get e2πiφx|vφ〉.

Now suppose over all x = 0, 1, ..., 2n−1 and use |ξ〉 = |vφ〉,

Where the output is 1√
2n

∑
x e

2πiφx|x〉, we call this state |A〉.

Finally apply QFT−12n to |A〉 and measure to see y0, ..., yn−1 on lines 0, 1, ..., n−1.
Then output 0.y0...yn−1 = y0

2 + ...+ yn−1

2n−1 , as the estimate of φ.
That’s the phase estimation algorithm (for given U and Vφ〉).

Suppose φ actually had only n binary digits, i.e. φ exactly equals 0.z0z1...zn−1
for some zk = 0, 1 for all k.
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Then φ = z0...zn−1

2n = z
2n where z is n-bit integer in Z2n , and

|A〉 =
1√
2n

∑
x

e2πixz/2
n

|x〉

is QFT2n of |z〉.
So QFT−1|A〉 = |z〉 and get φ exactly, with certainty.
In this case the algorithm up to (not including) final measurements is a unitary
operation, mapping |0〉...|0〉|vφ〉 → |z0〉...|zn−1〉|vφ〉.

—Lecture 7— Phase Estimation (continued):

U is a d× d unitary operation/matrix with eigenstate U |vφ〉 = 22πiφ|vφ〉, and
we want to estimate φ.
U as a quantum physical operation is equivalent to Ũ = eiαU for any α and Ũ
has φ→ φ+ α/2π.
So if U given as quantum physical operation alone, we cannot determine φ.
But controlled versions different: C − U and C − Ũ are different as physical
operations (set {eiαC−U}α 6= {eiαC−Ũ}α), and C−U/Ũ does fix φ associatied
to choice of phase α.

So quantum phase estimation algorithm use C−U (C−U2k) physical operations
(not just U ’s).

We had |0〉...|0〉︸ ︷︷ ︸
n

|vφ〉
unitary→
C−U ′s

|A〉 = 1√
2n

∑2n−1
x=0 e2πiφx|x〉 (n qubits).

Apply QFT−1 we get QFT−1|A〉, measure to see y0, ..., yn−1; output φ =
(y0y1...yn−1)

2n , 0 ≤ y < 2n−1, where the numerator is a n-bit integer.
If φ = z

2n for integer 0 ≤ z < 2n, i.e. φ has exactly n binary digits, then
|A〉 = QFT |z〉, so we get z with certainty in the measurement.

Now suppose φ has more than n bits, say φ = 0.z0z1z2...zn−1|znzn+1.... Then
we have:

Theorem. (PE) If measurement in above algorithm give y0, ...yn−1 (so output
is θ = 0.y0...yn−1), then
(a) P(θ is closet n binary digit approximate to φ) ≥ 4π2;
(b) P(|θ − φ| ≥ ε) is at most P ( 1

2nε ) (we’ll show it’s at most 1
2n+1ε ).

Remark. In (a), we have probability 4
π2 that all n lines of n-line QPE process

are good.
But, if we want φ accurate to m bits with probability 1− η, then we use theorem
(PE) (b) with ε = 1/2m. Then we’ll use n > m lines with

1

2n+1
ε = η, ε =

1

2m

i.e. n = m+ log(1/η) + 1. In words, number of lines needed is only number of
bits wanted with good probability 1− η plus a modest polynomial increase for
exponetial reduction in η.



2 THE HIDDEN SUBGROUP PROBLEM (HSP) 15

Proof. We have

QFT−1|x〉 =
1√
2n

2n−1∑
y=0

e−2πiyx/2
n

|y〉

So

QFT−1|A〉 =
1

2n

∑
y

[∑
x

e2πi(φ−y/2
n)x

]
|y〉

So for measurement,

P(see n− bit integer y = y0y1...yn−1) =
1

22n

∣∣∣∣∣∣∣∣∣∣
2n−1∑
x=0

e

2πi (φ− y

2n
)︸ ︷︷ ︸

:=δ(y)

x

∣∣∣∣∣∣∣∣∣∣

2

Note that this is a geometric series e2πiδ(y), so

P(see y) =
1

22n

∣∣∣∣1− e2n2πiδ(y)1− e2πiδ(y)

∣∣∣∣2
Let’s call this equation (P) (maybe for phase).
We want to bound/estimate this expression.
For (a): Let y = a = a0a1...an−1 give closest n-bit approximation to φ, i.e.
|φ− a

2n | ≤
1

2n+1 , i.e. δ(a) ≤ 1
2n+1 .

Now we bounds:
(i) |1− eiα| = |2 sin α

2 | ≥
2
π |α| if |α| < π;

(ii) |1− e2πiβ | ≤ 2πβ.

In equation (P), use (i) with α = 2n · 2πδ(a) ≤ 2n2π 1
2n+1 ≤ π to lower bound

top line, and (ii) with β = δ(a) to upper bound bottom line, get

P(see a) ≥ 1

22n

(
2n+1δ(a)

2πδ(a)

)2

=
4

π2

For (b), we want to upper bound equaiton (P): for top line, |1− eiα| ≤ 2 for any
α; for bottom, use (i) get |1− e2πiδ(y)| ≥ 4δ(y). So

P(y) ≤ 1

22n

(
2

4δ(y)

)2

=
1

22n+2
δ(y)2

Now sum this for all |δ(y)| > ε, δ(y) values spaced by 1/2n’s. Let δ+ be first
δ(y) (jumps?) with δ(y) ≥ ε, δ− be that with δ(y) ≤ −ε. So |δ+|, |δ−| ≥ ε.
Then if |δ(y)| ≥ ε, we have δ(y) = δ+ + k

2n , k = 0, 1, ..., or = δ−− k
2n , k = 0, 1, ....

So |δ(y)| ≥ ε+ k
2n with k = 0, 1, 2, ... in each case.
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So

P(|δ(y)| > ε) ≤ 2

∞∑
k=0

1

22n+2

1

(ε+ k
2n )2

≤ 1

2

∫ ∞
0

1

(2nε+ k)2
dk

=

∫ ∞
2nε

dk

k2

=
1

2n+1ε

Further remarks on QPE algorithm:

(1) If C−U2k is implemented as (C−U)2
k

, the QPE algorithm needs exponential
time in n as we have 1 + 2 + ...+ 2n−1 = 2n − 1 (C − U) gates.

However, for some special U ’s, C − U2k can be implemented in poly(k) time, so
we get a poly time QPE algorithm.
It can be used to provide alternative facoring (order finding) algorithm (due to
A. Kitaev) using PE.

—Lecture 8—

First exercise class: Saturday 3 Nov 11am MR4.

(2) If instead of |vφ〉, use general input state |ξ〉:

|ξ〉 =
∑
j

cj |vφj 〉

U |vφj 〉 = e2πiφj |vφj 〉

Then we get in QPE (before final measurement) a unitary process UPE with
(lecturer had that) effect

|0...0〉|ξ〉 UPE−−−→
∑
j

cj |φj〉|vφj 〉

and final measurement will give a choice of φj ’s (or approximation) chosen with
probabilities |cj |2.

Example. Implement QFTQ for Q not a power of 2, with a quantum curcuit
of 1− and 2− qubit gates of circuit size O(poly(logQ)) (Kitaev’s method).

Remark. For Q = 2m, we have explicit known circuit of O(m2). H and C-phase
gate to implement QFT2m exactly (cf part II QIC Notes).

For QFTQ: Introduce

|ηa〉 = QFTQ|a〉 =
1√
Q

Q−1∑
b=0

ωab|b〉, a ∈ ZQ, ω = e2πi/Q
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It suffices to make circuit hat does |a〉 → |ηa〉 (*).
Let 2m−1 < Q < 2m, and set M = 2m, view HQ as subspace of m qubits
(spanned by |a〉 : 0 ≤ a < Q− 1 < 2m).
To achieve (*), consider instead on HQ ⊗HQ

|a〉|0〉 (1)−−→ |a〉|ηa〉
(2)−−→ |0〉|ηa〉

(1): get ηa〉 from |a〉 while remembering |a〉;
(2): erase/forget |a〉.
For (1), first do |0〉 → |ξ〉 = 1√

Q
∑Q−1
b=0 |b〉 as follows:

on m qubitsH⊗m gives 1√
M

∑2m−1
x=0 |x〉. Then consider the step function f(x) = 0

if x < Q and 1 if x ≥ Q. It’s classically efficiently computable, so can efficiently
implement Uf on (m+ 1) qubits.
So applying Uρ to (H⊗m|0〉)|0〉 and measure output (m+ 1st) qubit to get |ξ〉
on first n qubits if measurement result is 0.
Note that prob(0) > 1/2 as Q > 2m−1 = 2m/2, so we can use multiple trials to
give |ξ〉.
We can do offline: failures/re-tries do not affect state to which we want to apply

QFTQ. So now we have |ξ̃ = |a〉
(

1√
Q
∑Q−1
b=0 |b〉

)
.

Next consider V |a〉|b〉 = ωab|a〉|b〉.
Then V |ξ̃〉 = |a〉|ηa〉 as we want for (1).

To implement V , consider
U : |b〉 → ωb|b〉

If |b〉 in m qubits given by |bm−1〉...|b0〉, i.e. b = bm−1...b0 in binary, then

ωb = ωbm−12
m−1

...ωb02
0

. So U is product of 1-qubit phase gates

P (ω2m−1

)⊗ ...⊗ P(ω20)

where P (ξ) = Diag(1, ξ), |ξ| = 1 is a phase gate.

Similarly, for C − U2k (starting with U → U2k i.e. ωb → ω2kb), and V =
generalised C − U :

|a〉|b〉 V−→ |a〉Ua|b〉

which is constructed as before, from C − U2k ’s.

So now we have |a〉|0〉 (1)−−→ |a〉|ηa〉.

For (2), i.e. |a〉|ηa〉
(2)−−→ |0〉|ηa〉, if we had U with eigenstates |ηa〉, eigenvalues

ωa = e2πia/Q, then UPE would give

|0〉|ηa〉
UPE−−−→ |a〉|ηa〉

(we are a bit loose on how information is presented – writing eigenvalue output
as a, and note we are assuming that PE works exactly)
Hence U−1PE (inverse gates taken in reverse order) would give desired (2)!

Consider U : |x〉 → |x− 1 mod Q〉, and check that U |ηa〉 = ωa|ηa〉 as wanted.
Now note x→ x− k mod Q for k ∈ ZQ is classically computable in poly(logQ)-
time, thus we also have Uk : |x〉 → |x − k mod Q〉, and PE algotirhm with
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m = O(log(Q)) lines.
Then implementing (1) then (2) gives poly(logQ) sized circuit for QFTQ.

But PE is not exact. However, using more qubit lines (O(log 1/ε) lines), we can
achieve (by theorem PE(b))

|0〉|ηa〉
UPE−−−→ (

√
1− ε|a〉+

√
ε|a⊥〉)|ηa〉

(where a⊥ is a state orthogonal to |a〉) for any (small) deserved ε. Then

|| |a〉 −
√

1− ε|a〉+
√
ε|a⊥〉 || = O(

√
ε)

So
|| U−1PE |a〉|ηa〉 − |0〉|ηa〉 || = O(

√
ε)

(as unitaries preserve lengths). So we can approximate QFTQ to any desired
precision (omit details).
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3 Amplitude Amplification

Note that this is a very good name – a fifth order literation (both starting with
Ampli).
Apothesis of technique in Grover’s algorithm.

Some background:
We’ll make much use of reflection operators.

—Lecture 9—
A reminder that we don’t have lecture next thursday.

Reflection operators:
• State |α〉 in Hd → 1-dimensional subspace Lα and (d− 1)-dimensional orthog-
onal complement L⊥α

I|α〉
def
= I − 2|α× α|

has I|α〉|α〉 = −|α〉, I|α〉|β〉 = |β〉 for any |β〉 ⊥ |α〉.
So I|α〉 is reflection in (d− 1)-dimensional subspace L⊥α .

Note that for any unitary U , UI|α〉U
† = IU |α〉, since U |α × α|Y † = |ξ × ξ| ofr

ξ = U |α〉 (basically a change of basis).

• Take k-dimensional subspace A ⊆ Hd, and any orthonormal basis |a1〉, ..., |ak〉.
Then PA =

∑k
i=1 |ai × ai| is projection operator into A.

Define IA = I − 2PA. Then we have IA|ξ〉 = |ξ〉 if |ξ〉 ∈ A⊥, and IA|ξ〉 = −|ξ〉 if
|ξ〉 ∈ A.
So IA is reflection in (d− k) dimensional mirror A⊥.

Recap of Grover’s algorithm (part II notes page 68-73):
• search for unique good item in unstructured database of N = 2n items for-
malised as: (write Bn to be the set of all n-bit strings, N = 2n): Given oracle
for f : Bn → B, promised that there is unique x0 ∈ Bn with f(x0) = 1, and we
wish to find x0.
This is closely related to class NP and Boolean satisfiability problem (see part II
notes p 67-68).
Using one query to (n + 1)-qubit Uf , we can implement reflection operator
I|x0〉 : |x〉 → |x〉 if x 6= x0, and to −|x〉 if x = x0.

(viz. apply Uf to |x〉( |0〉−|1〉√
2

) and discard the last qubit.)

Then consider Grover iteration operator on n qubits:

Q
def
= −HnI|0...0〉HnI|x0〉 = −I|ψ0〉I|x0〉

here Hn = H ⊗H ⊗ ...⊗H = H†n, and |ψ0〉 = Hn|0...0〉 = 1√
2n

∑
x∈Bn |x〉.

So one application of Q uses 1 query to Uf .

Theorem. (Grover, 1996)
In 2-dimensional span of |ψ0〉 and (unknown) |x0〉, the action of Q is rotation
by angle 2α where sinα = 1√

N
.



3 AMPLITUDE AMPLIFICATION 20

Hence (Grover’s algorithm) to find x0 given Uf :
1. Make |ψ0〉;
2. Apply Q m times where m =

arccos( 1√
N

)

2 arctan(frac1
√
N)

to rotate |ψ0〉 very close to

|x0〉.
3. Measure to see x0 with high probability ∼ 1− 1

N .

For large N , arccos( 1√
N

) ≈ π/2, arcsin( 1√
N

) ≈ 1√
N

so m = π
4

√
N itera-

tions/queries to Uf suffice.
Classically we need O(N) queries to see x0 with any constant probability (inde-
pendent of N), so get square-root speed up quantumly.

Amplitude Amplification:
Let G be any subspace (good subspace) of state space H, and G⊥ is orthogonal
complement (bad subspace) J = G⊕G⊥.
Given any |ψ〉 ∈ H, we have unique decompoisiton with real positive coefficients

|ψ〉 = sin θ|g〉+ cos θ|b〉

where |g〉 ∈ G, |b〉 ∈ G⊥ normalised. Introduce reflections: flip |ψ〉 and good
vectors: I|ψ〉 = I−2|ψ×ψ|, IG = I−2PG (projection into G), so sin θ = ||PG|ψ〉||
is the length of good projection.

Introduce Q
def
= −I|ψ〉IG.

Theorem. (Amplitude Amplification)
In the 2-dimensional subspace spanned by |g〉 and |ψ〉 (or equivalently by or-
thonormal vectors |g〉 and |b〉), Q is rotation by 2θ where sin θ is the length of
good projection of |ψ〉.

Proof. We have IG|g〉 = −|g〉, IG|b〉 = |b〉. So Q|g〉 = +I|ψ〉|g〉, Q|b〉 = −I|ψ〉|b〉.
Now

I|ψ〉 = I − 2(sin θ|g〉+ cos θ|b〉)(sin θ〈g|+ cos θ〈b|)
= I − 2[sin2 θ|g × g|+ sin θ cos θ|g × b|+ sin θ cos θ|b× g|+ cos2 θ|b× b|]|b〉

And direct calculation (using 〈g|b〉 = 0, 〈g|g〉 = 〈b|b〉 = 1) gives

Q|b〉 = I|ψ〉|b〉
= 2 sin θ cos θ|g〉 − (1− 2 cos2 θ)|b〉
= cos 2θ|b〉+ sin 2θ|g〉

and Q|g〉 = +I|ψ〉|g〉 = − sin 2θ|b〉+ cos 2θ|g〉.
So in {|b〉, |g〉} basis, matrix of Q is exactly the matrix of rotation by 2θ.

—Lecture 10—

Let’s continue on Amplitude Amplification.

Last time we showed that Q = −I|ψ〉Ig is the rotation through 2θ in the plane
of |ψ〉 and |g〉, i.e. in |b〉 and |g〉 (orthonormal).
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So Qn|ψ〉 = sin(2n+ 1)θ|g〉+ cos(2n+ 1)θ|b〉, and if we measure Qn|ψ〉 for good
vs bad, we get prob(good) = sin2(2n+ 1)θ.

We want to maximize this: it is maximised when (2n+1)θ = π/2, i.e. n = π2

4θ −
1
2 .

Example. If we had θ = 4/6, then n = π
4θ −

1
2 = 1 is an exact integer. So Q1

rotates |ψ〉 exactly onto |g〉, so we see good result with certainty!

Generally, for given θ, n is not an integer. So we use n to be the nearest integer to
( π4θ −

1
2 ) ≈ π

4θ (for small θ), which equals O( 1θ = O( 1
sin θ ) = O( 1

||good proj of |ψ|| )),

and Qn|ψ〉 will be within angle ±θ of |g〉, so probability of good result is at least
cos2 θ ≈ 1−O(θ2).

All this can be implemented oif I|ψ〉 and IG can be implemented. See example
sheet – for IG, suffices for G to be spanned by computational basis states |x〉’s,
and indicator function f(x) = 1 for x good and 0 for x bad efficiently computable.
For I|ψ〉, usally have |ψ〉 = Hn|00...0〉 (H is the Hadamard gate). Then I|ψ〉 can
be implemented in linear O(n) time.

Notes:
(1) In AA process, relative amplitudes of good labels in |g〉 stay same as they
were in |ψ〉 = sin θ|g〉+ cos θ|b〉.
(2) Final state is generally not exactly |g〉, but if sin θ is known, then we can
modify AA process to make it exact, i.e. giving |g〉 state exactly (see example
sheet).

Applications of AA:
(1) Grover Search with one or more (k) good items in N :

|ψ〉 = |ψ0〉 =
1√
2n

∑
x∈Bn

|x〉

=

√
k

N

 1√
k

∑
good |g〉

|x〉

+

√
N − k
N

(
1√

N − k

∑
x bad

|x〉

)

G spanned by good x’s, sin θ = k
n soQ is rotation through 2θ, θ = arcsin

√
k/N ≈√

k/N , where k � N ; and we only need O(
√
N/k) queries.

Note: for 2-bit case, N = 4 with k = 1 good item; we have θ = arcsin(1/2) = π/6,
so one application of Q rotates |ψ0〉 exactly onto |xgood〉, i.e. a single query
suffices to find a unique good item in four, with certainty !

(2) Square-root sppedup of general quantum algorithms:
Let A be a quantum algorithm/circuit (sequence of unitary gates). on input, say
|0...0〉. So final state is A|0...0〉.
Good labels = desired computational outcomes

A|0.000〉 = α|a〉+ β|b〉, α = sin θ

where |a〉 is normalised, genrally unequal superposition
∑
good x cx|x〉.

So Prob(success in 1 run) = |α|2, so O( 1
|α|2 ) repetitions of A needed to succeed

with any constant high probability 1− ε.
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Instead use AA: assumed we can check if answer is good or bad (e.g. factoring).
So we can then implement IG : |x〉 → −|x〉 if x is good, and → |x〉 if x is bad.
Consider |ψ〉 = A|0...0〉 and Q = −IA|0...0〉IG = −(AI|0...0〉A

†)IG. All parts are

implementable (A is the algorithm, A† is inverse gate in reverse order, and I|0...0〉
see example sheet).
By AA theorem, Q is rotation through 2θ, where sin θ = |α|. So after n ≈ π

4θ =
O( 1

θ ) = O( 1
sin θ ) = O( 1

|α| ) (for small |α|).
Repetitions A|0...0〉 will be rotate very near to |g〉, and final measurement will
succeed with high probability.
Each application of Q needs one A and one A†; A† is the inverse gate in reverse
order, i.e. the time complexity is the same, i.e. O( 1

|α| ) repetition of Q gives

square root time speed up over direct method.

Also, if success probability of A (i.e. |α|2) is known, then improved modification
of the AA process that is exact can be applied; we convert probabilistic algorithm
A into deterministic one, giving a good outcome with certainty.
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4 Quantum Counting

Given f : Bn → B a boolean function with an unknown number k good x’s, we
want ot estimate k (rather than just find some good x).

Recall that Grover operator QG for f is rotaion through 2θ in 2-dimensional
space of |ψ0 = 1√

2n

∑
x∈Bn |x〉 and its good projection |g〉 = 1√

k

∑
good x |x〉,

with sin θ =
√
k/N ≈ θ for k � N .

—Lecture 11—

(Did I miss a lecture?)

4.1 Hamiltonian Simulation

k-local Halmiltonians:

H on n qubits is a 2n × 2n Hermitian matrix. We’ll want to simulate U = e−iHt

with a circuit of poly(n, t) basic unitary gates, i.e. efficient simulation.
Not all H’s can be efficently simulated, but some physically important classes
can –

Definition. H is k-local (k is a fixed constant) on n qubits if H =
∑m
j=1Hj

where each Hj is a Hermitian matrix acting on at most k qubits (not necessarily
contiguous).
i.e. each Hj = H̃j ⊗ I (on some k qubits, and identity on rest of qubits).

So m ≤
(
n
i

)
= O(nk) = poly(n) terms in H.

Example. (1) H = X ⊗ I ⊗ I − 5Z ⊗ I ⊗ Y is 2-local on 3 qubits.
(2) Write M(j) to denote operator M acting on jth qubit (and I on all others).
Physically important spin-spin interactions:
Ising model on n × n square lattice of qubits, H = J

∑n−1
i,j=1 Z(i,j)Z(i,j+1) +

Z(i,j)Z(i+1,j), i.e. all nearest neighbours on square.

Heisenberg model on a line: H =
∑n−1
i=1 JxX(i)X(i+1)+JyY(i)Y(i+1)+JzZ(i)Z(i+1)

(where J, Jx, Jy, Jz are all real constants). This is very relevatn on chemistry (in
studying covalence bonds?)

Note: in general, e−i
∑
j Hjt 6=

∏
j(e
−iHjt) – if the Hj ’s don’t commute.

But e−iHjt’s are local unitary gates (acting on k qubits each), and we’ll simulate

U(t0) = e−i
∑
j Hit0 in terms of these (for suitable t’s), and we’ll have a poly(n, t0)-

sized circuit too.

If we want to use some standard universal gate set (to further express the above
gates), then use: Solovay-Kitaev theorem: Let U be a unitary operator on k
(const) qubits, and S any universal set of quantum gates (S is the set that have
property that if we look at all circuit and all finite sets, then it’s dense in all
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circuits?? Lecturer didn’t write down).
Then U can be approximated to within ε using O(logc(1/ε)) gates from S with
c < 4 (it’s actually exponential in k, but here we consider k constant).
So all S-products of length O(logc(1/ε)) get within ε of any element of U(k).

We’ll also need a lemma about accumulation of errors (c.f. Example sheet).
We call this lemmma A: let {ui}, {vi} be sets of m unitary operators, with
||ui − vi|| < ε for all i = 1, 2, ...,m, then

||um...u1 − vm...v1|| ≤ mε

i.e. errors accumulate linearly.
Proof is an easy exercise – induction on m.

Warm up: the (easy) commuting case.

Proposition. (k-local Hamiltonioans with commuting terms)
H =

∑m
j=1Hj with Hj commuting – any local Hamiltonian with commuting

terms.
Then for any t, e−iHt can be approximated to within ε by a circuit ofO(m poly(log m

ε ))
gates from any given universal set.
Note, as m = O(nk) this is poly(n, log 1

ε ) too. Also, log( 1
ε ) is the number of

digits of precision in the approximation.

Proof. Hj ’s commute implies that e−i
∑
j Hjt =

∏m
j=1(e−iHjt). Then SK the-

orem implies, for each e−iHjt can be approximated to within ε/m within
O(poly(log m

ε )) gates, so lemma A then implies that the full product
∏m
j=1

is then approximated to within m(ε/m) = ε, with a total of O(m poly(log m
ε ))

gates (from the universal set).

Now let’s look at the full non-commuting case: for any matrix X, write X+O(ε)
for X + E where ||E|| = O(ε).

Lemma. (B, Lie-Trotter product formula)
Let A,B be matrices with ||A|| ≤ K, ||B|| ≤ k and k < 1 (small).
Then e−iAe−iB = e−i(A+B) +O(k2).

Proof.

e−iA = I − iA+

∞∑
k=2

(−iA)k

k!

= I − iA+ (iA)2
∞∑
k=0

(−iA)k

(k + 2)!

= I − iA+O(k2)

since ||(iA)2|| < k2, and the remainder term is at most 1. So

e−iAe−iB = (I − iA+O(k2))(I − iB +O(k2))

= I − i(A+B) +O(k2)

= e−i(A+B) +O(k2)
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by applying the inverse of above

Now apply this repeatedly to accumulate sums of H1, ...,Hm in exponent. Note
thta if each ||Hi|| < k, then ||H1 + ...+Hl|| < lk, we want this to be < 1 for all
l ≤ m.
So for now, we’ll assume ||Hi|| < 1

m to have Lie-Trotter for all stages. Also take
t = 1 for now.
Then consider

e−iH1e−iH2 ...e−iHm =
[
e−i(H1+H2) +O(k2)

]
e−iH

3

...e−iHm

= e−i(H1+H2)e−iH3 ...e−iHm +O(k2)

= ...

= e−i(H1+H2+...+Hm) +O(k2) +O((2k)2) + ...+O(((m− 1)k)2)

= e−i(H1+H2+...+Hm) +O(m3k2) (1)

where in the second equality we used that ||AU || = ||A|| for any unitary U , and
note that the sum of squares up to m is of order m3.

—Lecture 12—

For general finite ||Hj ||’s and t values, ||Hjt|| < kt can be large, so interoduce
N (large-ish, fix later), and note

Hjt

N
has K̃ = ||Hjt

N
|| < kt

N
(∗)

can be suitably small, i.e. divide t into (small) 1
N intervals,

U = ei(H1+...+Hm)t = [ei(
H1t
N +...+Hmt

N )]N

We want final error for U to be < ε, so by lemma A, we want error for [...] to be
< ε

N .

So by (1) and (*), Cm3k̃2 < ε
N , i.e. Cm3K2t2

N2 < ε
N , i.e. N > Cm3K2t2

ε (2).
Then

||e−iH1t/Ne−iH2t/N ...e−iHmt/N − e−i
(H1+...+Hm)t

N || < ε

N

so by lemma A again,

||(e−iH1t/N ...e−iHmt/N )N − e−i(H1+...+Hm)t|| < ε

(this is Nm gates if form e−iHjt/N , and N given by (2)). So circuit size is

O(m
4(Kt)2

ε ).
Recall for n qubits and k-local Hamiltonians, m = O(nk), so circuit size is

O(n4k (Kt)2

ε ) = O(n4k, t2, 1ε ).

We have circuit C of size |C| = O(m4 (Kt)2

ε ) gates of form e−iH̃j/N approximate
to O(t).
If we want to use standard universal set, lemma A gives each of these gates needs
to be approximate to O(ε/|C|) to maintain an overall O(ε) level approximation
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to U .
So by SK theorem, need O(logc(|C|/ε)) gates from the universal set for each, i.e.

get (modest) multiplicative factor of O(logc m
4(Kt)2

ε2 ) in |C|.

For fixed n, ε, and variable t, the quantum process eiHt runs for time t; but
our circuit simulation runs for time O(t2). By refining/improving Lie-Trotter
formula, it can be shown that this can be improved to O(t1+δ) for any δ > 0
(See example sheet 2 for an example).

Harrow-Hassidim-Lloyd (HHL) quantum algorithm for linear systems of equa-
tions:
We’ll want to solve a linear system of equations Ax = b, where b,x ∈ CN , and
dimension N is potentially very large (we could set N = 2n, where 2n is the
least power of 2 that is greater than N).
Rather than outputting the full solution x itself, which would take O(N) time,
we instead want to compute (suitable approximates to) the value of properties
of the solution, such as quadratic expressions xTMx e.g. total weight of some
subset of components.

Very large lineary systems are important in applications: data mining/machine
learning on data sets of increasingly large size to discover pattern properties
in data; in science/engineering , we have numerical solutions of PDEs, where
discretisation techniques (finite element methods) lead to linear systems far
larger than original problem description.

The best known classical techniques take poly(N) time to solve such problems.

Important parameters (for both classical and quantum algorithms):
• the system size N ;
• the desired approximate tolerance ε;
• the condition number κ of matrix A, defined as ratio of largest to smallest
eigenvalue size κ = |λmaxλmin

|;
It provides intrinsic scale of the linear transformation A, and is a measure of
how close A is to being non-invertible.
If renormalize A to have λmax = 1, then |λmin| = 1/κ, and numerical compu-
tation of A−1 becomes less stable with increasing κ, needing more significant
digits and correspondingly longer runtime.

Preliminary requirements for the HHL algorithm:
Aim: to compute ε-approximate to properties of the solution of an N -dimensional
system Ax = b in time poly(logN) = poly(n). We’ll take the property to be a
quadratic expression µ = xTMx.

Immediate issue is how the defining ingredients viz A and b are actually given
(as reading them componently would already have taken O(poly(N)) time). Thus
we’ll need a different presentation of the problem (cf below) that is still available
in applications.

The poly(logN) run time will be achieved by using only O(logN) qubits and
it will never be required to write down all of A or b or x in the course of the
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algorithm (as that would be impossible given the complexity constraints).
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5 Example Class 1

5.1 Question 1

Basic representation theory exercises.
For details see Part II Representation Theory.

5.2 Question 2

Let G = (Zn2 ,⊕) where ⊕ is componentwise-addition. Subgroup K generated by
a1...ak, K = {b1a1 ⊕ ...⊕ bkak : b1, ..., bk ∈ Z2}. Note that K has size 2k if ai’s
are LI, and so does any coset of K.
Then f(x) = f(x ⊕ ai) for all ai’s ≡ f constant on cosets of K. f is 2k-to-1:
ak’s all linearly independent and f different on different cosets.

Shift invariant states: For Z2 irreps are χa(x) = (−1)ax), a, x ∈ Z2 (−1 is the
2nd root of unity). So irreps on (Z2)n are χa(x) = (−1)a1x1 ...(−1)anxn where
a = a1...an, x = x1...xn are in Zn2 .
We also introduce a dot product a · x = a1x1 ⊕ ...⊕ anxn ∈ Z2 where ⊕ here is
+ modulo 2.
So shift invariant states

|χ〉 =
1√
|G|

∑
g

χ(g)|g〉

So

|χa〉 =
1√
2n

∑
b∈Zn2

(−1)a·b|b〉

in n qubits. So

(QFT )alr(?) =
1√
2n

(−1)a·b =
1√
2n

(−1)a1b1 ...(−1)anbn

so QFT = H ⊗H ⊗ ...⊗H where H is the Hadamard gate.
For second part, it’s just calculation:
Probability that first string is LI is 1− 2−m (just exclude 0...0);
Probability that first 2 strings are LI given the first is is 1− 2/2m (i.e. as 1st
string x1 spans 2 strings, namely 0...0 and x1).
...Probability that first j strings are LI given the first j − 1 are is 1− 2j−1/2m.
So by Bayes rule, probability that all of them are LI is (1 − 1/2m)...(1 −
2m−2/2m)(1− 2m−1/2m). Use the hint given we get that is at least 1

2 (1− 1/2) =
1/4.

Stanrdard HSP algorithm:
1. query to f , get random coset state |y ⊕K〉 = 1√

2n

∑
x∈K |y ⊕ x〉, y ∈ Zn2 .

Apply QFT = H⊗n and measure; our theory assures that output is then
uniformly random c ∈ (Z2)n s.t. irrep χc of G restricted to K is trivial irrep of
K, i.e .χc(a) = 1 for all a ∈ K.
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So (−1)a·c = 1 for all a ∈ K, i.e. c · a = 0 (mod 2) for all a = K, i.e.
c1a1 ⊕ ...⊕ cnan = 0 for a = a1...an.
We know K viewed as subspace of (Z2)n (n dimensional vector space over field
Z2) has dimension k. So (n− k) LI ci’s with c1 · a = 0 suffice to determine K as
null spaceof linear system of (n− k) equations.
So run HSP algorithm (n − k) times: by (b) we’ll get (n − k) LI c′s with
probability at least 1/4, and we can solve for elements of K.
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