Quantum Computation

November 15, 2018

Contents

0 Introduction

asdasd

1 1 4

Exercise classes: Sat 3 Nov 11am MR4, Sat 24 Nov 11am MR4, early next term (tba).

Thursday 8 November lecture is moved to Saturday 10 November 11am (still MR4).

—Lecture 2—

1 1

Recall that we have an oracle U_f for $f : \mathbb{Z}_M \to \mathbb{Z}_N$ periodic, with period r, $A = M/r$. We want to find r in $O(poly(m))$ time where $m = \log M$.

1.1 The quantum algorithm

Work on state space $\mathcal{H}_M \otimes \mathcal{N}$ with basis $\{|i\rangle|k\rangle\}_{i\in\mathbb{Z}_M, k\in\mathbb{Z}_N}$.

- Step 1. Make staet $\frac{1}{\sqrt{2}}$ $\frac{1}{\overline{M}}\sum_{i=0}^{M-1}|i\rangle|0\rangle.$
- Step 2. Apply U_f to get $\frac{1}{\sqrt{2}}$ $\frac{1}{\overline{M}}\sum_{i=0}^{M-1}|i\rangle|f(i)\rangle.$

• Step 3. Measure the 2nd register to get a result y . By Born rule, the first register collapses to all those i's (and only those) with $f(i)$ equal to the seen y, i.e. $i = x_0, x_0 + r, ..., x_0 + (A-1)r$, where $0 \le x_0 < r$ in 1st period has $f(m) = y$. Discard 2nd register to get $|per\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{\overline{A}}\sum_{j=0}^{A-1}|x_0+jr\rangle.$

Note: each of the r possible function values y occurs with same probability $1/r$, so $0 \leq x_0 < r$ has been chosen uniformly at random.

If we now measure $|per\rangle$, we'd get a value $x_0 + jr$ for uniformly random j, i.e. random element (x_0^{th}) of a random period (j^{th}) , i.e. random element of \mathbb{Z}_m , so we could get no information about r .

• Step 4. Apply quantum Fourier transform mod M (QFT) to $|per\rangle$. Recall the definition of QFT: $QFT: |x\rangle \rightarrow \sum_{y=0}^{M-1} \omega^{xy} |y\rangle$ for all $x \in \mathbb{Z}_M$ where $\omega = e^{2\pi i/M}$ is the Mth root of unity. The existing result is that QFT mod M can be implemented in $O(M^2)$ time.

Then we get

$$
QFT|per\rangle = \frac{1}{\sqrt{MA}} \sum_{j=0}^{A-1} \left(\sum_{y=0}^{M-1} \omega^{(x_0+jr)y} |y\rangle \right)
$$

$$
= \frac{1}{\sqrt{MA}} \sum_{y=0}^{M-1} \omega^{x_0 y} \left[\sum_{j=0}^{A-1} \omega^{jry} \right] |y\rangle (*)
$$

where we group all the terms with the same $|y\rangle$ together. One good thing is that the sum inside the square bracket is a geometric series, with ratio $\alpha = \omega^{ry} = e^{2\pi iry/M} = (e^{2\pi i/A})^y.$

Hence term inside bracket = A if $\alpha = 1$, i.e. $y = kA = k\frac{M}{r}$, $k = 0, 1, ..., (r - 1)$, and equals 0 otherwise when $\alpha \neq 1$. Now

$$
QFT|per\rangle=\sqrt{\frac{A}{M}}\sum_{k=0}^{r-1}\omega^{x_0k\frac{M}{r}}|k\frac{M}{r}\rangle
$$

The random shift x_0 now appears only in phase, so measurement probabilities are now independent of x_0 !

Measuring $QFT|per\rangle$ gives a value c, where $c = k_0 \frac{M}{r}$ with $0 \le k_0 \le r - 1$ chosen uniformly at random. Thus $\frac{k_0}{r} = \frac{c}{M}$, note that c, M are known, r is unknown (what we want), and k_0 is unknown but uniformly random.

So note that if we are lucky and get a k_0 that is coprime to r then we could just simplify $\frac{c}{M}$ to get r. Obviously we cannot be always lucky every time, but by theorem in number theory, the number of integers $\langle r \rangle$ coprime to r grows as $O(r/\log \log r)$ for large r, so we know probability of k_0 coprime to r is $O(\frac{1}{\log\log r}).$

Then by some probability calculation we know that $O(1/p)$ trials are enough to achieve $1 - \varepsilon$ probability of success.

So afer Step 4, cancel c/M to the lowest terms a/b , giving r as denominator b (if k_0 is coprime to r). Check b value by computing $f(0)$ and $f(b)$, since $b = r$ iff $f(0) = f(b).$

Repeating $K = O(\log \log r)$ times gives r with any desired probability.

Further insights into utility of QFT here:

Write $R = \{0, r, 2r, ..., (A-1)r\} \subseteq \mathbb{Z}_M$. $|R\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{A}}\sum_{k=0}^{A-1}|kr\rangle$, and $|per\rangle =$ $|x_0+R\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{A} \sum_{k=0}^{A-1} |x_0 + br\rangle$ where x_0 is the random shift that caused problem previously.

For each $x_0 \in \mathbb{Z}_M$, consider mapping $k \to k + x_0$ (shift by x_0) on \mathbb{Z}_M , which is a 1-1 invertible map.

So linear map $U(x_0)$ on \mathcal{H}_M defined by $U(x_0): |k\rangle \to |k+x_0\rangle$ is unitary, and $|x_0 + R\rangle = U(x_0)|R\rangle.$

Since $(\mathbb{Z}_M, +)$ is abelian, $U(x_0)U(x_1) = U(x_0 + x_1) = U(x_1)U(x_0)$ i.e. all $U(x_0)$'s commute as operators on \mathcal{H}_M .

So we have orthonormal basis of common eigenvectors $|\chi_k\rangle_{k\in\mathbb{Z}_M}$, called shift invariant states.

 $U(x_0)|\chi_k\rangle = \omega(x_0,k)|\chi_k\rangle$ for all $x_0, k \in \mathbb{Z}_M$ with $|\omega(x_0,k)| = 1$. Now consider $|R\rangle$ written in $|\chi\rangle$ basis,

 $|R\rangle = \sum_{k=0}^{M-1} a_k |\chi_k\rangle$ where a_k 's depending on r (not x_0).

Then $|per\rangle = U(x_0)|R\rangle = \sum_{k=0}^{M-1} a_k \omega(x_0,k)|\chi_k\rangle$, and measurement in the χ basis has $prob(k) = |a_k \omega(x_0, k)|^2 = |a_k|^2$ which is independent of x_0 , i.e. giving information about $r!$

—Lecture 3—

Recall last time we had \mathcal{H}_M : shift operations $U(x_0)|y\rangle = |y + x_0\rangle$ for $x_0, y \in$

 \mathbb{Z}_M , which all permute, so have a common eigenbasis (shift invariant states) $\{|\chi_k\rangle\}_{k\in\mathbb{Z}_M}$, $U(x_0)|x_k\rangle = \omega(x_0,k)|\chi_k\rangle.$

Measurement of $|x_0 + R\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{A}}\sum_{l=0}^{A-1}|x_0+l_r\rangle = U(x_0)|R\rangle$ in $|\chi\rangle$ basis has output distribution independent of x_0 , therefore gives information about r.

Introduce QFT as the unitary mapping that rotates χ -basis to standard basis, i.e. define $QFT|\chi_k\rangle = |k\rangle$. So QFT followed by measurement implements χ -basis measurement.

Explicit form of $|\chi_k\rangle$ eigenspaces (!): consider

$$
|\chi_k\rangle = \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} e^{-2\pi i k l/M} |l\rangle
$$

Then

$$
U(x_0)|\chi_k\rangle = \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} e^{-2\pi i k l/M} |l + x_0\rangle
$$

=
$$
\frac{1}{\sqrt{M}} \sum_{\tilde{l}=0}^{M-1} e^{-2\pi i k (\tilde{l} - x_0)/M} |\tilde{l}\rangle \text{ where } \tilde{l} = l + x_0
$$

=
$$
e^{2\pi i k x_0/M} \cdot |\chi_k\rangle
$$

i.e. these are the shift invariant staets, eigenvalues $\omega(x_0, k) = e^{2\pi i k x_0/M}$.

Matrix of QFT: So

$$
[QFT^{-1}]_{lk} = \frac{1}{\sqrt{M}}e^{-2\pi ilk/M}
$$

(componets of $|\chi_k\rangle = QFT^{-1}|k\rangle$ as k^{th} column). So

$$
[QFT]_{kl} = \frac{1}{\sqrt{M}} e^{2\pi i lk/M}
$$

as expected.

2 The hidden subgroup problem (HSP)

Let G be a finite group of size |G|. Given (oracle for) function $f: G \to X$ (X is some set), and promise that there is a subgroup $K < G$ such that f is constant on (left) cosets of K in G , and f is distinct on distinct cosets.

The problem: determine the *hidden subgroup K* (e.g. output a set of generators, or sample uniformly from K).

We want to solve in time $O(poly(\log |G|))$ (an efficient algorithm) with any constant probability $1 - \varepsilon$.

Examples of problems that can be cast(?) as HSPs:

(i) periodicity: $f : \mathbb{Z}_M \to X$, periodic with period r. Let $G = (\mathbb{Z}_m, +)$, the hidden subgroup is $K = \{0, r, 2r, ...\} < G$, cosets $x_0 + K = \{x_0, x_0 + r, x_0 + 2r, ...\}$. The period r is generator of K .

(ii) discrete logarithm: for prime $p, \mathbb{Z}_p^* = \{1, 2, ..., p-1\}$ with multiplication mod p. $g \in \mathbb{Z}_p^*$ is a generator (or primitive root mod p). If powers generate all of \mathbb{Z}_p^* , $\mathbb{Z}_p^* = \{g^0 = 1, g^1, ..., g^{p-2}\},\$ then also $g^{p-1} \equiv 1 \pmod{p}$ (easy number theory). Fact: the generator always exists if p is prime. So any $x \in \mathbb{Z}_p^*$ can be written $x = g^y$ for some $y \in \mathbb{Z}_{p-1}$, write $y = \log_g x$ called the discrete log of x to base g.

Discrete log problem: given a generator g and $x \in \mathbb{Z}_p^*$, compute $y = \log_g x$ (classically hard).

To express as HSP, consider $f : \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$: $f(a, b) = g^a x^{-b} \mod p =$ $g^{a-yb} \mod p$.

Then check: $f(a_1, b_1) = f(a_2, b_2)$ iff $(a_2, b_2) = (a_1, b_1) + \lambda(y, 1)$ where $\lambda \in \mathbb{Z}_{p-1}$.

So if $G = \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$, $K = \{\lambda(y, 1) : \lambda \in \mathbb{Z}_{p-1}\} < G$. Then f is constant and distinct on the cosets of K in G, and generator $(y, 1)$ gives $y = \log_q x$.

(iii) graph problems (G non-abelian now): consider undirected graph $A = \{V, E\}$, $|V| = n$, with at most one edge between any two vertices. Label vertices by $[n] = \{1, 2, ..., n\}.$

Introduce the permutation group \mathcal{P}_n of [n]. Define $Aut(A)$ to be the group of automorphisms of A, which is a subgroup of \mathcal{P}_n , containing exactly the permutations $\pi \in \mathcal{P}_n$ such that for all $i, j \in [n]$, $(i, j) \in E \iff (\pi(i), \pi(j)) \in E$, i.e. the labelled graph $\pi(A)$ obtained by permuting labels of A by π is the same labelled graph as A.

Associated HSP: Take $G = \mathcal{P}_n$. Let X be set of all labelled graphs on n vertices. Given A, consider $f_A: \mathcal{P}_n \to X$ by $f_A(\pi) = \pi(A)$, A with labels permuted by π . The associated hiiden subroup is $Aut(A) = K$.

Application: if we can sample uniformly from this K , then we can solve graph isomorphism problem (GI) : two labelled graphs A, B are isomorphic if there is 1-1 map $\pi : [n] \to [n]$ such that for all $i, j \in [n]$, i, j is an edge in A iff $\pi(i), \pi(j)$ is an edge in B , i.e. A and B are the same graph but just labelled differently.

[—]Lecture 4—

Let's come back to the graph isomorphism problem.

Problem: given A, B, decide if $A \cong B$ or not. This can be expressed as anonabelian HSP (on example sheet), no known classical polynomial time algorithm. However it is in NP, but it is not believed to be NP-complete. Recent result (2017): a quasi-poly time classical algorithm (L.Babai).

Quantum algorithm for finite abelian HSP: Write group $(G, +)$ additively.

Construction of shift invariant states and FT for G:

Let's introduce some representation theory for abelian group G. Consider mapping $\chi: G \to \mathbb{C}^* = (\mathbb{C} \setminus \{0\}, \cdot)$ satisfying $\chi(g_1 + g_2) = \chi(g_1)\chi(g_2)$, i.e. χ is a group homomorphism. Such χ 's are called *irreducible* representations of G. We have the following properties (without proof), which we'll call Theorem A later when we refer to it:

(i) any value $\chi(g)$ is a $|G|^{th}$ root of unity (so $\chi: G \to S^1$ = unit circle in \mathbb{C}); (ii) (Schur's lemma, orthogonality): If χ_i and χ_j are representations, then $\sum_{g \in G} \chi_i(g) \overline{\chi}_j(g) = \delta_{ij} |G|;$

(iii) there are always exactly |G| different representations χ (well, this is a special case of general representation theory).

By (iii), we can label χ 's as χ_g for $g \in G$. For example, $\chi(g) = 1$ for all $g \in G$ is always an irreducible representation (the trivial representation), labelled χ_0 ; Then by orthogonality (ii) for any $\chi \neq \chi_0$ gives $\sum_{g \in G} \chi(g) = 0$.

Shift invariant states: in space $\mathcal{H}_{|G|}$ with basis $\{|g\rangle\}_{g\in G}$, introduce shift operators $U(k)$ for $k \in G$ defined by $U(k): |g\rangle \rightarrow |g+k\rangle$. Clearly these all commute, so there is simultaneous eigenbasis:

For each $\chi_k, k \in G$, consider state $|\chi_k\rangle = \frac{1}{\sqrt{k}}$ $\frac{1}{|G|}\sum_{g\in G}\bar{\chi}_k(g)|g\rangle.$ Then theorem A(ii) implies these form orthonormal basis, and $U(g)|\chi_k\rangle = \chi_k(g)|\chi_k\rangle$.

Proof.

$$
U(g)|\chi_k\rangle = \frac{1}{\sqrt{|G|}} \sum_{h \in G} \chi_k \bar{h} |h + g\rangle
$$

$$
h' = h + g \frac{1}{\sqrt{|G|}} \sum_{h' \in G} \chi_k (h^{\bar{I}} - g) |h'\rangle
$$

This implies that

$$
\chi_k * -g) = (\chi_k(g))^{-1} = \chi_k(g),
$$

$$
\chi_k(h^7 - g) = \chi_k(h')\chi_k(-g) = \chi_k(h')\chi_k(g)
$$

So

$$
U(g)|\chi_k\rangle = \frac{1}{\sqrt{|G|}} = \sum_{h' \in G} \chi_k(g)\bar{\chi}_k(h')|h'\rangle = \chi_k(g)|\chi_k\rangle
$$

So $|\chi_k\rangle$'s are common eigenspaces, called *shift-invariant states*. Introduce (define) Fourier transform QFT for group G as the unitary that

 \Box

2 THE HIDDEN SUBGROUP PROBLEM (HSP) 9

 $QFT|\chi_g\rangle = |g\rangle$ for all $g \in G$. In $|g\rangle$ – basis matrices, k^{th} column of (QFT^{-1}) =components of $|\chi_k\rangle$, i.e. $-\frac{1}{\sqrt{k}}$ $\frac{1}{|G|}\bar{\chi_k}(g) =$ $[QFT^{-1}]_{gk}.$ So $[QFT]_{kg}^{\dagger} = \frac{1}{\sqrt{2}}$ $\frac{1}{|G|}\chi_k(g)$, and so $QFT|g\rangle = \frac{1}{\sqrt{g}}$ $\frac{1}{|G|}\sum_{k\in G}\chi_k(g)|k\rangle.$

Example. $G = \mathbb{Z}_M$. Check $\chi_a(b) = e^{2\pi i ab/M}$, $a, b \in \mathbb{Z}_M$ is a representation. Similarly, for $G = \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_r}$, $(a_1, ..., a_r) = g_1, (b_1, ..., b_r) = g_2$ where $g_1, g_2 \in G$,

$$
\chi_{g_1}(g_2) \stackrel{def}{=} e^{2\pi i \left(\frac{a_1 b_1}{M_1} + \ldots + \frac{a_r b_r}{M_r}\right)}
$$

is a representation of G . And we get

$$
QFT_G=QFT_{M_1}\otimes...\otimes QFT_{M_r}
$$

on $\mathcal{H}_{|G|} = \mathcal{H}_{M_1} \otimes ... \otimes \mathcal{H}_{M_r}.$

This is exhaustive, since by classification theorem, every finite abelian group G is isomorphic to a direct product of the form $G \cong \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_r}$. Furthermore, we can insist that M_i are prime powers $p_i^{s_i}$, where p_i are not necessarily distinct.

Quantum algorithm for finite abelian HSP: Let $f: G \to X$, hidden subgroup $K < G$. We have cosets $K = 0 + K$, $g_2 +$ $K, ..., g_m+K$, where $m = |G|/|K|$. State space as usual, with basis $\{|g\rangle, |x\rangle\}_{g\in G, x\in X}$. • make the state $-\frac{1}{4}$ $\frac{1}{|G|}\sum_{g\in G}|g\rangle|0\rangle;$

• Apply oracle U_f , get $\frac{1}{\sqrt{1}}$ $\frac{1}{|G|}\sum_{g\in G}|g\rangle|f(g)\rangle;$

measure second register to see a value $f(g_0)$. Then first register gives coset state (remember the function is constant on each coset). $|g_0 + K\rangle = -\frac{1}{\sqrt{2}}$ $\frac{1}{|K|}\sum_{k\in K}|g_0+K\rangle = U(g_0)|K\rangle.$

Apply QFT and measure to obtain result $g \in G$.

—Lecture 5—

Last time we disccused how to solve the abelian HSP problem. Now how does the output g related to $K?$

• the output distribution of g is independent of g_0 , so same as that obtained from $QFT|K\rangle$ (i.e. $g_0 = 0$) since:

write $|K\rangle$ in shift invariant basis $|\chi_g\rangle$'s, $|K\rangle = \sum_g a_g |\chi_g\rangle$, then $|g_0 + K\rangle =$ $U(g_0)|K\rangle = \sum a_g \chi_g(g_0)|\chi_g\rangle$; but $QFT|\chi_g\rangle = |g\rangle$, so $Prob(g) = |a_g \chi_g(g_0)|^2 =$ $=U(g_0)|\chi_g\rangle$ $|a_g|^2$ as $\chi_g(g_0)| = 1$.

Thus look at $QFT|K\rangle$. Recall $QFT|k\rangle = -\frac{1}{\sqrt{k}}$ $\frac{1}{|G|}\sum_{l\in G}\chi_l(k)|l\rangle$, so $QFT|K\rangle =$ $\frac{1}{\sqrt{2}}$ $\frac{1}{|G|}\frac{1}{\sqrt{|G|}}$ $\frac{1}{|K|}\sum_{l\in G}\left[\sum_{k\in K}\chi_l(k)\right]|l\rangle.$

The terms in [...] involves irreducible representation χ_l of G restricted to subgroup $K < G$, which is an irreducible representation of K. Hence

$$
\sum_{k \in K} \chi_l(k) = \begin{cases} |K| & \chi_l \text{ restricts to trivial irreducible representation on } K \\ 0 & \text{otherwise} \end{cases}
$$

$$
QFT|K\rangle = \sqrt{\frac{|K|}{|G|}} \sum_{l \in G \text{ with } \chi_l \text{ reducing to trivial irreducible representation of } K} |l\rangle
$$

So measurement gives a uniformly random choice of l such that $\chi_l(k) = 1$ for all $k \in K$.

e.g. If K has generators $k_1, k_2, ..., k_M$, $M = O(\log |K|) = O(\log |G|)$, then output has $\chi_l(k_i) = 1$ for all *i*.

It can be shown that if $O(\log |G|)$ such l's are chosen uniformly at random, then with probability $> 2/3$ they suffice to determine a generating set for K via equations $\chi_l(k) = 1$.

(see example sheet 1 for particular examples).

Example. If $G = \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_q}$. We had for $l = (l_1, ..., l_q), g \in (b_1, ..., b_q) \in G$,

$$
\chi_l(g) = e^{2\pi i \left(\frac{l_1 k_1}{M_1} + \dots + \frac{l_q b_q}{M_q}\right)}
$$

So for $k = (k_1, ..., k_q), \chi_l(k) = 1$ becomes

$$
\frac{l_1k_1}{M_1} + \dots + \frac{l_qk_q}{M_q} \equiv 0 \pmod{1}
$$

(i.e. is an integer), a homogeneous linear equation on K, and $O(\log |K|)$ is independent such that equations determine K as null space.

Some remarks on HSP for non-abelian groups G (write multiplicatively): As before, can easily generate coset states

$$
|g_0 K\rangle = \frac{1}{\sqrt{|K|}} \sum_{k \in K} |g_0 K\rangle
$$

where g_0 's are randomly chosen. But problems arise with QFT construction, because now there's no basis of shift-invariant states exists! (this is since $U(q_0)$'s don't commute anymore, so no common full eigenbasis).

Construction of non-abelian Fourier Transform (some more representation theory):

• d-dimensional representation of G is a group homomorphism $\chi : G \rightarrow$ $U(d)$ where $U(d)$ is the space of $d \times d$ unitary matrices acting on \mathbb{C}^d , by $\chi(g_1g_2)\chi(g_1)\chi(g_2)$. (see part II representation theory for the general form)

 \bullet x is irreducible representation if no subspace of \mathbb{C}^d is left invariant under $\chi(g)$ for all $g \in G$ (i.e. cannot simultaneously block diagonalise all $\chi(g)$'s by a basis change).

• a complete set of irreducible representation: set $\chi_1, ..., \chi_m$ such that any irreducible representation is unitarily equivalent to one of them (equivalence $\chi \to \chi' = V \chi V^T$).

Theorem. (non-abelian version of theorem A – properties of representations) If $d_1, ..., d_m$ are dimensions of a complete set of irreducible representations

and

 $\chi_1, ..., \chi_m$, then: (i) $d_1^2 + \ldots + d_m^2 = |G|$; (ii) Write $\chi_i(g)_{jk}$ for the $(j,k)^{th}$ entry of matrix $\chi_i(g)$, where $j, k = 1, ..., d_i$. Then (Schur orthogonality):

$$
\sum_{g} \chi_i(g)_{jk} \bar{\chi}_{i'}(g)_{j'k'} = |G| \delta_{ii'} \delta{jj'} \delta kk'
$$

Hence states

$$
|\chi_{i,jk}\rangle \equiv \frac{1}{\sqrt{|G|}}\sum_{g\in G} \bar{\chi}_i(g)_{jk}|g\rangle
$$

is an orthonomal basis.

• QFT on G defined to be the unitary that rotates $\{|\chi_{ijk}\rangle\}$ basis into standard basis $\{|g\rangle\}$. However, $|\chi_{ijk}\rangle$ are not shift invariant for all $U(g_0)$'s, and consequently measurement of coset state $|g_0K\rangle$ in $|\chi\rangle$ -basis gives an output distribution *not* independent of g_0 .

However, partial shift invariance survives: Consider the incomplete measurement M_{rep} on $|g_0K\rangle$ that distinguishes only the irreducible representations (i.e. i values) and not all (i, j, k) 's.

i.e. with measurement outcome i associated to d_i^2 -dimensional orthogonal subspaces spanned by $\{|\chi_{(i),jk}\rangle\}_{j,k=1,\ldots,d_i}$.

Then $\chi_i(g_1, g_2) = \chi_i(g_1)\chi_i(g_2)$ implies output distribution of i values is independent of g_0 , giving direct, albeit imcomplete, information about K.

E.g. conjugate subgroups K and $=g_0 K g_0^{-1}$ for some $g_0 \in G$ give same output distribution.

—Lecture 6—

Non-abelian HSP/FT remarks:

For efficient HSP algorithm, we also need QFT to be efficiently implementable, i.e. $poly(\log |G|)$ -time.

This is true for any abelian G and some non-ablien G's (such as \mathcal{P}_n), but even in latter case there's no known efficient HSP algorithm.

Some known result:

for normal subgroups, i.e. $qK = Kg$ for all $q \in G$:

Theorem. (Hallgrer, Russell, Tashma, SIAM J.Comp 32 p916-934 (2003)) Suppose G has efficient QFT. Then if hidden subgroup K is normal, then there is an efficient HSP quantum algorithm.

(Construct coset state $|g_0K\rangle$, perform M_{rep} on it.)

Repeat $O(\log |G|)$ times. Then K normal implies outputs suffice to determine K.

Theorem. (Ettinger, Hoyer, Knill)

For general non-abelian HSP, $M = O(poly(\log |G|))$ random coset states $|g_1K\rangle,...,g_MK\rangle$ suffice to determine K from M coset states, but it's not efficient.

See example sheet for a proof – construct a measurement procedure on $|g_1K\rangle \otimes$ $\ldots \otimes g_M K$ to determine K, but it takes exponential time in log |G|.

2 THE HIDDEN SUBGROUP PROBLEM (HSP) 12

The phase estimation algorithm:

- a unifying principle for quantum algorithms, uses QFT_{2^n} again.
- many applications, e.g. an alternative efficient factoring algorithm (A.Kitaev).

Given unitary operator U and eigenstate $|v_{\phi}\rangle \cdot U|v_{\phi}\rangle = e^{2\pi i \phi} |v_{\phi}\rangle$, we want to estimate phase ϕ , where $0 \leq \phi < 1$ (to some precision, say to *n* binary digits).

We'll need *controlled-U*^k for integers k, writte $C - U^k$, which satisfies $c U^k|0\rangle|\xi\rangle=|0\rangle|\xi\rangle, C-U^k|1\rangle|\xi\rangle=|1\rangle U^k|\xi\rangle$, where $|\xi\rangle$ in general has dimension d.

Note
$$
U^k|v_{\phi}\rangle = e^{2\pi ik\phi}|v_{\phi}\rangle
$$
, $C - (U^k) = (C - U)^k$.

Remark. Given U as a formula or (arant?) description, we can readily implement $C-U$, e.g. just control each gate of U's circuit.

However, if U is given as a *black box*, we need further info:

• it suffices to have an eigenstate $|\alpha\rangle$ with known eigenvalue $U|\alpha\rangle = e^{i\alpha}|\alpha\rangle$: We can consider

Where we get $CU|a\rangle|\xi\rangle$ at the first two row and the third row $|\alpha\rangle$ is always unchanged.

To see how it works, just check circuit action. (...)

We'll actually want *generalised controlled-U* with $|x\rangle|\xi\rangle \rightarrow |x\rangle U^x|\xi\rangle$, where $|x\rangle$ has *n* qubits, i.e. $x \in \mathbb{Z}_{2^n}$.

We can make this thing from $C - (U^k)$ as follows:

We get $|x\rangle U^x|\xi\rangle$, where $x = x_{n-1}...x_1x_0$ binary, $U^x = U^{2^{x_{n-1}}}...U^{2^{x_1}}U^{2^{x_0}}$. Note: if input $|\xi\rangle = |v_{\phi}\rangle$, then get $e^{2\pi i \phi x} |v_{\phi}\rangle$.

Now suppose over all $x = 0, 1, ..., 2^{n-1}$ and use $|\xi\rangle = |v_{\phi}\rangle$,

Where the output is $\frac{1}{\sqrt{2}}$ $\frac{1}{2^n} \sum_x e^{2\pi i \phi x} |x\rangle$, we call this state $|A\rangle$.

Finally apply $QFT_{2^n}^{-1}$ to $|A\rangle$ and measure to see $y_0, ..., y_{n-1}$ on lines $0, 1, ..., n-1$. Then output $0.y_0...y_{n-1} = \frac{y_0}{2} + ... + \frac{y_{n-1}}{2^{n-1}}$, as the estimate of ϕ . That's the phase estimation algorithm (for given U and V_{ϕ})).

Suppose ϕ actually had only n binary digits, i.e. ϕ exactly equals $0.z_0z_1...z_{n-1}$ for some $z_k = 0, 1$ for all k.

2 THE HIDDEN SUBGROUP PROBLEM (HSP) 14

Then $\phi = \frac{z_0 \dots z_{n-1}}{2^n} = \frac{z}{2^n}$ where z is *n*-bit integer in \mathbb{Z}_{2^n} , and

$$
|A\rangle = \frac{1}{\sqrt{2^n}} \sum_x e^{2\pi i x z/2^n} |x\rangle
$$

is QFT_{2^n} of $|z\rangle$.

So $QFT^{-1}|A\rangle = |z\rangle$ and get ϕ exactly, with certainty. In this case the algorithm up to (not including) final measurements is a unitary operation, mapping $|0\rangle...|0\rangle|v_{\phi}\rangle \rightarrow |z_0\rangle...|z_{n-1}\rangle|v_{\phi}\rangle.$

—Lecture 7— Phase Estimation (continued):

U is a $d \times d$ unitary operation/matrix with eigenstate $U|v_{\phi}\rangle = 2^{2\pi i \phi}|v_{\phi}\rangle$, and we want to estimate ϕ .

U as a quantum physical operation is equivalent to $\tilde{U} = e^{i\alpha}U$ for any α and \tilde{U} has $\phi \to \phi + \alpha/2\pi$.

So if U given as quantum physical operation alone, we cannot determine ϕ .

But controlled versions different: $C - U$ and $C - U$ are different as physical operations (set $\{e^{i\alpha}C-U\}_{\alpha}\neq\{e^{i\alpha}C-\tilde{U}\}_{\alpha}$), and $C-U/\tilde{U}$ does fix ϕ associatied to choice of phase α .

So quantum phase estimation algorithm use $C-U(C-U^{2^k})$ physical operations (not just U 's).

We had
$$
\underbrace{|0\rangle...|0\rangle}_{n}|v_{\phi}\rangle \underbrace{\stackrel{\text{unitary}}{\rightarrow}}_{C-U's}|A\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} e^{2\pi i \phi x} |x\rangle
$$
 (*n* qubits).

Apply QFT^{-1} we get $QFT^{-1}|A\rangle$, measure to see $y_0, ..., y_{n-1}$; output $\phi =$ $\frac{(y_0y_1...y_{n-1})}{2^n}$, $0 \le y < 2^{n-1}$, where the numerator is a *n*-bit integer.

If $\phi = \frac{z}{2^n}$ for integer $0 \leq z < 2^n$, i.e. ϕ has exactly *n* binary digits, then $|A\rangle = Q\overline{F}T|z\rangle$, so we get z with certainty in the measurement.

Now suppose ϕ has more than n bits, say $\phi = 0.z_0z_1z_2...z_{n-1}|z_nz_{n+1}...$ Then we have:

Theorem. (PE) If measurement in above algorithm give y_0, \ldots, y_{n-1} (so output is $\theta = 0.y_0...y_{n-1}$, then

(a) $\mathbb{P}(\theta \text{ is close to } n \text{ binary digit approximate to } \phi) \geq 4\pi^2;$

(b) $\mathbb{P}(|\theta - \phi| \geq \varepsilon)$ is at most $P(\frac{1}{2^n \varepsilon})$ (we'll show it's at most $\frac{1}{2^{n+1}\varepsilon}$).

Remark. In (a), we have probability $\frac{4}{\pi^2}$ that all n lines of n-line QPE process are good.

But, if we want ϕ accurate to m bits with probability $1 - \eta$, then we use theorem (PE) (b) with $\varepsilon = 1/2^m$. Then we'll use $n > m$ lines with

$$
\frac{1}{2^{n+1}}\varepsilon=\eta,\varepsilon=\frac{1}{2^m}
$$

i.e. $n = m + \log(1/n) + 1$. In words, number of lines needed is only number of bits wanted with good probability $1 - \eta$ plus a modest polynomial increase for exponetial reduction in η .

Proof. We have

$$
QFT^{-1}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n - 1} e^{-2\pi i y x/2^n} |y\rangle
$$

So

$$
QFT^{-1}|A\rangle = \frac{1}{2^n} \sum_{y} \left[\sum_{x} e^{2\pi i (\phi - y/2^n)x} \right] |y\rangle
$$

So for measurement,

$$
\mathbb{P}(\text{see } n-\text{ bit integer } y = y_0 y_1 ... y_{n-1}) = \frac{1}{2^{2n}} \left| \sum_{x=0}^{2n-1} e^{\frac{2\pi i \left(\phi - \frac{y}{2^n}\right)x}{x=0}x}\right|^2
$$

Note that this is a geometric series $e^{2\pi i \delta(y)}$, so

$$
\mathbb{P}(\text{see } y) = \frac{1}{2^{2n}} \left| \frac{1 - e^{2^n 2\pi i \delta(y)}}{1 - e^{2\pi i \delta(y)}} \right|^2
$$

Let's call this equation (P) (maybe for phase).

We want to bound/estimate this expression.

For (a): Let $y = a = a_0 a_1 ... a_{n-1}$ give *closest* n-bit approximation to ϕ , i.e. $|\phi - \frac{a}{2^n}| \leq \frac{1}{2^{n+1}}, \text{ i.e. } \delta(a) \leq \frac{1}{2^{n+1}}.$ Now we bounds:

(i) $|1 - e^{i\alpha}| = |2 \sin \frac{\alpha}{2}| \ge \frac{2}{\pi} |\alpha|$ if $|\alpha| < \pi$; (ii) $|1 - e^{2\pi i \beta}| \leq 2\pi \bar{\beta}$.

In equation (P), use (i) with $\alpha = 2^n \cdot 2\pi \delta(a) \leq 2^n 2\pi \frac{1}{2^{n+1}} \leq \pi$ to lower bound top line, and (ii) with $\beta = \delta(a)$ to upper bound bottom line, get

$$
\mathbb{P}(\text{see } a) \ge \frac{1}{2^{2n}} \left(\frac{2^{n+1}\delta(a)}{2\pi\delta(a)}\right)^2 = \frac{4}{\pi^2}
$$

For (b), we want to upper bound equaiton (P): for top line, $|1 - e^{i\alpha}| \leq 2$ for any α ; for bottom, use (i) get $|1 - e^{2\pi i \delta(y)}| \ge 4\delta(y)$. So

$$
\mathbb{P}(y) \leq \frac{1}{2^{2n}}\left(\frac{2}{4\delta(y)}\right)^2 = \frac{1}{2^{2n+2}}\delta(y)^2
$$

Now sum this for all $|\delta(y)| > \varepsilon$, $\delta(y)$ values spaced by $1/2^n$'s. Let δ_+ be first $\delta(y)$ (jumps?) with $\delta(y) \geq \varepsilon$, δ_{-} be that with $\delta(y) \leq -\varepsilon$. So $|\delta_{+}|, |\delta_{-}| \geq \varepsilon$. Then if $|\delta(y)| \ge \varepsilon$, we have $\delta(y) = \delta_+ + \frac{k}{2^n}$, $k = 0, 1, ...,$ or $= \delta_- - \frac{k}{2^n}$, $k = 0, 1,$ So $|\delta(y)| \ge \varepsilon + \frac{k}{2^n}$ with $k = 0, 1, 2, ...$ in each case.

So

$$
\mathbb{P}(|\delta(y)| > \varepsilon) \le 2 \sum_{k=0}^{\infty} \frac{1}{2^{2n+2}} \frac{1}{(\varepsilon + \frac{k}{2^n})^2}
$$

$$
\le \frac{1}{2} \int_0^{\infty} \frac{1}{(2^n \varepsilon + k)^2} dk
$$

$$
= \int_{2^n \varepsilon}^{\infty} \frac{dk}{k^2}
$$

$$
= \frac{1}{2^{n+1}\varepsilon}
$$

 \Box

Further remarks on QPE algorithm:

(1) If $C-U^{2^k}$ is implemented as $(C-U)^{2^k}$, the QPE algorithm needs exponential time in *n* as we have $1 + 2 + ... + 2^{n-1} = 2^n - 1$ (*C − U*) gates.

However, for some special U's, $C - U^{2^k}$ can be implemented in $poly(k)$ time, so we get a poly time QPE algorithm.

It can be used to provide alternative facoring (order finding) algorithm (due to A. Kitaev) using PE.

—Lecture 8—

First exercise class: Saturday 3 Nov 11am MR4.

(2) If instead of $|v_{\phi}\rangle$, use general input state $|\xi\rangle$:

$$
|\xi\rangle = \sum_{j} c_j |v_{\phi_j}\rangle
$$

$$
U|v_{\phi_j}\rangle = e^{2\pi i \phi_j} |v_{\phi_j}\rangle
$$

Then we get in QPE (before final measurement) a unitary process U_{PE} with (lecturer had that) effect

$$
|0...0\rangle|\xi\rangle\xrightarrow{U_{PE}}\sum_{j}c_{j}|\phi_{j}\rangle|v_{\phi_{j}}\rangle
$$

and final measurement will give a choice of ϕ_j 's (or approximation) chosen with probabilities $|c_j|^2$.

Example. Implement QFT_Q for Q not a power of 2, with a quantum curcuit of 1− and 2− qubit gates of circuit size $O(poly(\log Q))$ (Kitaev's method).

Remark. For $Q = 2^m$, we have explicit known circuit of $O(m^2)$. H and C-phase gate to implement QFT_{2^m} exactly (cf part II QIC Notes).

For QFT_Q : Introduce

$$
|\eta_a\rangle=QFT_{\mathcal{Q}}|a\rangle=\frac{1}{\sqrt{\mathcal{Q}}}\sum_{b=0}^{\mathcal{Q}-1}\omega^{ab}|b\rangle, a\in\mathbb{Z}_{\mathcal{Q}}, \omega=e^{2\pi i/\mathcal{Q}}
$$

2 THE HIDDEN SUBGROUP PROBLEM (HSP) 17

It suffices to make circuit hat does $|a\rangle \rightarrow |\eta_a\rangle$ (*). Let $2^{m-1} < \mathcal{Q} < 2^m$, and set $M = 2^m$, view $\mathcal{H}_{\mathcal{Q}}$ as subspace of m qubits (spanned by $|a\rangle : 0 \le a < Q-1 < 2^m$). To achieve (*), consider instead on $\mathcal{H}_{\mathcal{Q}} \otimes \mathcal{H}_{\mathcal{Q}}$

$$
|a\rangle|0\rangle \xrightarrow{(1)} |a\rangle|\eta_a\rangle \xrightarrow{(2)} |0\rangle|\eta_a\rangle
$$

- (1): get η_a from $|a\rangle$ while *remembering* $|a\rangle$;
- (2): erase/forget $|a\rangle$.

For (1), first do $|0\rangle \rightarrow |\xi\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{Q}}\sum_{b=0}^{Q-1}|b\rangle$ as follows: on m qubits $\mathcal{H}^{\otimes m}$ gives $\frac{1}{\sqrt{2}}$ $\frac{1}{M}\sum_{x=0}^{\infty} \frac{z^{m}-1}{x}$. Then consider the step function $f(x) = 0$ if $x < Q$ and 1 if $x \ge Q$. It's classically efficiently computable, so can efficiently implement U_f on $(m+1)$ qubits.

So applying U_ρ to $(H^{\otimes m}|0\rangle)|0\rangle$ and measure output $(m+1^{st})$ qubit to get $|\xi\rangle$ on first n qubits if measurement result is 0.

Note that $prob(0) > 1/2$ as $Q > 2^{m-1} = 2^m/2$, so we can use multiple trials to give $|\xi\rangle$.

We can do offline: failures/re-tries do not affect state to which we want to apply $QFT_{\mathcal{Q}}$. So now we have $|\tilde{\xi} = |a\rangle \left(\frac{1}{\sqrt{2}}\right)$ $\frac{1}{\overline{\mathcal{Q}}}\sum_{b=0}^{\mathcal{Q}-1}\ket{b}.$

Next consider
$$
V|a\rangle|b\rangle = \omega^{ab}|a\rangle|b\rangle
$$
.

Then $V|\tilde{\xi}\rangle = |a\rangle |\eta_a\rangle$ as we want for (1).

To implement V , consider

$$
U:|b\rangle\rightarrow\omega^b|b\rangle
$$

If $|b\rangle$ in m qubits given by $|b_{m-1}\rangle...|b_0\rangle$, i.e. $b = b_{m-1}...b_0$ in binary, then $\omega^{b} = \omega^{b_{m-1}2^{m-1}}$... $\omega^{b_{0}2^{0}}$. So U is product of 1-qubit phase gates

$$
P(\omega^{2^{m-1}}) \otimes \ldots \otimes \mathbb{P}(\omega^{2^0})
$$

where $P(\xi) = Diag(1,\xi), |\xi| = 1$ is a phase gate.

Similarly, for $C - U^{2^k}$ (starting with $U \to U^{2^k}$ i.e. $\omega^b \to \omega^{2^k b}$), and $V =$ qeneralised $C-U$:

$$
|a\rangle|b\rangle \xrightarrow{V} |a\rangle U^a|b\rangle
$$

which is constructed as before, from $C - U^{2^k}$'s. So now we have $|a\rangle|0\rangle \stackrel{(1)}{\longrightarrow} |a\rangle|\eta_a\rangle$.

For (2), i.e. $|a\rangle|\eta_a\rangle \stackrel{(2)}{\longrightarrow} |0\rangle|\eta_a\rangle$, if we had U with eigenstates $|\eta_a\rangle$, eigenvalues $\omega^a = e^{2\pi i a/\mathcal{Q}},$ then U_{PE} would give

$$
|0\rangle|\eta_a\rangle \xrightarrow{U_{PE}} |a\rangle|\eta_a\rangle
$$

(we are a bit loose on how information is presented – writing eigenvalue output as a , and note we are assuming that PE works exactly)

Hence U_{PE}^{-1} (inverse gates taken in reverse order) would give desired (2)!

Consider $U: |x\rangle \rightarrow |x-1 \mod \mathcal{Q}\rangle$, and check that $U|\eta_a\rangle = \omega^a|\eta_a\rangle$ as wanted. Now note $x \to x - k \mod Q$ for $k \in \mathbb{Z}_Q$ is classically computable in $poly(\log Q)$ time, thus we also have $U^k : |x\rangle \rightarrow |x - k \mod \mathcal{Q}\rangle$, and PE algotirhm with

 $m = O(\log(Q))$ lines.

Then implementing (1) then (2) gives $poly(\log Q)$ sized circuit for QFT_Q .

But PE is not exact. However, using more qubit lines $(O(\log 1/\varepsilon))$ lines), we can achieve (by theorem PE(b))

$$
|0\rangle|\eta_a\rangle\xrightarrow{U_{PE}}(\sqrt{1-\varepsilon}|a\rangle+\sqrt{\varepsilon}|a^{\perp}\rangle)|\eta_a\rangle
$$

(where a^{\perp} is a state orthogonal to $|a\rangle$) for any (small) deserved ε . Then

$$
|| |a\rangle - \sqrt{1-\varepsilon}|a\rangle + \sqrt{\varepsilon}|a^{\perp}\rangle || = O(\sqrt{\varepsilon})
$$

So

$$
|| U_{PE}^{-1} |a\rangle |\eta_a\rangle - |0\rangle |\eta_a\rangle || = O(\sqrt{\varepsilon})
$$

(as unitaries preserve lengths). So we can approximate $QFT_{\mathcal{Q}}$ to any desired precision (omit details).

3 Amplitude Amplification

Note that this is a very good name $-$ a fifth order literation (both starting with Ampli).

Apothesis of technique in Grover's algorithm.

Some background: We'll make much use of reflection operators.

—Lecture 9—

A reminder that we don't have lecture next thursday.

Reflection operators:

• State $|\alpha\rangle$ in $\mathcal{H}_d \to 1$ -dimensional subspace L_α and $(d-1)$ -dimensional orthogonal complement L_{α}^{\perp}

$$
I_{|\alpha\rangle} \stackrel{def}{=} I - 2|\alpha \times \alpha|
$$

has $I_{|\alpha\rangle}|\alpha\rangle = -|\alpha\rangle, I_{|\alpha\rangle}|\beta\rangle = |\beta\rangle$ for any $|\beta\rangle \perp |\alpha\rangle$. So $I_{\vert\alpha\rangle}$ is reflection in $(d-1)$ -dimensional subspace L^{\perp}_{α} .

Note that for any unitary $U, U I_{|\alpha\rangle} U^{\dagger} = I_{U|\alpha\rangle}$, since $U|\alpha \times \alpha|Y^{\dagger} = |\xi \times \xi|$ ofr $\xi = U|\alpha\rangle$ (basically a change of basis).

• Take k-dimensional subspace $A \subseteq \mathcal{H}_d$, and any orthonormal basis $|a_1\rangle, ..., |a_k\rangle$. Then $P_A = \sum_{i=1}^k |a_i \times a_i|$ is projection operator into A.

Define $I_A = I - 2P_A$. Then we have $I_A|\xi\rangle = |\xi\rangle$ if $|\xi\rangle \in A^{\perp}$, and $I_A|\xi\rangle = -|\xi\rangle$ if $|\xi\rangle \in A$.

So I_A is reflection in $(d-k)$ dimensional mirror A^{\perp} .

Recap of Grover's algorithm (part II notes page 68-73):

• search for unique *good* item in unstructured database of $N = 2ⁿ$ items formalised as: (write B_n to be the set of all *n*-bit strings, $N = 2^n$): Given oracle for $f : B_n \to B$, promised that there is unique $x_0 \in B_n$ with $f(x_0) = 1$, and we wish to find x_0 .

This is closely related to class NP and Boolean satisfiability problem (see part II notes p 67-68).

Using one query to $(n + 1)$ -qubit \mathcal{U}_f , we can implement reflection operator $I_{|x_0\rangle}: |x\rangle \to |x\rangle$ if $x \neq x_0$, and to $-|x\rangle$ if $x = x_0$.

(viz. apply \mathcal{U}_f to $|x\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$ and discard the last qubit.)

Then consider *Grover iteration operator* on n qubits:

$$
Q \stackrel{def}{=} -H_n I_{|0...0\rangle} H_n I_{|x_0\rangle} = -I_{|\psi_0\rangle} I_{|x_0\rangle}
$$

here $H_n = H \otimes H \otimes ... \otimes H = H_n^{\dagger}$, and $|\psi_0\rangle = H^n|0...0\rangle = \frac{1}{\sqrt{2}}$ $rac{1}{2^n}\sum_{x\in B_n}|x\rangle.$ So one application of Q uses 1 query to \mathcal{U}_f .

Theorem. (Grover, 1996)

In 2-dimensional span of $|\psi_0\rangle$ and (unknown) $|x_0\rangle$, the action of Q is rotation by angle 2α where $\sin \alpha = \frac{1}{\alpha}$ $\frac{1}{N}$.

3 AMPLITUDE AMPLIFICATION 20

Hence (Grover's algorithm) to find x_0 given U_f : 1. Make $|\psi_0\rangle$;

2. Apply Q m times where $m = \frac{\arccos(\frac{1}{\sqrt{N}})}{2\arctan(\frac{1}{\sqrt{N}})}$ $\frac{d\cos\left(\sqrt{N}\right)}{2\arctan\left(\frac{frac}{N\sqrt{N}}\right)}$ to rotate $|\psi_0\rangle$ very close to $|x_0\rangle$.

3. Measure to see x_0 with high probability $\sim 1 - \frac{1}{N}$.

For large N, arccos $(\frac{1}{\sqrt{2}})$ $\frac{1}{\sqrt{N}}$) $\approx \pi/2$, $\arcsin(\frac{1}{\sqrt{N}})$ $\frac{1}{\overline{N}}$) $\approx \frac{1}{\sqrt{2}}$ $\frac{1}{N}$ so $m = \frac{\pi}{4}$ √ N iterations/queries to U_f suffice.

Classically we need $O(N)$ queries to see x_0 with any *constant* probability (independent of N), so get *square-root* speed up quantumly.

Amplitude Amplification:

Let G be any subspace (good subspace) of state space \mathcal{H} , and G^{\perp} is orthogonal complement (bad subspace) $\mathcal{J} = G \oplus G^{\perp}$.

Given any $|\psi\rangle \in \mathcal{H}$, we have unique decompoisiton with *real positive* coefficients

$$
|\psi\rangle = \sin \theta |g\rangle + \cos \theta |b\rangle
$$

where $|g\rangle \in G$, $|b\rangle \in G^{\perp}$ normalised. Introduce reflections: flip $|\psi\rangle$ and good vectors: $I_{|\psi\rangle} = I - 2|\psi \times \psi|$, $I_G = I - 2P_G$ (projection into G), so $\sin \theta = ||P_G|\psi\rangle||$ is the length of good projection. Introduce $Q \stackrel{def}{=} -I_{|\psi\rangle}I_G$.

Theorem. (Amplitude Amplification)

In the 2-dimensional subspace spanned by $|g\rangle$ and $|\psi\rangle$ (or equivalently by orthonormal vectors $|g\rangle$ and $|b\rangle$, Q is rotation by 2θ where $\sin\theta$ is the length of good projection of $|\psi\rangle$.

Proof. We have $I_G|g\rangle = -|g\rangle$, $I_G|b\rangle = |b\rangle$. So $Q|g\rangle = +I_{|\psi\rangle}|g\rangle$, $Q|b\rangle = -I_{|\psi\rangle}|b\rangle$. Now

$$
I_{|\psi\rangle} = I - 2(\sin \theta |g\rangle + \cos \theta |b\rangle)(\sin \theta \langle g| + \cos \theta \langle b|)
$$

= $I - 2[\sin^2 \theta |g \times g| + \sin \theta \cos \theta |g \times b| + \sin \theta \cos \theta |b \times g| + \cos^2 \theta |b \times b|] |b\rangle$

And direct calculation (using $\langle g|b \rangle = 0$, $\langle g|g \rangle = \langle b|b \rangle = 1$) gives

$$
Q|b\rangle = I_{|\psi\rangle}|b\rangle
$$

= 2 sin θ cos θ | $g\rangle$ – (1 – 2 cos² θ)| $b\rangle$
= cos 2 θ | $b\rangle$ + sin 2 θ | $g\rangle$

and $Q|g\rangle = +I_{|\psi\rangle}|g\rangle = -\sin 2\theta|b\rangle + \cos 2\theta|g\rangle.$ So in $\{|b\rangle, |g\rangle\}$ basis, matrix of Q is exactly the matrix of rotation by 2 θ . \Box

—Lecture 10—

Let's continue on Amplitude Amplification.

Last time we showed that $Q = -I_{|\psi\rangle}I_q$ is the rotation through 2θ in the plane of $|\psi\rangle$ and $|q\rangle$, i.e. in $|b\rangle$ and $|q\rangle$ (orthonormal).

3 AMPLITUDE AMPLIFICATION 21

So $Q^n|\psi\rangle = \sin((2n+1)\theta|g\rangle) + \cos((2n+1)\theta|b\rangle)$, and if we measure $Q^n|\psi\rangle$ for good vs bad, we get $prob(good) = \sin^2(2n+1)\theta$.

We want to maximize this: it is maximised when $(2n+1)\theta = \pi/2$, i.e. $n = \frac{\pi^2}{4\theta} - \frac{1}{2}$.

Example. If we had $\theta = 4/6$, then $n = \frac{\pi}{4\theta} - \frac{1}{2} = 1$ is an exact integer. So Q^1 rotates $|\psi\rangle$ exactly onto $|g\rangle$, so we see good result with certainty!

Generally, for given θ , n is not an integer. So we use n to be the nearest integer to $\left(\frac{\pi}{4\theta} - \frac{1}{2}\right) \approx \frac{\pi}{4\theta}$ (for small θ), which equals $O(\frac{1}{\theta} = O(\frac{1}{\sin \theta}) = O(\frac{1}{\sqrt{(\cos \theta)}})$ and $Q^n|\psi\rangle$ will be within angle $\pm\theta$ of $|g\rangle$, so probability of good result is at least $\cos^2 \theta \approx 1 - O(\theta^2)$.

All this can be implemented oif $I_{\ket{\psi}}$ and I_G can be implemented. See example sheet – for I_G , suffices for G to be spanned by computational basis states $|x\rangle$'s, and indicator function $f(x) = 1$ for x good and 0 for x bad efficiently computable. For $I_{\ket{\psi}}$, usally have $\ket{\psi} = H_n|00...0\rangle$ (*H* is the Hadamard gate). Then $I_{\ket{\psi}}$ can be implemented in linear $O(n)$ time.

Notes:

(1) In AA process, relative amplitudes of good labels in $|g\rangle$ stay same as they were in $|\psi\rangle = \sin \theta |q\rangle + \cos \theta |b\rangle$.

(2) Final state is generally not exactly $|q\rangle$, but if $\sin \theta$ is known, then we can modify AA process to make it exact, i.e. giving $|q\rangle$ state exactly (see example sheet).

Applications of AA:

(1) Grover Search with one or more (k) good items in N:

$$
|\psi\rangle = |\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in B_n} |x\rangle
$$

= $\sqrt{\frac{k}{N}} \left(\frac{1}{\sqrt{k}} \sum_{\text{good } |g\rangle} |x\rangle \right) + \sqrt{\frac{N-k}{N}} \left(\frac{1}{\sqrt{N-k}} \sum_{x \text{ bad}} |x\rangle \right)$

G spanned by good x's, $\sin \theta = \frac{k}{n}$ so Q is rotation through 2θ , $\theta = \arcsin \sqrt{k/N} \approx$ $\sqrt{k/N}$, where $k \ll N$; and we only need $O(\sqrt{N/k})$ queries.

Note: for 2-bit case, $N = 4$ with $k = 1$ good item; we have $\theta = \arcsin(1/2) = \pi/6$, so one application of Q rotates $|\psi_0\rangle$ exactly onto $|x_{good}\rangle$, i.e. a *single* query suffices to find a unique good item in four, with certainty!

(2) Square-root sppedup of general quantum algorithms:

Let A be a quantum algorithm/circuit (sequence of unitary gates). on input, say $|0...0\rangle$. So final state is $A|0...0\rangle$.

Good labels = desired computational outcomes

$$
A|0.000\rangle = \alpha|a\rangle + \beta|b\rangle, \alpha = \sin \theta
$$

where $|a\rangle$ is normalised, genrally unequal superposition $\sum_{good x} c_x |x\rangle$. So $Prob(\text{success in 1 run}) = |\alpha|^2$, so $O(\frac{1}{|\alpha|^2})$ repetitions of A needed to succeed with any *constant* high probability $1 - \varepsilon$.

3 AMPLITUDE AMPLIFICATION 22

Instead use AA: assumed we can check if answer is good or bad (e.g. factoring). So we can then implement $I_G : |x\rangle \rightarrow -|x\rangle$ if x is good, and $\rightarrow |x\rangle$ if x is bad. Consider $|\psi\rangle = A|0...0\rangle$ and $Q = -I_{A|0...0}I_G = -(AI_{|0...0)}A^{\dagger}I_G$. All parts are implementable (A is the algorithm, A^{\dagger} is inverse gate in reverse order, and $I_{[0...0)}$ see example sheet).

By AA theorem, Q is rotation through 2θ , where $\sin \theta = |\alpha|$. So after $n \approx \frac{\pi}{4\theta} =$ $O(\frac{1}{\theta}) = O(\frac{1}{\sin \theta}) = O(\frac{1}{|\alpha|})$ (for small $|\alpha|$).

Repetitions $A|0...0\rangle$ will be rotate very near to $|g\rangle$, and final measurement will succeed with high probability.

Each application of Q needs one A and one A^{\dagger} ; A^{\dagger} is the *inverse gate in reverse order*, i.e. the time complexity is the same, i.e. $O(\frac{1}{|\alpha|})$ repetition of Q gives square root time speed up over direct method.

Also, if success probability of A (i.e. $|\alpha|^2$) is known, then *improved* modification of the AA process that is exact can be applied; we convert probabilistic algorithm A into deterministic one, giving a good outcome with certainty.

4 Quantum Counting

Given $f: B_n \to B$ a boolean function with an unknown number k good x's, we want ot *estimate* k (rather than just find some good x).

Recall that Grover operator Q_G for f is rotaion through 2θ in 2-dimensional space of $|\psi_0 = \frac{1}{\sqrt{2}}$ $\frac{1}{2^n} \sum_{x \in B_n} |x\rangle$ and its good projection $|g\rangle = \frac{1}{\sqrt{n}}$ $\frac{1}{\sqrt{k}}\sum_{good}^{}x\ket{x},$ with $\sin \theta = \sqrt{k/N} \approx \theta$ for $k \ll N$.

—Lecture 11—

(Did I miss a lecture?)

4.1 Hamiltonian Simulation

k-local Halmiltonians:

H on n qubits is a $2^n \times 2^n$ Hermitian matrix. We'll want to simulate $U = e^{-iHt}$ with a circuit of $poly(n, t)$ basic unitary gates, i.e. efficient simulation. Not all H 's can be efficently simulated, but some physically important classes can –

Definition. *H* is *k*-local (*k* is a fixed constant) on *n* qubits if $H = \sum_{j=1}^{m} H_j$ where each H_i is a Hermitian matrix acting on at most k qubits (not necessarily contiguous).

i.e. each $H_j = \tilde{H}_j \otimes I$ (on some k qubits, and identity on rest of qubits).

So $m \leq {n \choose i} = O(n^k) = poly(n)$ terms in H.

Example. (1) $H = X \otimes I \otimes I - 5Z \otimes I \otimes Y$ is 2-local on 3 qubits.

(2) Write $M_{(j)}$ to denote operator M acting on j^{th} qubit (and I on all others). Physically important spin-spin interactions:

Ising model on $n \times n$ square lattice of qubits, $H = J \sum_{i,j=1}^{n-1} Z_{(i,j)} Z_{(i,j+1)} +$ $Z_{(i,j)}Z_{(i+1,j)}$, i.e. all nearest neighbours on square.

Heisenberg model on a line: $H = \sum_{i=1}^{n-1} J_x X_{(i)} X_{(i+1)} + J_y Y_{(i)} Y_{(i+1)} + J_z Z_{(i)} Z_{(i+1)}$ (where J, J_x, J_y, J_z are all real constants). This is very relevatn on chemistry (in studying covalence bonds?)

Note: in general, $e^{-i\sum_j H_j t} \neq \prod_j (e^{-iH_j t})$ – if the H_j 's don't commute.

But e^{-iH_jt} 's are local unitary gates (acting on k qubits each), and we'll simulate $U(t_0) = e^{-i \sum_j H_i t_0}$ in terms of these (for suitable t's), and we'll have a $poly(n, t_0)$ sized circuit too.

If we want to use some standard universal gate set (to further express the above gates), then use: Solovay-Kitaev theorem: Let U be a unitary operator on k (const) qubits, and S any universal set of quantum gates $(S$ is the set that have property that if we look at all circuit and all finite sets, then it's dense in all

circuits?? Lecturer didn't write down).

Then U can be approximated to within ε using $O(\log^c(1/\varepsilon))$ gates from S with $c < 4$ (it's actually exponential in k, but here we consider k constant). So all S-products of length $O(\log^c(1/\varepsilon))$ get within ε of any element of $U(k)$.

We'll also need a lemma about accumulation of errors (c.f. Example sheet). We call this lemmma A: let $\{u_i\}$, $\{v_i\}$ be sets of m unitary operators, with $||u_i - v_i|| < \varepsilon$ for all $i = 1, 2, ..., m$, then

$$
||u_m...u_1-v_m...v_1|| \le m\varepsilon
$$

i.e. errors accumulate linearly.

Proof is an easy exercise – induction on m .

Warm up: the (easy) commuting case.

Proposition. (*k*-local Hamiltonioans with commuting terms) $H = \sum_{j=1}^{m} H_j$ with H_j commuting – any local Hamiltonian with commuting terms.

Then for any t, e^{-iHt} can be approximated to within ε by a circuit of $O(m \text{ poly}(\log \frac{m}{\varepsilon}))$ gates from any given universal set.

Note, as $m = O(n^k)$ this is $poly(n, \log \frac{1}{\varepsilon})$ too. Also, $\log(\frac{1}{\varepsilon})$ is the number of digits of precision in the approximation.

Proof. H_j 's commute implies that $e^{-i\sum_j H_j t} = \prod_{j=1}^m (e^{-iH_j t})$. Then SK theorem implies, for each e^{-iH_jt} can be approximated to within ε/m within $O(poly(\log \frac{m}{\varepsilon}))$ gates, so lemma A then implies that the full product $\prod_{j=1}^m$ is then approximated to within $m(\varepsilon/m) = \varepsilon$, with a total of $O(m \text{ poly}(\log \frac{m}{\varepsilon}))$ gates (from the universal set).

Now let's look at the full non-commuting case: for any matrix X, write $X + O(\varepsilon)$ for $X + E$ where $||E|| = O(\varepsilon)$.

Lemma. (B, Lie-Trotter product formula) Let A, B be matrices with $||A|| \le K$, $||B|| \le k$ and $k < 1$ (small). Then $e^{-iA}e^{-iB} = e^{-i(A+B)} + O(k^2)$.

Proof.

$$
e^{-iA} = I - iA + \sum_{k=2}^{\infty} \frac{(-iA)^k}{k!}
$$

$$
= I - iA + (iA)^2 \sum_{k=0}^{\infty} \frac{(-iA)^k}{(k+2)!}
$$

$$
= I - iA + O(k^2)
$$

since $||(iA)^2|| < k^2$, and the remainder term is at most 1. So

$$
e^{-iA}e^{-iB} = (I - iA + O(k^2))(I - iB + O(k^2))
$$

= $I - i(A + B) + O(k^2)$
= $e^{-i(A+B)} + O(k^2)$

by applying the inverse of above

Now apply this repeatedly to accumulate sums of $H_1, ..., H_m$ in exponent. Note thta if each $||H_i|| < k$, then $||H_1 + ... + H_l|| < lk$, we want this to be < 1 for all $l \leq m$.

So *for now*, we'll assume $||H_i|| < \frac{1}{m}$ to have Lie-Trotter for all stages. Also take $t = 1$ for now.

Then consider

$$
e^{-iH_1}e^{-iH_2}...e^{-iH_m} = \left[e^{-i(H_1+H_2)} + O(k^2)\right]e^{-iH^3}...e^{-iH_m}
$$

\n
$$
= e^{-i(H_1+H_2)}e^{-iH_3}...e^{-iH_m} + O(k^2)
$$

\n
$$
= ...
$$

\n
$$
= e^{-i(H_1+H_2+...+H_m)} + O(k^2) + O((2k)^2) + ... + O(((m-1)k)^2)
$$

\n
$$
= e^{-i(H_1+H_2+...+H_m)} + O(m^3k^2) (1)
$$

where in the second equality we used that $||AU|| = ||A||$ for any unitary U, and note that the sum of squares up to m is of order m^3 .

—Lecture 12—

For general finite $||H_j||$'s and t values, $||H_j t|| < kt$ can be large, so interoduce N (large-ish, fix later), and note

$$
\frac{H_j t}{N} \text{ has } \tilde{K} = \left| \left| \frac{H_j t}{N} \right| \right| < \frac{kt}{N} \left(* \right)
$$

can be suitably small, i.e. divide t into (small) $\frac{1}{N}$ intervals,

$$
U = e^{i(H_1 + \ldots + H_m)t} = [e^{i(\frac{H_1 t}{N} + \ldots + \frac{H_m t}{N})}]^N
$$

We want final error for U to be $\langle \varepsilon, \varepsilon \rangle$ so by lemma A, we want error for [...] to be $\langle \frac{\varepsilon}{N}$.

So by (1) and (*),
$$
Cm^3\tilde{k}^2 < \frac{\varepsilon}{N}
$$
, i.e. $Cm^3\frac{K^2t^2}{N^2} < \frac{\varepsilon}{N}$, i.e. $N > \frac{Cm^3K^2t^2}{\varepsilon}$ (2).
Then

$$
||e^{-iH_1t/N}e^{-iH_2t/N}...e^{-iH_mt/N} - e^{-i\frac{(H_1 + ... + H_m)t}{N}}|| < \frac{\varepsilon}{N}
$$

so by lemma A again,

$$
||(e^{-iH_1t/N}...e^{-iH_mt/N})^N - e^{-i(H_1+...+H_m)t}|| < \varepsilon
$$

(this is Nm gates if form $e^{-iH_j t/N}$, and N given by (2)). So circuit size is $O(\frac{m^4 (Kt)^2}{\varepsilon}).$

Recall for *n* qubits and *k*-local Hamiltonians, $m = O(n^k)$, so circuit size is $O(n^{4k} \frac{(Kt)^2}{s})$ $(\frac{t}{\varepsilon})^2$ = $O(n^{4k}, t^2, \frac{1}{\varepsilon}).$

We have circuit C of size $|\mathcal{C}| = O(m^4 \frac{(Kt)^2}{\varepsilon})$ $\frac{(it)^2}{\varepsilon}$) gates of form $e^{-i\tilde{H}_j/N}$ approximate to $O(t)$.

If we want to use standard universal set, lemma A gives each of these gates needs to be approximate to $O(\varepsilon/|\mathcal{C}|)$ to maintain an overall $O(\varepsilon)$ level approximation

 \Box

to U .

So by SK theorem, need $O(\log^c(|\mathcal{C}|/\varepsilon))$ gates from the universal set for each, i.e. get (modest) multiplicative factor of $O(\log^c \frac{m^4 (Kt)^2}{\epsilon^2})$ $\frac{(Kt)^{-}}{\varepsilon^{2}}$) in $|\mathcal{C}|$.

For fixed n, ε , and variable t, the quantum process e^{iHt} runs for time t; but our circuit simulation runs for time $O(t^2)$. By refining/improving Lie-Trotter formula, it can be shown that this can be improved to $O(t^{1+\delta})$ for any $\delta > 0$ (See example sheet 2 for an example).

Harrow-Hassidim-Lloyd (HHL) quantum algorithm for linear systems of equations:

We'll want to solve a linear system of equations $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b}, \mathbf{x} \in \mathbb{C}^N$, and dimension N is potentially very large (we could set $N = 2ⁿ$, where $2ⁿ$ is the least power of 2 that is greater than N).

Rather than outputting the full solution x itself, which would take $O(N)$ time, we instead want to compute (suitable approximates to) the value of properties of the solution, such as quadratic expressions $\mathbf{x}^T M \mathbf{x}$ e.g. total weight of some subset of components.

Very large lineary systems are important in applications: data mining/machine learning on data sets of increasingly large size to discover pattern properties in data; in science/engineering , we have numerical solutions of PDEs, where discretisation techniques (finite element methods) lead to linear systems far larger than original problem description.

The best known classical techniques take $poly(N)$ time to solve such problems.

Important parameters (for both classical and quantum algorithms):

- the system size N ;
- the desired approximate tolerance ε ;

• the *condition number* κ of matrix A, defined as ratio of largest to smallest eigenvalue size $\kappa = \left| \frac{\lambda_{max}}{\lambda_{min}} \right|$;

It provides intrinsic scale of the linear transformation A, and is a measure of how close A is to being non-invertible.

If renormalize A to have $\lambda_{max} = 1$, then $|\lambda_{min}| = 1/\kappa$, and numerical computation of A^{-1} becomes less stable with increasing κ, needing more significant digits and correspondingly longer runtime.

Preliminary requirements for the HHL algorithm:

Aim: to compute ε -approximate to properties of the solution of an N-dimensional system $A\mathbf{x} = \mathbf{b}$ in time $poly(\log N) = poly(n)$. We'll take the property to be a quadratic expression $\mu = \mathbf{x}^T M \mathbf{x}$.

Immediate issue is how the defining ingredients viz A and b are actually given (as reading them componently would already have taken $O(poly(N))$ time). Thus we'll need a different presentation of the problem (cf below) that is still available in applications.

The $poly(\log N)$ run time will be achieved by using only $O(\log N)$ qubits and it will never be required to write down all of A or b or x in the course of the

algorithm (as that would be impossible given the complexity constraints).

5 Example Class 1

5.1 Question 1

Basic representation theory exercises. For details see Part II Representation Theory.

5.2 Question 2

Let $G = (\mathbb{Z}_2^n, \oplus)$ where \oplus is componentwise-addition. Subgroup K generated by $a_1...a_k, K = \{b_1a_1 \oplus ... \oplus b_ka_k : b_1, ..., b_k \in \mathbb{Z}_2\}.$ Note that K has size 2^k if a_i 's are LI, and so does any coset of K.

Then $f(x) = f(x \oplus a_i)$ for all a_i 's $\equiv f$ constant on cosets of K. f is 2^k -to-1: a_k 's all linearly independent and f different on different cosets.

Shift invariant states: For \mathbb{Z}_2 irreps are $\chi_a(x) = (-1)^{ax}$, $a, x \in \mathbb{Z}_2$ (-1 is the 2nd root of unity). So irreps on $(\mathbb{Z}_2)^n$ are $\chi_a(x) = (-1)^{a_1x_1}...(-1)^{a_nx_n}$ where $a = a_1...a_n, x = x_1...x_n$ are in \mathbb{Z}_2^n .

We also introduce a dot product $a \cdot x = a_1x_1 \oplus ... \oplus a_nx_n \in \mathbb{Z}_2$ where \oplus here is + modulo 2.

So shift invariant states

$$
|\chi\rangle=\frac{1}{\sqrt{|G|}}\sum_g\overline{\chi(g)}|g\rangle
$$

So

$$
|\chi_a\rangle=\frac{1}{\sqrt{2^n}}\sum_{b\in\mathbb{Z}_2^n}(-1)^{a\cdot b}|b\rangle
$$

in n qubits. So

$$
(QFT)_{alr(?)} = \frac{1}{\sqrt{2^n}}(-1)^{a \cdot b} = \frac{1}{\sqrt{2^n}}(-1)^{a_1 b_1} \dots (-1)^{a_n b_n}
$$

so $QFT = H \otimes H \otimes ... \otimes H$ where H is the Hadamard gate. For second part, it's just calculation:

Probability that first string is LI is $1 - 2^{-m}$ (just exclude 0...0);

Probability that first 2 strings are LI given the first is is $1 - 2/2^m$ (i.e. as 1st string x_1 spans 2 strings, namely 0...0 and x_1).

...Probability that first j strings are LI given the first $j-1$ are is $1-2^{j-1}/2^m$. So by Bayes rule, probability that all of them are LI is $(1 - 1/2^m)...(1 2^{m-2}/2^m$ $(1-2^{m-1}/2^m)$. Use the hint given we get that is at least $\frac{1}{2}(1-1/2)$ = 1/4.

Stanrdard HSP algorithm:

1. query to f, get random coset state $|y \oplus K\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2^n} \sum_{x \in K} |y \oplus x \rangle, y \in \mathbb{Z}_2^n.$

Apply $QFT = H^{\otimes n}$ and measure; our theory assures that output is then uniformly random $c \in (\mathbb{Z}_2)^n$ s.t. irrep χ_c of G restricted to K is trivial irrep of K, i.e $\chi_c(a) = 1$ for all $a \in K$.

So $(-1)^{a \cdot c} = 1$ for all $a \in K$, i.e. $c \cdot a = 0 \pmod{2}$ for all $a = K$, i.e. $c_1a_1 \oplus ... \oplus c_na_n = 0$ for $a = a_1...a_n$.

We know K viewed as subspace of $(\mathbb{Z}_2)^n$ (*n* dimensional vector space over field \mathbb{Z}_2) has dimension k. So $(n-k)$ LI c_i 's with $c_1 \cdot a = 0$ suffice to determine K as null spaceof linear system of $(n - k)$ equations.

So run HSP algorithm $(n - k)$ times: by (b) we'll get $(n - k)$ LI c's with probability at least 1/4, and we can solve for elements of K.