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1 Measure Theory

1.1 History

What is a measure? It is a function Rd → R defined on subsets, which we would
like it to satisfy the following properties:
• Non-negativity: m(E) ≥ 0 for all E;
• Empty set: m(φ) = 0;
• Additivity: m(E ∪ F ) = m(E) +m(F ) for any two disjoint sets E and F ; •
Normalization: m([0, 1]d) = 1;
• Translation invariant: m(E + x) = m(E) for all E and all x ∈ Rd.

It is possible to construct pathological ’measures’ satisfying those axioms and
defined on all subsets of Rd, but they won’t be ’nice’. When mathematicians
construct such measures, they usually do so on a restricted class of subsets.
Otherwise this may lead to contradictions (see below). In fact, if d ≥ 3, we can
show that there’s no measure m : Rd → [0,∞] which is also rotation invariant,
i.e. m(gE) = m(E) for any Euclidean rotation g in Rd.

Now consider Jordan Measure. First we define the measure of a box B ⊆ Rd
with edges parallel to the axes to be the product of the lengths of its sides.

Definition. An elementary subset of Rd is a finite union of boxes.

Remark. Every elementary set can be written as a finite union of disjoint boxes.
The family of elementary sets is stable under finite unions, finite intersections,
and difference. Also, if we can write a set E as disjoint union of boxes in two
different ways, then the sum of their measures coincide. As a result, for E = ∪Bi
for disjoint Bi, it makes sense to define m(E) as

∑
m(Bi).

Definition. A subset E of Rd is Jordan measurable if ∀ε > 0, there exists
elementary sets A,B s.t. A ⊆ E ⊆ B and m(B \A) < ε.

Note that if E is Jordan measurable, then

inf{m(B)|E ⊆ B,B elementary} = sup{m(A)|A ⊆ E,A elementary}

We then define the Jordan measure of E as this limit. It’s an exercise to check
that m satisfies all the axioms spelled out earlier.

We can draw a connection between Jordan measure and Riemann integral.
Recall the definition of Riemann integrability: f : [a, b]→ R, a < b is Riemann
integrable if all its Riemann sums converge, i.e.∃I = I(f) ∈ Rs.t.∀ε > 0∃δ > 0∀
partition P of [a, b] of width < δ, |S(f, P ) − I(f)| < ε, where S(f, P ) is the
Riemann sum of f by P .

Now we draw the link:

Proposition. f is Riemann integrable iff E+ = {(x, t) ∈ R2, 0 ≤ t ≤ f(x)} and
E− = {(x, t) ∈ R2, f(x) ≤ t ≤ 0} are Jordan measurable.
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1.2 Lebesgue Measure

Example. Consider the function 1Q(x), which is 1 if x is rational and 0 otherwise.
This is not Riemann integrable, and Q or even Q∩[0, 1] is not a Jordan measurable
subset of R.

In fact, no dense countable subset of an interval in R is Jordan measurable.

There is a problem if we try to define measure with limits of functions, because a
pointwise limit of Riemann integrable functions is not always Riemann integrable.
One such example is the set of functions fn = 1 1

n!Z∩[0,1], which is Riemann

integrable, but as we’ve seen, the limit as n→∞, 1Q(x), is not.

Lebesgue’s idea is to remove the containment of A by E, as well as to allow
countable union of boxes to be elementary sets as well. We then reach the
following definition:

Definition. A set E ⊆ Rd is called Lebesgue measurable if ∀ε > 0, there exists a
countable family of boxes (Bi)i≥1 such that E ⊆

⋃
i≥1Bi, and m∗(

⋃
Bi \E) < ε.

Here m∗ is the Lebesgue outer measure, defined by: if F ⊂ Rd, then

m∗(F ) = inf

∑
n≥1

m(Bn), F ⊆
⋃
n≥1

Bn


where Bn are boxes. Note that here we allow countably many Bn instead of just
finitely many.

Note that m∗ is defined for all subsets of Rd (least upper bound property of R),
but m∗ is not additive on all subsets of Rd. If we let

m∗,J(F ) = inf

{
N∑
i

m(Bi), F ⊆
N⋃
1

Bi

}

where Bi are boxes (this is called the Jordan outer measure), then obviously
m∗(F ) ≤ m∗,J(F ). The important part is that sometimes m∗(F ) < m∗,J(F ):
consider F = Q∩ [0, 1]. If we want to cover F by finitely many intervals, we have
to cover the whole [0, 1], so m∗,J (F ) = 1. However if we are allowed a countable
family of boxes, then we have m∗(F ) = 0 (not very obvious – why?).

As an exercise, check that m∗ satisfies the following properties: m∗(φ) = 0,
m∗(E) ≤ m∗(F ) if E ⊆ F (monotone), and m∗(

⋃
i≥1Ei) ≤

∑
i≥1m

∗(Ei)
(countable subadditivity), and m∗ is translation invariant.

Now we give an example to show why m∗ is not additive on all subsets of Rd.

Example. (Vitali’s example)
Let E be a set of representatives of the cosets of the subgroup (Q,+) ⊆ (R,+).
WLOG we choose E ⊆ [0, 1] (to be clear, this means that ∀x ∈ R∃!e ∈ E s.t.
x − e ∈ Q. So the family of sets {E + ω} for all ω ∈ Q is a disjoint family of
subsets of R (a partition).
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By translation invariance, m∗(E + r) = m∗(E) for all r ∈ Q.

For any distinct ω1, ..., ωN ∈ Q ∩ [0, 1], if m∗ were additive, then we have

m∗(

N⋃
i=1

ωi + E) = Nm∗(E)

but
N⋃
1

ωi + E ⊆ [0, 2]

so we must have
m∗(

⋃
ωi + E) ≤ m∗([0, 2]) ≤ 2

But N is arbitrary. so we must have m∗(E) = 0. Lastly, since

[0, 1] ⊆
⋃
ω∈Q

E + ω

by countable subadditivity and translation invariance we get

m∗([0, 1]) ≤
∑
r∈Q

m∗(E + r) = 0

So 1 ≤ 0. Contradiction.

Remark. It is worth notice that this example requires the use of the axiom of
choice to construct E as there is no apparent way to choose the elements of E
explicitly. So a better version of conclusion of the above example should be that
AC is not compatible with additivity of m∗.

Next time we will define the Lebesgue measure of a Lebesgue measurable set E
as m(E) := m∗(E), and we will show that m is additive on Lebesgue measurable
sets. We will also show that m∗ is indeed a measure.

Now lets consider the middle thirds Cantor set. It is a compact subset C of [0, 1],
defined by the following way: we start with [0, 1], and cut it into three equal
disjoint parts, and remove the central part. We do the same recursively for each
of the remaining parts, and in the limit we get a subset C of [0, 1] and we call it
the Cantor set. Also we denote I0 = [0, 1], I1 = [0, 1

3 ] ∪ [ 2
3 , 1], and so on.

Note that we can express this ’infinite’ process in another way: if we write the
real numbers in [0, 1] in base-3 decimal expansion, then C contains exactly those
that do not have any 1 on any digit of their decimal part.

Now In is a finite union of intervals, so it is an elementary set. We see that

m(In) = 2n · 1

3n

so limn→∞m(In) = 0, i.e. C is Jordan measurable with measure 0.

We know every Jordan measurable set is Lebesgue measurable (clear from
definition).
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Aside: what is the outer measure of a Vitali set? Let E be the Vitali set, i.e.
the set of representatives of cosets of (Q,+) in (R,+, E ⊆ [0, 1].

We know m∗(E) > 0 by the argument given above, but we could choose E ⊆ [0, 1
n ]

or E ⊆ any interval. The answer is it depends on the choice of E, it must be
m∗(E) > 0 can be arbitrarily small.

Recall last time where we defined the outer measure of an arbitrary subset
E ⊆ Rd,

m∗(E) = inf

∑
n≥1

m(Bn), E ⊆
⋃
n

Bn


for Bi boxes in Rd. It doesn’t matter in this definition if we use close boxes or
open boxes (because of inf). We also defined Lebesgue measurable last time.
Again we can take open boxes or close boxes for that definition as well.

Definition. A null set E ⊂ Rd is a subset E s.t. m∗(E) = 0.

Remark. Every null set is Lebesgue measurable. (not obvious)

Recall that the outer measure m∗ satisfies m∗(φ) = 0, m∗(E) ≤ m ∗ (F ) if
E ⊆ F , and m∗(

⋃
nEn) ≤

∑
nm
∗(En).

Proposition. (1)
The family of Lebesgue measurable subsets of Rd, L, is stable under (a) countable
unions, (b) complementation, and (c) countable intersections.

Proposition. (2) Every closed or open subset of Rd is Lebesgue measurable.

Proof. (of (1))
Obviously (c) follows from (a) and (b) because complement of intersection is the
union of complements.

We prove (a) first. Let (En)n≥1 be a countable family in L. Pick ε > 0. By

definition, ∃Cn := ∪i≥1B
(n)
i where B

(n)
i are boxes, s.t. m∗(Cn \ En) < ε

2n .

Now ∪En ⊂ ∪Cn = ∪n,iB(n)
i is still a countable union of boxes, and

m∗(
⋃
B

(n)
i \

⋃
En) ≤

∑
n

m∗(Cm \ En)

≤
∑
n≥1

ε

2n
≤ ε

This proves (a).

Now let’s prove (b). We start with E ⊂ L. By definition, ∀n, ∃Cn a countable
union of boxes s.t. E ⊂ Cn and m∗(Cn \ E) ≤ 1

n . Now E ⊆ Cn. Taking
complements we get Ccn ⊆ Ec and Cn \ E = Ec \ Ccn.

We could take Cn to be a union of open boxes. Then Cn is open and Ccn is
closed. Then by part (a), Ccn is closed. But⋃

Ccn ⊆ Ec
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and

m∗(Ec \ Ccn) ≤ m∗(Ec \ Ccn) = m∗(Cn \ E) <
1

n

Hence m∗(Ec \ ∪nCcn) = 0. So

Ec = ∪nCcn ∪ Ec \ ∪nCcn

but both parts of the union are in L. So by (a), Ec ∈ L. This shows (b) by
using prop (2).

Proof. (of (2))
We first prove a lemma: Every open subset of Rd is a countable union of open
boxes (i.e. Rd has a countable base). To show this we just consider all the boxes
centred at rational points and with rational side lengths, which is a countable
base.

An immediate consequence is that open sets are measurable by prop (1a). Note
that we can’t use prop (1b) to prove the same for closed subsets because we used
prop (2) in the proof of (1b).

To show that closed subsets are also Lebesgue measurable, it’s enough to show
that compact subsets of Rd are Lebesgue measurable because compact is equiva-
lent to closed and bounded in Rd, and every closed subset F ∈ Rd is a countable
union of compact subsets (to see this, consider the closed annuli centred at origin
with radius integers).

Now let F ⊆ Rd be a compact subset. By definition of m∗(F ), for every k ≥ 1,

there exists a countable union of boxes
⋃
B

(k)
n such that F ⊆

⋃
B

(k)
n and

m∗(F ) + 1
2k ≥

∑
nm(B

(k)
n ) (k is just ε here). Note that up to subdividing each

B
(k)
n into a finite number of smaller boxes, we can assume that each B

(k)
n has

diameter ≤ 1
2k

. WLOG we assume that each boxes meets F (otherwise we can
just remove that box). This is then an open cover of F . Since F is compact,

there is a finite subcover, i.e. we can pick finitely many boxes from B
(k)
n whose

union still covers F .

Now let Uk =
⋃Nk
n=1B

(k)
n , where F ⊆ Uk for all k, and F meets each box B

(k)
n .

Then we must have F =
⋃
k≥1 Uk, because if x ∈ ∪Uk, ∀k∃xk ∈ F , that x and

xk lie in the same box B
(k)
n , so ||x− xk||∞ ≤ 1

2k
i.e. x is a limit point of F ; then

by compactness of F we know x is in F .

We need to show that M∗(Uk \ F ) tends to 0 and we’re done. We claim that if
A,B are two disjoint compact subsets of Rd, then m∗ is additive on them. To
prove that, we choose disjoint covers for them by open boxes (think of they are
separated by some positive distance due to compactness – see MT in IB).
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We apply above to A = F , B = Ūk \ Uk+1, and get

m∗(F ) +m∗(Ūk \ Uk+1) ≤ m∗(Ūk \ Uk+1 ∪ F )

≤ m∗(Ūk)

= m∗(Uk)

≤ m∗(F ) +
1

2k

So

m∗(Uk+1 \ Uk) ≤ 1

2k

Since F =
⋃
k Uk, by countable subadditivity of m∗, we get

m∗(Uk \ F ) ≤
∑
i≥k

m∗(Ui \ Ui+1) ≤
∑
i≥k

1

2i
≤ 1

2k−1
→ 0

as k →∞.

Definition. Let X be a set. A family A of subsets of X is a σ-algebra if it
contains the empty set and is closed under countable union and complementation.

The σ here in the name stands for ’countable’ in some sense. σ-algebras are a
special type of Boolean algebras. The difference between Boolean algebra and
sigma algebra is that Boolean algebra allows countable unions in its definition.

Example. • Let B = P(X), the power set of X. Then B is a Boolean algebra.
• B = {φ,X} is a trivial Boolean algebra.
• Take a partition of X into finitely many pieces X = ∪ni=1Pi. Take B := {A ⊂
X | ∃I ⊂ {1, ...,N}, A = ∪i∈IPi}. Then B is also a (finite) Boolean algebra.

It should be quite obvious that every finite Boolean algebra is of the above form.

Definition. A measurable space is a couple (X,A) where X is a set and A is a
σ-algebra of subsets of X.

Definition. A measure on (X,A) is a function µ : A → [0,∞] s.t. µ(φ) = 0
and µ is countably additive.

Remark. Sometimes people call a set function a function from a Family of
subsetes of X to [0,∞] s.t. µ(φ) = 0.

Definition. If X is a set, A is a σ-algebra on X, µ is a measure on A, then
(X,A, µ) is called a measure space.

Last time we’ve shown that (Rd,L) is a measurable space.

Definition. (Lebesgue measure)
If E ∈ L (the set of Lebesgue measurable sets), we define the Lebesgue measure
of E as

m(E) = m∗(E)
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the outer measure of E which we’ve previously defined. Recall that

m∗(E) = inf

∑
n≥1

m(Bn), E ⊂
⋃
n

Bn


for Bn boxes.

Proposition. m is countably additive on L. Hence, (Rd,L,m) is a measure
space.

Proof. A special case is 2 disjoint compact subsets A,B ⊆ Rd. We’ve seen that
(check) m∗(A)+m∗(B) = m∗(A∪B). Suppose now {En}n is a family of pairwise
disjoint compact subsets of Rd. Then

m∗(∪N1 Ei) =

N∑
1

m∗(Ei)

by iterating the special case. So

N∑
i=1

m∗(Ei) ≤ m∗(∪∞1 )Ei ≤
∑
i≥1

m∗(Ei)

by monotonicty of m∗ and countable subadditivity respectively. Now let N tend
to ∞ and we get

∞∑
i=1

m∗(Ei) = m∗(∪∞1 Ei)

Now let’s only assume that the En’s are bounded sets.

Lemma. If E is a Lebesgue measurable subset of Rd, then ∀ε > 0, there exists
U ⊆ Rd an open set with E ⊆ U and m∗(U \ E) < ε. Also, ∀ε > 0, there exists
F ⊆ E closed set with m∗(E \ F ) < ε.

Proof. Note that the second assertion follows from the fist one applied to Ec.
So let’s prove the first one – but this is just the definition of E being Lebesgue
measurable: ∀ε∃ ∪Bns.t. E ⊆ ∪Bn and m∗(∪Bn \ E) < ε.

Recall we could take the Bn to be open boxes, then we just set U = ∪nBn.

Now back to the main proof. By (2) of the lemma, ∃Fn ⊂ En which is closed,
and m∗(En \ Fn) < ε

2n . But En is bounded by assumption, so Fn is compact.
En is pairwise disjoint, so Fn also is. Then

m∗(En) ≤ m∗(Fn) +m∗(En \ Fn)

So ∑
n≥1

m∗(En) ≤
∑
n

m∗(Fn) + ε
∑
n≥1

1

2n
= m∗(∪nFn) + ε ≤ m∗(∪En) + ε
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But ε is arbitrary. So ∑
n≥1

m∗(En) ≤ m∗(∪∞1 En)

and equality follows, because the other inequality holds by countable subadditiv-
ity.

For the general case we reduce to the bounded case. We’re running short of
time, but the idea is that Rd = ∪m≥1Am for Am compact. We then apply the
previous case to the countable family (Am ∩ En)n,m and check that it works.

Proposition. On (Rd,L), there is a unique measure µ which is translation
invariant.

The countable additivity here is crucial. There are lots of finitely additive
measures which are translation invariant and unrelated to m, even more, there
are such µ with µ(Rd) <∞.

We’ll skip the proof of this now (though it’s possible to prove this directly) – we
will see another proof later.

Last week we show that L is a σ-algebra, and the restriction of the Lebesgue
outer measure, m, to L is a measure.

We’ve also shown that if E ⊆ Rd is Lebesgue measurable, then ∀ε > 0∃U
open set, E ⊆ U s.t. m(U \ E) < ε. Also, ∀ε > 0,∃F closed set, F ⊂ E s.t.
m(E \ F ) < ε.

A consequence is that, for every Lebesgue measurable set, there exists a sequence
Un of open sets, Un+1 ⊆ Un, E ⊆ Un s.t. m(

⋂
Un \ E) = 0. So E =

⋂
n un \N

where N is a null set (m(N) = 0).

Remark. A countable intersection of open sets is called a Gδ-set.

Dually, if E ∈ L, ∃Fn closed, Fn ⊆ E, s.t. m(E \
⋃
n Fn) = 0. So E =

⋃
n Fn∪N

where N is a null set. As a result, every Lebesgue measurable set is the countable
union of a Fσ-set and a null set, where Fσ means a countable union of closed
sets.

Recall that a Boolean algebra is a family of subsets of a set X, which is closed
under (finite) intersection and complements and contains φ and X, and a σ-
algebra is a boolean algebra which is also closed under countable union.

Remark. Every finite boolean algebra is a σ-algebra.

Example. We have the trivial boolean algebra, B = {φ,X}, the discrete boolean
algebra B = P(X), which are both also σ-algebras. We also have the elementary
boolean algebra, B = {finite unions of boxes in Rd, or complements of such}.

Here is a less trivial example: let X be a topological space, B = {finite unions
of sets of the form U ∩ F}, where U is open and F is closed. This is called the
boolean algebra of constructible subsets of X.
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Also we have the null algebra: B = {E ⊆ Rd,m∗(E) = 0 or m∗(Ec) = 0}.

Remark. The intersection of any number of boolean algebras on the same set
X is again a boolean algebra, and the same holds for σ−algebras (check).

Definition. If F is a family of subsets of X, the boolean algebra generated by
F is the intersection of all boolean algebras containing F (something like the
minimum that contains it?). The same applies for σ-algebras: notation σ(F) for
the σ-algebra generated by F .

Remark. The boolean algebra generated by a family F of subsets of X is the
family of sets of the form ⋃

finite

⋂
finite

F or F c

for F ∈ F .

Note: a finite intersection of a finite union of sets from a family F is always a
finite union of finite intersections of sets from F . But this is no longer true
if you change finite by countable. For example,⋂

i∈N

⋃
j∈N

E
(i)
j =

⋃
i→ji,N→N

⋂
i∈N

E
(i)
ji

Note that there are uncountably many functions N→ N (check Borel hierarchy),
so LHS can’t be equal to just interchanging the order of intersection and union.

Definition. The σ-algebra generated by the family of boxes in Rd is called the
Borel σ-algebra.

Remark. It is also the σ-algebra generated by all open subsets of Rd (also,
by all closed subsets). This is because we’ve shown that every open set is a
countable union of boxes).

Elements of the Borel σ-algebra are called Borel set.

Remark. More generally, if X is an arbitrary topological space, the Borel
σ-algebra of X is the σ-algebra generated by open subsets of X. We denote it
by B(X).

Note that we’ve shown that every open subset E ⊆ Rd is Lebesgue measurable.
Hence, B(Rd) ⊆ L. The question is, are they equal?

The answer is no. One can show that CardB(Rd) = 2N, but remember that
every null set lies in L, and the middle-thirds Cantor set C is a null set ⊆ L. We

know CardC = Card{0, 1}N = 2CardN, so CardP(C) = 22CardC

. Also all subsets
of C are null, hence in L. So CardL > CardB.

Now let’s talk about measures. Recall a measure m(X,A), where X is a set and
A is a σ-algebra, is a map µ : A → [0,+∞] which is σ-additive and that s.t.
µ(φ) = 0.
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Null sets of (X,A, µ) are subsets in A with µ-measure 0.

The sub-null sets are the subsets of X contained in a null set. Note that these
sets might not be in A.

Definition. The family A∗ of subsets of X of the form A ∪N or A \N , where
A ∈ A, and N is a sub-null set (w.r.t. to the measure µ) forms a σ-algebra,
called the completion of A w.r.t. µ. If all subnull sets are in A, A is called
complete.

Example. The completion of the Borel σ-algebra B(Rd) is L.

Basic application of measures on arbitrary measure space:

Proposition. Let (X,A, µ) is a measure space. Then we have:
• upwards monotone convergence for sets: if E1 ⊆ E2 ⊆ ... ⊆ En ⊆ ... for
En ∈ A, then limn µ(En) = supµ(En) = µ(

⋃
nEn).

• downwards monotone convergence: if E1 ⊇ E2 ⊇ ... ⊃ En ⊇ ... for En ∈ A, if
µ(E1) <∞ then limn→∞ µ(En) = infn µ(En) = µ(

⋂
nEn).

Proof. This follows from countable additivity of µ, say for (b) we consider the
disjoint union

E1 =
⋃
i≥1

Ei \ Ei+1 ∪
⋂
n

En

(I think the ∪ and ∩ here is messed up – need to check) (Actually it looks
correct)

Today we’ll discuss how to extend a measure on Boolean algebra to the σ-algebra
it generates (recall σ-algebra requires countable additivity).

To be able to extend a measure µ on a Boolean algebra B to σ(B, µ has to satisfy
the following property:
• It has to be σ-additive, meaning if Bn ∈ B disjoint and ∪Bn ∈ B then
µ(∪Bn) =

∑
n≥1 µ(Bn).

The theorem we are going to prove is that this is enough.

Definition. A measure µ on X is called σ-finite if X is a countable union of
subsets with finite µ-measure.

Theorem. (Caratheodory extension theorem)
If B is a boolean algebra of subsets of X and µ is a countably additive measure
on B, then µ extends to a measure on σ(B), which is the σ-algebra generated by
B. Moreover, the extension is unique if µ is assumed σ-finite.

Proof. We first prove existence, then prove uniqueness.

• Existence: We define for an arbitrary subset of A ⊆ X the following quantity

µ∗(A) = inf

∑
n≥1

µ(Bn), A ⊆
⋃
n≥1

Bn and each Bn ∈ B
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Note (check!!) that µ∗(φ) is 0, µ∗(A) ≤ µ∗(B) if A ⊆ B, and µ∗(∪n≥1An) ≤∑
n≥1 µ

∗(An) – i.e. countable subadditivity. Note that µ∗ must exist because
there is at least one cover, namely X itself (A set function with these 3 properties
is called an outer-measure). We introduce the following auxiliary definition:

Definition. A subset E ⊆ X will be called µ∗-measurable (or Caratheodory
measurable w.r.t. µ∗) if for every subset A ⊆ X (does it need to be in B?),
µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).

We claim that (Claim 1) the family B∗ of µ∗-measurable subsets is a σ-algebra,
and µ∗ is a measure on B∗. Also, we claim that (Claim 2) µ∗(B) = µ(B) for all
B ∈ B, and B ⊆ B∗ – therefore we have proven existence.

• Claim 1: we first subclaim that B∗ is a Boolean algebra. It’s clear that B∗ is
closed under complementation (by definition): E ∈ B∗ =⇒ Ec ∈ B∗. Also B∗
contains φ and X; it remains to show that B∗ is closed under finite unions.

Let E,F ∈ B∗, and A ⊆ X be an arbitrary subset. Now

E ∈ B∗ =⇒ µ∗(A ∩ (E ∪ F )) = µ∗(A ∩ (E ∪ F ) ∩ E) + µ∗(A ∩ (E ∪ F ) ∩ Ec)
= µ∗(A ∩ E) + µ∗(A ∩ (F \ E))

F ∈ B∗ =⇒ µ∗(A ∩ Ec) = µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c)
= µ∗(A ∩ (F \ E)) + µ∗(A ∩ (E ∪ F )c)

add the two previous equalities we get

µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c) = µ∗(A ∩ E) + µ∗(A ∩ Ec)
= µ∗(A)

So E ∪ F ∈ B∗, i.e. B∗ is a boolean algebra.

Now let’s prove that B∗ is a σ-algebra. Note (check!) that since B∗ is a boolean
algebra, it is enough to check that ∪nEn ∈ B∗ for any coutnable pairwise disjoint
family (En)n of subsets of B∗. Let A ⊆ X be an arbitrary subset, then

E1 ∈ B∗ =⇒ µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ Ec1)

E2 ∈ B∗ =⇒ µ∗(A ∩ Ec1) = µ∗(A ∩ Ec1 ∩ E2) + µ∗(A ∩ Ec1 ∩ Ec2)

Keep going this way, we get

µ∗(A ∩ Ec1 ∩ Ec2 ∩ ... ∩ Ecn) = µ∗(A ∩ En+1) + µ∗(A ∩ Ec1 ∩ ... ∩ Ecn+1)

Then add these up, and we get for every integer n,

µ∗(A) =

N∑
n=1

µ∗(A ∩ En) + µ∗(A ∩ Ec1 ∩ ... ∩ EcN )

In particular, µ∗(A) ≥
∑N
n=1 µ

∗(A ∩ En) + µ∗(A ∩ (
⋃
nEn)c). Now we can let

N →∞ we get

µ∗(A) ≥
∞∑
1

µ∗(A ∩ En) + µ∗(A ∩ (∪En)c)
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However,

µ∗(A) ≤ µ∗(A ∩
⋃
En) + µ∗(A ∩ (

⋃
En)c)

≤
∞∑
n=1

µ∗(A ∩ En) + µ∗(A ∩ (
⋃
En)c)

by countable subadditivity of µ∗. Hence in fact µ∗(A) = µ∗(A ∩
⋃
En) +

µ∗(A ∩ (
⋃
En)c), i.e.

⋃
nEn ∈ B∗; on the other hand, from µ∗(A ∩

⋃
En) =∑∞

n=1 µ
∗(A ∩ En) we get µ∗ is countably additive on B∗. This ends the proof

for claim 1, i.e. Tthe family B∗ of µ∗-measurable subsets is a σ-algebra and µ∗

is a measure on B∗.

• Claim 2: We need to show B ∈ B∗ for all B ∈ B. Pick an arbitrary A ⊆ X. We
need to show that µ∗(A) = µ∗(A ∩B) + µ∗(A ∩Bc). It’s clear by subadditivity
of µ∗ that LHS ≤RHS. To prove LHS ≥ RHS, by definition of µ∗, ∀ε > 0
∃Bn ∈ B, A ⊆

⋃∞
n=1Bn s.t. µ∗(A) + ε ≥

∑∞
n=1 µ

∗(Bn). We write

A ∩B ⊆
⋃
n

Bn ∩B ∈ B

and
A ∩Bc ⊆

⋃
n

Bn ∩Bc ∈ B

so we get

µ∗(A ∩B) ≤
∑

µ(Bn ∩B)

µ∗(A ∩Bc) ≤
∑

µ(Bn ∩Bc)

But µ is additive on B, so µ(Bn) = µ(Bn ∩B) + µ(Bn ∩Bc). So

µ∗(A ∩B) + µ∗(A ∩Bc) ≤
∑

µ(Bn ∩B) + µ(Bn ∩Bc) =
∑

µ(Bn)

≤ ε+ µ∗(A)

i.e. B ∈ B∗. So B ⊆ B∗.

It remains to show that µ∗(B) = µ(B) if B ∈ B. Again LHS ≤ RHS is clear
(check) by definition of µ∗, and conversely, ∀ε > 0, ∃Bn ∈ B, B ⊆

⋃
Bn s.t.

ε+ µ∗(B) ≥
∑
n µ(Bn). But

µ(B) ≤ µ(
⋃
Bn) ≤

∑
µ(Bn)

≤ µ∗(B) + ε

So µ∗ is a measure on σ(B) = B∗, i.e. we’ve proven existence.

• Proof of uniqueness: µ is σ-finite, i.e. X =
⋃
nEn with µ(E) <∞. µ|En is a

finite measure on En, and so WLOG we may assume that µ(x) <∞.

Let ν be a measure on σ(B) extending µ, i.e. ν(B) = µ(B) ∀B ∈ B. We need
to show that ν(E) = µ∗(E)∀E ∈ σ(B). For this, consider ν∗ defined as before
with (v, σ(B)) in place of (µ,B). We’ve proved that ν∗ = ν on σ(B). On the
other hand, ν∗(A) ≤ µ∗(A) ∀A ⊆ X by definition of ν∗ and µ∗. So if A ∈ σ(B)
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then ν(A) ≤ µ∗(A). Hence ν(Ac) ≤ µ∗(Ac). (????) But ν(Ac) = ν(X)− ν(A),
µ∗(Ac) = µ∗(X)− µ∗(A), so ν(A) ≥ µ∗(A).

Exercise: Recall that B∗ = {E ⊆ X,E is µ∗-measurable } (recall that µ∗-
measurable means µ∗(A) + µ∗(A ∩ E) + µ∗(A ∩ Ec))∀A ⊆ X).
• Every subset in B∗ is of the form E = A ∪N where A = σ(B) and µ∗(N) = 0.
So in fact, B∗ is the completion of σ(B) wrt µ∗.
• When B = the elementary boolean algebra of Rd (= finite unions of boxes
or complements of such), then σ(B) = Borel σ-algebra,B∗ = L = σ-algebra of
Lebesgue measurable sets.

Remark. This means that the Caratheodory extension theorem gives an alter-
native way to construct the σ-algebra of Lebesgue measurable sets in Rd, and
the Lebesgue measure.

There is a much stronger uniqueness theorem.

Theorem. Suppose (X,A) is a measurable space, and µ1 and µ2 are two finite
measures on (X,A) such that µ1(X) = µ2(X). Suppose that µ1(A) = µ2(A)
∀A ∈ F , where F is a subfamily of A which generates A (i.e. σ(F) = A), and is
stable under finite intersections. Then µ1 = µ2.

Lemma. (Dynkin’s)
Let A be a σ-algebra and F a family of subsets on A, which generates A and is
stable under finite intersections and contains φ (such F is sometimes called a
π-system). Let C be a subfamily of A, which contains F , and is stable under
complementation and countable disjoint unions. Then C = A.

Proof of uniqueness theorem via Dynkin’s lemma: Observe that C = {A ∈
A, µ1(A) = µ2(A)}. Then C satisfies the assumptions of Dynkin’s lemma, and
so C = A. So µ1 = µ2.

1.3 Measurable Functions

Definition. (X,A) measurable space, and f : X → R is a real valued function.
Say that f is A-measurable (or just measurable if it’s clear which σ-algebra we
are talking about) if ∀t ∈ R, {x ∈ X, f(x) < t} ∈ A.

Remark. If f is A-measurable, then f−1(B) ∈ A for all Borel subsets B ⊆ R.
Indeed f−1 is ’functional’ w.r.t. ∪, ∩ and complement. So {B ⊆ R|f−1(B) ∈ A
is a σ-algebra. If f is measurable, by definition it contains (−∞, t) ∀t. So it
contains all intervals, hence all Borel sets.

Caveat: The pre-image under f of a Lebesgue measurable subset of R (which is
not Borel) may not be in A. More generally, if (X,A) and (Y,B) are measurable
spaces, then
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Definition. f : X → Y is said to be measurable if f−1(B) ∈ A for all B ∈ B.

Remark. To check that f : X → Y is measurable, it is enough to check that
f−1(B) ∈ A for all B ∈ F = generating subfamily of B.

Remark. Let f : X → Y , g : Y → Z, and we have (X,A), (Y,B), (Z, C). If f, g
are measurable, so is f ◦ g : X → Z (obvious).

Remark. (X,A) a measurable space, f : X → Rd is A-measurable if and only if
each coordinate function fi, i = 1, ..., d is A-measurable, where f = (f1, ..., fd) ∈
Rd.

Proposition. If f, g are A-measurable X → R function, then so is fg, fg, df
for d ∈ R. In particular, the set of A-measurable functions on X is a vector
space stable under multiplication (R-algebra).

Proof. Consider X → R2 s−→ R by x → (f(x), g(x)) → f(x) + g(x), where
s : R2 → R by (x, y)→ x+ y. By previous remark, F is measurable. But s is
measurable because {(x, y) ∈ R2, x+ y < t} is open and therefore Borel. Hence
the composition s ◦ f is measurable.

Remark. Every continuous function R → R is measurable. Why? because
{x, f(x) < t} is open, hence Borel.

Proposition. If (fn)n is a family of measurable functions X → R, then
lim supn→∞ fn, lim infn→∞ fn, sup fn, ∈ fn are all A-measurable.

Proof. Consider {x ∈ X; lim infn fn < t} =
⋃
k≥1

⋂
m≥1

⋃
n≥m{x ∈ X, fn(x) <

t− 1/k}. The others are similar (wtf). n

Remark. If X =
⋃N
i=1 Pi is a partition of X, and A is the atomic boolean

algebra associated with this partition (i.e. subsets of X belonging to A are the
finite unions of Pi), then f : X → R is A-measurable iff f is constant on each Pi
for i = 1, ..., N iff f =

∑N
i=1 ai1Pi for ai ∈ R.

The intuition is that f is A-measurable means that f(x) depends only on which
subsets from A x belongs to.

Remark: E ∈ A iff 1E is A-measurable, for every subset E ⊆ X.

Definition. If X is a topological space, a Borel function on X is a function
which is
mathcalB(X)-measurable, where B(X) is the Borel σ-algebra, i.e. the σ-algebra
generated by the open sets.

Caveat: if f : X → R is A-measurable, then f−1(B) ∈ A for all Borel measurable
subsets B ⊆ R. But f−1(E) for E Lebesgue measurable may not be in A.

Remark. (The devil’s staircase)
Consider a non-decreasing function φ : [0, 1] → [0, 1] that is continuous, and
φ(0) = 0, φ(1) = 1, and is constant on each component of [0, 1] \ C, where C is
the middle-thirds Cantor set. We can show that φ converges uniformly to its
pointwise limit.
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Exercise: show that there exists a continuous increasing bijection φ : [0, 1]→ [0, 1],
φ(0) = 0, φ(1) = 1, and a subset F ⊆ [0, 1] of Lebesgue measure zero, such that
phi(F ) has positive measure. (consider allowing a small positive slope on each
component of the [0, 1] \ C in the above remark)

Exercise: show that the above exercise gives rise to a counter example explaining
the above Caveat.
• hint: show that there exists A ⊆ φ(F ) non Lebesue measurable. Set f = φ−1,
E = f(A).
• hint: show that every subset of R of positive measure contains a non Lebesgue
measurable subset (modify Vitali’s construction in the first chapter).

1.4 Integration

Let (X,A, µ) be a measure space. We are going to define the integral µ(f) =∫
X
fdµ =

∫
X
f(x)dµ(x) of a function f w.r.t. µ.

First we define µ(f) when f is a simple function, i.e. a function of the form

f =
∑N
i=1 ai1Ei , a linear combination of indicator functions with each Ei ∈ A.

We define µ(f) :=
∑N
i=1 aiµ(Ei).

Check as an exercise, that this definition makes sense (it’s independent of the
representation of f).

Now if f : X → R has values in [0,+∞] and is A-measurable, we define

µ(f) := sup{µ(g), g simple function, g ≤ f}

where by g ≤ f we mean that g(x) ≤ f(x) for all x.

Finally, if f : X → R is any A-measurable function, then we set f+(x) :=
max{0, f(x)} and f− := (−f)+. Then clearly f = f+ − f− and |f | = f+ + f−.

Definition. f is µ-integrable if µ(f+) <∞ and µ(f−) <∞, and if this is the
case we define

µ(f) = µ(f+)− µ(f−)

Theorem. (Monotone convergence theorem)
Let (fn)n be a sequence of A-measurable functions, such that for all x ∈ X,
0 ≤ f1(x) ≤ f2(x) ≤ ... ≤ fn(x) ≤ .... Let

f(x) = lim
n→∞

fn(x) ∈ [0,+∞]

Then

µ(fn)
n→∞−−−−→ µ(f)

Proof. Clearly µ(fn) ≤ µ(f) for all n. Also µ(fn) ≤ µ(fn+1) for all n. For all ε >
0, let g be a simple function, g ≤ f , and let En = {x ∈ X; fn(x) ≥ (1− ε)g(x)}.
Note En ∈ A, and En ⊆ En+1 and X =

⋃
n≥1En. So we can apply the upwards

monotone convergence for sets to the measure mg : E(∈ A)→ µ(1E · g) (check
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that this is a measure on (X,A. It’s a product inside the bracket), and get
mg(En) ↑ mg(X) = µ(g) as n→ +∞ (what’s up arrow – converge monotonically
from below?). Now

mg(En) =

∫
1En(x) · g(x)dµ(x)

≤ 1

1− ε

∫
fn(x)dµ(x)

=
µ(fn)

1− ε

So we get µ(g) ≤ 1
1−ε lim infn µ(fn) ≤ lim supn µ(fn) ≤ µ(f).

Now this holds for all g simple and 0 ≤ g ≤ f , so taking the sup over all such g,
we get

µ(f)(1− ε) ≤ lim inf ≤ lim sup ≤ µ(f)

(fill what’s after liminf and limsup)
This holds for all ε > 0, so we’ve got

µ(f) = lim inf µ(fn) = lim supµ(fn).

Corollary. f, g are µ-integrable functions on (X,A, µ), then
• for a, b ∈ R, αf + βg is µ-integrable, and µ(αf + βg) = αµ(f) + βµ(g);
• if f ≥ 0, then µ(f) ≥ 0;
• if f ≥ 0 and µ(f) = 0, then f = 0 a.e..

Here a.e. means ’almost everywhere’: a property P (x) holds a.e. means that the
set on which it doesn’t hold is a (sub)-null set for µ.

Proof. • We know the linearity for simple functions, so we will reduce to this
case using the Monotone Convergence Theorem.

First, writing f = f+− f−, g = g+− g− where f+, f− are as defined previously,
we reduce to the case when both f and g are non-negative; finally every non-
negative measurable function is a pointwise limit of simple functions: indeed let
fn(x) := min( 1

n2 [n2f(x)])), where the square bracket is the floor function. This
function only takes finitely many values, and also fn(x) ≤ f(x) ∀n and x, and
limn→∞ fn(x) = f(x). So now just apply the monotone convergence theorem to
the sequence (fn).

• Recall µ(f) was defined as sup{µ(g), 0 ≤ g ≤ f, g simple}. So it’s clear that
f ≥ 0 =⇒ µ(f) ≥ 0.

• Now if f ≥ 0 and µ(f) = 0, consider En = {x ∈ X, fn(x) ≥ 1
n}. Note En ∈ A,

and
⋃
n≥1En ∪ {x ∈ X, f(x) = 0} = X. By countable subadditivity of µ, it is

enough to show that ∀n, µ(En) = 0. But 1
n · 1En ≤ f , so 1

nµ(En) ≤ µ(f). As
µ(f) = 0, we get µ(En) = 0.

Remark. If f and g are measurable and integrable, and f = g a.e., then g is
integrable and µ(f) = µ(g). (check)
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Theorem. (Fatou’s lemma)
If (fn)n is a sequence of measurable functions, m(X,A, µ) such that fn ≥ 0 ∀n,
then

µ(lim inf
n→∞

fn) ≤ lim inf
n→∞

µ(fn)

Note that this inequality can be strict. For example, in the following three types
of ’moving bumps’ examples:
(a) X = [0,+∞) with Lebesgue measure, fn = 1[n,n+1], then lim fn = 0 but
µ(fn) = 1 for all n.
(b) Take fn = 1

n1[0,n], then lim inf fn = 0 but µ(fn) = 1 for all n again.
(c) Let X = [0, 1] with Lebesgue measure, and take fn = 1[ 1

n ,
2
n ] · n. Again,

lim fn = 0 but µ(fn) = 1.

Proof. (See an alternative proof that doesn’t rely on monotone convergence
theorem here).

Let gn = infk≥n fk. Note gn+1 ≥ gn ≥ 0, so µ(gn)
n→∞−−−−→ µ(g∞) where g∞ =

limn→∞ gn; gn ≤ fn, so µ(gn) ≤ µ(fn) i.e. limµ(gn) ≤ lim infn µ(fn). Therefore

µ(g∞) ≤ lim inf
n

µ(fn)

But g∞ = lim infn→∞ fn.

Theorem. (Lebesgue’s dominated convergence theorem)
Let (X,A, µ) be a measure space. Let (fn)n be a sequence of measurable
functions on X. Assume that there exists a µ-integrable functions g such that
|fn| ≤ g for all n (’dominated’ by g). Also, assume further that fn(x) converges
pointwise to f(x) for all x ∈ X. Then we can interchange the order of integration
and limit, i.e.

µ( lim
n→∞

fn) = lim
n→∞

µ(fn)

Proof. Note |fn| ≤ g =⇒ |f | ≤ g, where f = limn→∞ fn. So f is integrable,
and µ(|f |) ≤ µ(g) < ∞. Now observe that g + fn is non-negative. So apply
Fatou’s lemma to (g + fn)n, we get

µ(lim inf
n→∞

g + fn) ≤ lim inf µ(g + fn)

But also LHS = µ(g + f) ≤ µ(g) + lim infn µ(fn). Cancelling µ(g) we get
µ(f) ≤ lim inf µ(fn). Now do the same with −fn in place of fn, we get µ(−f) ≤
lim inf µ(−fn), i.e. µ(f) ≥ lim supµ(fn). So

µ(f) ≤ lim inf µ(fn) ≤ lim supµ(fn) ≤ µ(f)

Hence µ(fn) converges to µ(f).

Corollary. (exchange of
∑

and
∫

)
• Let (fn)n≥1 be a sequence of measurable sets. Assume fn ≥ 0 for all n. Then
µ(
∑
n≥1 fn) =

∑
n≥1 µ(fn).

• Let (fn)n≥1 for any sequence of measurable functions. Assume
∑
n≥1 |fn| is

µ−integrable. Then we can exchange
∑

and
∫

, i.e.

µ(
∑
n≥1

fn) =
∑
n≥1

µ(fn)

https://en.wikipedia.org/wiki/Fatou%27s_lemma#Proof
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Proof. • Just take gN =
∑N
n=1 fn, the partial sum, and apply the Monotone

Convergence Theorem to (gN )N≥1.

• Let g =
∑
n≥1 |fn| and again gN =

∑N
n=1 fn. Then ∀N , |gN | ≤ g, g is µ-

integrable by assumption. Then just apply the Lebesgue Dominated Convergence
Theorem.

Corollary. (exchange of ∂
∂x and

∫
)

Let (X,A, µ) be a measure space, and let f : I ×X → R : (t, x)→ f(t, x) where
I is an open interval in R. Assume
• x→ f(t, x) is µ-integrable ∀t ∈ I;
• t→ f(t, x) is differentiable ∀x ∈ X;
• (domination) there exists a function g : X → R s.t. |f(t, x) ≤ g(x)| for every
x ∈ X, t ∈ I, and g is µ-integrable.

Then x→ ∂f
∂x (t, x) is µ-integrable ∀t ∈ I, t→

∫
X
f(t, x)dµ is integrable, and

∂

∂t

(∫
X

f(t, x)dµ(x)

)
=

∫
X

∂f

∂t
(t, x)dµ(x)

Proof. This is a corollary of the Lebesgue Dominance Convergence Theorem.

Let hn ∈ R, hn
n→∞−−−−→ 0. Set gn(x) := f(t+hn,x)−f(x)

hn
. Then gn(x) → ∂f

∂t

pointwise. But there exists θn ∈ [t, t + hn] s.t. gn(x) = ∂f
∂t (t, x)|t=θn by mean

value theorem. So
|gn| ≤ g

and g is integrable. So apply LDC Theorem.

In the proof of the monotonic convergence theorem, we’ve used the fact that
if g is a simple function, then A ∈ A → µ(g1A) is a measure. Now this is
clear reducing to the case g = 1B by linearity. And it also holds for all g ≥ 0
measurable, but this is an exercise which may require the monotone convergence
theorem.

Theorem. (Egoroff Theorem)
Let (X,A, µ) be a measure space. Assume µ(X) < ∞, (fn)n≥1 a sequence of
measurable facts which converges pointwise to f = lim fn. Then ∀ε > 0 ∃A ∈ A,
µ(A) > µ(X)− ε s.t.

sup
x∈A
|fn(x)− f(x)| n→∞−−−−→ 0

Proof. Replacing fn by
sup
k≥n
|fk(x)− f(x)|

we may assume that f = 0, 0 ≤ fn+1 ≤ fn. Then fn(x) → 0 for all x ∈ X, so
∀k∃nk(x) ∈ N s.t. 0 ≤ fnk(x) ≤ 1/k.

So nk(x) <∞ for all x. So
⋃

1≤T∞{x ∈ X,nk(x) ≤ T} = X for every k. Hence

µ{x;nk ≤ t}
T→∞−−−−→ µ(x) by monotone convergence theorem for sets.
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Let Tk ∈ N be such that µ{x, nk ≤ Tk} ≥ µ(X)− ε
2k

. Take A =
⋂
k≥1{x;nk(x) ≤

Tk}. By countable subadditivity of µ we get µ(X \A) ≤
∑
k≥1 ε/2

k ≤ ε. But we

have supx∈A fn(x)
n→∞−−−−→ 0 because supA fTk ≤ 1/k for all k, and n→ supA fn

is non-increasing.

Theorem. (Fundamental theorem of calculus)
f : [a, b] → R is continuous, and let F (x) =

∫
[a,x]

fdµ, where µ is a Lebesgue

measure. Then F is differentiable, and F ′(x) = f(x) for all x.

Proof. Same as for the Riemann integral. This is actually easier because we
assumed continuity.

Indeed F (x+h)F (x)
h =

∫ x+h

x
f(t)
h dt but by continuity this converges to f(x) as

h→ 0.

Remark. There is a much more powerful version of this theorem, namely:

Theorem. Let f : [a, b] → R be a µ-integrable function, and µ is a Lebesgue
measure. Let F (x) :=

∫
[a,x]

fdµ. Then F is differentiable almost everywhere

w.r.t. µ, and F ′(x) = f(x) µ−almost everywhere.

Theorem. (Lebesgue differentiation theorem)
Let f : Rd → R be a Lebesgue integrable function. Then the following holds
µ-almost everywhere:

1

µ(B(x, r))

∫
B(x,r)

fdµ
r→0−−−→ f(x)

where B(x, r) = {y ∈ Rd, ||x− y|| < r}. The norm used here is not important.

Remark. F ′(x) = f(x) almost everywhere, but not everywhere. For example,
take f = 1[0,1], then F (x) = min{x, 1} if x ≥ 0; this is not differentiable at 1.

We are also interested in the converse statement as well, but it fails in general.
Namely, if F : [a, b]→ R is continuously and differentiable almost everywhere,
then it’s not always true that F (x) − F (a) =

∫ x
a
F ′(t)dt. For example, take

F (x) = x2 sin( 1
x2 ). F ′ exists for all x ∈ [0, 1], but it’s not Lebesgue integrable.

Another example is the Devil’s staircase which we’ve seen before: F is a non-
decreasing continuous function, but F ′(x) = 0 for all x 6∈ C and F is not
differentiable on C, i.e. F ′(x) = 0 almost everywhere. However, F (0) = 0 and
F (1) = 1.

Remark. However, if F is Lipschitz, i.e. ∃L > 0 s.t. |F (x)− F (y)| ≤ L|x− y|
∀x, y ∈ [a, b], then F is a.e. differentiable (this is called the Rademacher
differentiation theorem). Note that tour previous converse statement will hold
for such F . Indeed, F ′(x) = limn→∞ Fn(x), Fn(x) := n(F (x+ 1

n )−F (x)). Then
by Lipschitz condition we know |Fn(x)| ≤ L for all x. Then we can apply the
LDC theorem to swap the limit and integral:∫ b

a

F ′(x)dx =

∫ b

a

lim
n
Fn(x)dx = lim

∫ b

a

Fn(x) = F (b)− F (a).
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Theorem. (Change of variable formula)
If U, V ⊆ Rd are open sets, and φ : U → V is a C1-diffeomorphism, then
f : V → R is Lebesgue measurable. Assume either f ≥ 0 or f integrable. Then∫

µ

f(φ(x))|Jφ(x)|dx =

∫
v

f(y)dy

where dx and dy are Lebesgue measure, and Jφ(x) = det(dφ(x)), i.e. the
Jacobian.

Remark. • We’ll skip the proof (prove it for linear φ, then approximate on
small boxes around each point).
• The theorem holds if φ is only assumed to be a Lipschitz homomorphism as
well.
• When u = [a, b], this is basically the Fundamental theorem of calculus.
• This shows that Lebesgue measure is invariant under linear affine maps
x→ Ax+ b, b ∈ Rd, A ∈ GLd(R) with determinant 1.

1.5 Product measures

Definition. (Product σ-algebra)
Let (X,A) and (Y,B) be measurable spaces. On X×Y we defined the product σ-
algebra, denoted byA⊗B to be the sigma algebra generated by all A×B ⊆ X×Y ,
with A ∈ A, B ∈ B.

Remark. The projection maps πX : X × Y → X, πY : X × Y → Y that maps
(x, y) to x and y respectively are measurable (preimage of measurable sets are
measurable), when X × Y is endowed with A⊗B. A×A, π−1

X = A× Y .
In fact, A⊗B is the smallest σ−algebra on X × Y for which both projections
are measurable.
Consider B(Rd1+d2) = B(Rd1)⊗ B(Rd2). In fact, if X and Y are 2nd countable
topological spaces,i.e. those which have a countable base, then B(X × Y ) =
B(X)⊗B(Y ), where B(X) is the sigma algebra generated by open sets. However,
this is wrong in general.

Lemma. If E ⊆ X × Y belongs to A ⊗ B, then ∀x ∈ X,Ex ∈ B, and ∀y ∈
Y,Ey ∈ A, where Ex = {y ∈ Y, (x, y) ∈ E}, and Ey = {x ∈ X, (x, y) ∈ E}.

Proof. Let C := {E ⊆ X × Y s.t.Ex ∈ B, Ey ∈ A∀x ∈ X, y ∈ Y }. Check that C
is a σ-algebra. Also, C contains all subsets of the form A×B for A ∈ A, B ∈ B.
So we get C ⊇ A⊗ B.

Using this lemma, we can prove that (as an exercise) L(Rd1) ⊗ L(Rd2) (
L(Rd1+d2), i.e. they are not equal.

Proposition. Let (X,A, µ) and (Y,B, ν) be two σ−finite (i.e. a space can be
written as a countable union of increasing subsets with finite measure) measure
spaces. Then there is a unique measure on (X × Y,A⊗B) denoted by µ⊗ ν s.t.
µ ⊗ ν(A × B) = µ(A) · ν(B) for all A ∈ A, B ∈ B. This is called the product
measure.
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Proof. (sketch)
Let B0 be the boolean algebra generated by the product sets A×B, A ∈ A, B ∈ B.
Note B0 is made of disjoint finite unions of product sets. The equation given
in the proposition defines a measure on B0, and one needs to check countable
additivity and then we can apply the Caratheodory extension theorem to claim
the existence and uniqueness of the extension to σ(B0) = A⊗ B.

Theorem. (Tonnelli - Fubini theorem)
Let (X,A, µ), (Y,B, ν) be σ-finite measure spaces. Let f be a A⊗B-measurable
function on X × Y .
• Assume f ≥ 0. Then the functions fx(y) :=

∫
X
f(x, y)dµ(x), fy(X) :=∫

Y
f(x, y)dν(y) are measurable, w.r.t. B and A respectively, and∫

X×Y
f(x, y)dµ⊗ ν(x, y) =

∫
Y

fx(y)dν(y) =

∫
X

fy(x)dµ(x) (∗∗)

• Now assume f is µ⊗ ν-integrable. Then fx is ν-integrable, fy is µ-integrable,
and (**) holds.

Remark. When f = 1E , E ∈ A⊗B, then x→ ν(Ex), y → µ(Ey) are measurable
functions, and

µ⊗ ν(E) =

∫
X

ν(Ex)dµ =

∫
Y

µ(Ey)dν

Remark. The theorem still holds if f is only assumed measurable w.r.t. the
completion (A⊗ B)∗, i.e. its completion.

Proof. (of theorem, sketch)
WLOG we assume that µ(x) < ∞, ν(y) < ∞ (X =

⋃
En, µ(En < ∞)).

Write f as f = limn fn pointwise limit of simple functions (e.g. f(x) =
limn→∞

1
n2 min([n2f(x)], n)), we reduce to prove the theorem for f simple (using

the monotone convergence theorem). By linearity, we can reduce tot he case
when f = 1E for some E ∈ A⊗ B. So we’re left to show

µ⊗ ν(E) =

∫
X

ν(Ex)dµ =

∫
Y

µ(Ey)dν (∗ ∗ ∗)

Now let C = {E ∈ A⊗ B s.t. (***) holds }. Then
• A×B ∈ C for all A ∈ A, B ∈ B by definition of µ⊗ ν,
• C is stable under complement (because µ, ν are finite),
• C is stable under countable disjoint unions, and
• C contains {A×B,A ∈ A, B ∈ B} which is stable under intersections.

So we may apply the Dynkin Lemma to C and conclude that C = A⊗ B.

For the second part where f is only assumed to be integrable, we write f =
f+ − f− and apply the above to f+ and f− separately.

Definition. If X is a topological space and µ is Borel measure on X, then µ is
called Radon if µ(K) <∞ ∀K compact subset of X.
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Let Cc(x) be the space of compactly supported functions on X. Clearly every
f ∈ Cc(x) is µ-integrable when µ is Radon.

Indeed µ(|f |) ≤ supX |f | · µ(Suppf) < ∞, where we define Suppf = {x ∈
X; f(x) 6= 0} (support).

So the map TµCc(x) → R by f → µ(f) is well defined and linear. So Tµ is a
linear functional, such that f ≥ 0 =⇒ Tµ(f) ≥ 0. We say Tµ is positive.

Theorem. (Riesz representation theorem)
If X is locally compact and second countable (has a countable base), then every
positive functional on Cc(x) is of the form Tµ for some (unique) Radon measure
µ on X.
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2 Probability and Measure

2.1 Introduction

We usually say Ω is a universe of possible outcomes, or the sample space, which
is presented as a set by us; and F is the family of events or observable events,
which is presented as a boolean algebra; P is the probability of an event, which
is now equivalent to a measure.

We would like the continuity axiom to be satisfied: if An ∈ F , An+1 ⊆ An s.t.⋂
nAn = φ, then P(An)

n→∞−−−−→ 0.

Definition. Let (X,A) be a measurable space. A measure µ on X with µ(X) = 1
is called a probability measure.

Definition. A measurable function X → R is called a random variable.

Definition. (X,A, µ) is called a probability space when µ(X) = 1.

In a probability space we usually use (Ω,F ,P) as standard notation instead of
(X,A, µ).

Definition. A random variable X on (Ω,F ,P) determines a measure µX on
(R,B(R)) (where B denotes the Borel sets) given by µX(A) = P(X ∈ A) for all
A ∈ B(R). We write

P(X ∈ A) := P({ω ∈ Ω;X(ω) ⊂ A})

This measure µX is called the distribution, or the law of X.

Note µX is the image of P under X : Ω→ R.

We write X ∼ µX to mean X is distributed according to µX .

Definition. The function FX(x) := P(X ≤ x) (= µX((−∞, x])) is called the
distribution function of X.

We replace the integral sign
∫
dµ by the expectation sign E, i.e. E(X) =

∫
Ω
XdP,

and if A ∈ F , then E(1A) = P(A).

Example. Toss a coin N times. Let X to be the number of heads, then
P(X = k) =

(
N
k

)
1

2n ; this is called the binomial distribution. Now E(X) = N
2 =∑N

1 kP(X = k) =
∑n

1 k
(
N
k

)
; but it’s also E(

∑N
1 1εk= heads ) = N

2 .

Note that FX is no-decreasing, right continuous, and it determines µX . Also,
limX→−∞ F = 0, and limX→∞ F = 1 (*).

Theorem. Conversely given a non-decreasing function F : R→ [0, 1], which is
right continuous and has the above property (*), there exists a unique probability
measure µ on (R,B(R)) such that F = µ((−∞, x]) for all x ∈ R.
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Proof. (sketch)
Define µ on intervals (a, b] as µ((a, b]) = F (b)− F (a). Extend it to finite union
of intervals, and use Caratheodory extension theorem.

Definition. If FX(x) has the form
∫ x
−∞ f(y)dy, where dy is a Lebesgue measure,

and f ≥ 0 is Lebesgue integrable, then we say that FX or X, or µX has a density
w.r.t. Lebesgue measure, and f is called a density function.

Example. Consider a uniform distribution on [0, 1], f(x) = 1[0,1]. We have

F (x)
∫ x
−∞ f = 1− x.

Example. Consider an exponential distribution with rate λ > 0: fλ(x) =
λe−λx1x≥0, F (x) = 1x≥0(1− e−x/λ).

Example. For a normal distribution (Gaussian), denoted N(σ2,m), we have

f(x) =
1√

2πσ2
e−

(x−m)2

2σ2

Last time the lecture forgot to say that, µ is called the Lebesgue-Stieljes measure
associated to F .

Now we’ll define independence. Let Ω,F ,P) be a probability space.

Definition. A sequence of events (An)n≥1 is said to be (mutually) independent
if for all I ⊆ N and finite,

P(
⋂
i∈I

Ai) = Πi∈IP(Ai)

Definition. A sequence of sub-σ-algebras (An)n≥1 of F is called independent
if for all Ai ∈ Ai, i ≥ 1, the family (Ai)i≥1 is independent.

Definition. A sequence (Xn)n≥1 of random variables is called (mutually) inde-
pendent if the sequence (σ(Xn))n≥1 is independent.

Notation: If X is a random variable, σ(X) := X−1(B(R)) = σ({ω ∈ Ω : X(ω) ≤
x}x∈R) is the smallest σ-algebra making X measurable.

Example. If X takes only finitely many values x1, ..., xk, then σ(X) is a finite
boolean algebra whose atoms are {ω,X(ω) = xi} for i = 1, ..., k.

Example. Suppose Ω = {Heads, Tails}2, i.e. two independent tosses of a coin.
Now P(X1 = ε1, X2 = ε2) = 1/4 for all ε1, ε2 ∈ {H,T}.

(missing 1 line)

If F = discrete boolean algebra on Ω = 2Ω. σ(X1) = {{H} × {H,T}, {T} ×
{H,T}, φ,Ω}, σ(X2) = {{H,T} × {H}, {H,T} × {T}, φ,Ω} are two σ-algebra
of events.
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Lemma. Let Fi ⊆ Ai be a subfamily of events which is stable under finite
intersection, s.t. σ(Fi) = Ai. Then to check that (Ai)i≥1 forms an independent
family, it is enough to check that P(

⋂
i∈I Ai) =

∏
i∈I P(Ai) holds for all finite

I ⊆ N, and all Ai ∈ Fi.
Example. a) Suppose (X1, ..., Xn) are n random variables. Then they are
independent iff for all x1, ..., xn ∈ R, P(∀i = 1, ..., n,Xi ≤ xi) =

∏n
i=1 P(Xi ≤

xi).

Indeed, this is a special case of the lemma setting Fi = {X−1
i ((−∞, x]), x ∈ R}.

b) If X1, ..., Xn take only a finite set E of values (X1, ..., Xn) independent iff for
all e1, ..., en ∈ E, P(∀i,Xi = ei) =

∏n
i=1 P(Xi = ei).

Proof. (of lemma) For two σ-sub algebra A1 and A2, let A2 ∈ A2 be s.t.
P(A ∩ A2) = P(A)P(A2) (*) holds for all A ∈ F1. Look at the 2 measures
A→ P(A ∩A2) and A→ P(A)P(A2). The two measure coincide on F1, hence
they coincide on A1 (by Dynkin’s lemma). So (*) holds for all A ∈ A1. Now
just reverse the roles of A1 and A2.

Example. Let Ω = [0, 1], P be a Lebesgue measure, F = B(R) be a Borel
σ-algebra. Let Xn(ω) be the nth digit in the decimal expansion of ω ∈ [0, 1] (we
avoid ambiguity by disallowing ending with 9999..., although it doesn’t really
matter). We claim that (Xn)n≥1 is independent. Let Iε1...εn = {ω ∈ Ω, X1(ω) =
ε1, ..., Xn(ω) = εn} = {ω ∈ [0, 1]|[10nω] = ε1...εn}. We need to check that
P(X1(ω) = ε1, ..., Xn(ω) = εn) =

∏n
i=1 P(Xi(ω) = εi), but it’s clear because

P(ω ∈ Iε1...εn) = 1/10n and RHS is 1/10n as well.

Remark. If f1, ..., fn are Borel measurable functions |R → R and X1, ..., Xn

are independent random variables, then so are f1(X1), ..., fn(Xn). The reason is
that σ(f(X)) ⊆ σ(X).

Remark. Independence implies pairwise independence, but not conversely.
Bernstein’s example: Let X,Y be two independent coin tosses, X = 1 for heads,
X = 0 for tails and same for Y . Now set Z = |X − Y |. We can check that each
pair among X,Y, Z are independent, but clearly Z cannot independently take
value from X and Y .

Proposition. Let X1, ..., Xn be n random variables. (X1, ..., Xn) are mutually
independent if and only if µX1,...,Xn = µX1 ⊗ ...⊗µXn (product measures). Here
µ(X1,...,Xn) is the law or distribution of (X1, ..., Xn), sometimes also called the
joint law or joint distribution.

It’s a probability measure on (Rn,B(Rn)) defined by µ(X1,...,Xn)(A) = P((X1, ..., Xn) ∈
A) for all A ∈ B(Rn).

Proof. µ(X1,..,Xn)(
∏n
i=1(−∞, xi)) = P((X1, ..., Xn) ∈

∏n
1 (−∞, xi]) = P(∀i,Xi ≤

xi). So independence if and only if ∀xi ∈ R,P(∀i,Xi ≤ x) =
∏n

1 P(Xi ≤ xi), if
and only if µ(X1,...,Xn)(

∏n
1 (−∞, xi]) =

∏
µXi((−∞, xi]).

Recall from last time, that A,B events are called independent if P(A ∩ B) =
P(A)P(B).
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Proposition. Suppose X and Y are two independent random variables, and
X,Y are integrable (E(|X|) < ∞,E(|Y |) < ∞). Then XY is integrable, and
E(XY ) = E(X)E(Y ) (*).
Moreover, (*) holds also if X and Y are just assumed positive.

Proof. Recall that, X,Y are independent iff the joint law µ(x,y) is the product
µxo× µy, where µx, µy are the law of X and Y respectively. So we can apply
Fubini:

E(X) =

∫
R
xdµx,E(Y ) =

∫
R
ydµy,E(XY ) =

∫
R×R

xydµ(x,y)

Proposition. (1st Borel-Cantelli lemma)
Let (Ω,F .R) be a probability space. Let (An)n≥1 be a sequence of events, and
assume

∑
n≥1 P(An) <∞. Then P(lim supAn) = 0.

Proof.

lim supAn :=
⋂
m≥1

⋃
n≥m

An

so
P(lim supAn) ≤ P(

⋃
n≥m

An) ≤
∑
n≥m

P(An)
m→+∞−−−−−→ 0

Example. Take Ω = [0, 1], P be the Lebesgue measure, F be the Borel σ-algebra.
Define a number α ∈ R to be very-well-approximated (VWA) if ∃ε > 0 there are
infinitely many integers p, q s.t. |α− p/q| ≤ 1

q2+ε . We claim that almost every

number is not VWA (this is an exercise; just apply Borel-Cantelli to the events
Aq = {x ∈ [0, 1], d(qx,Z) < 1

q1+ε ).

Proposition. (2nd Borel-Cantelli lemma, converse)
Assume that the events (An)n are independent, and

∑
n≥1 P(An) = +∞. Then

P(lim supAn) = 1.

Remark. Conclusion fails without the independence assumption. For example,
An = [0, 1

n ] ⊆ Ω = [0, 1], σP(An) = +∞ but lim supAn = {0}.

Proof. lim supAn =
⋂
m≥1

⋃
n≥mAm, so (lim supAn)C =

⋃
m≥1

⋂
n≥mA

C
m. But

for all m,

P(
⋂
n≥m

ACm) =
∏
n≥m

P(ACn )

=
∏
n≥m

(1− P(An))

≤
∏
n≥m

e−P(An)

= e−
∑
n≥m P(An)

= e−∞ = 0
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Definition. A random process is an infinite family (Xn)n≥1 and real random
variable.

Let n be the time parameter, Fn (time filtration) be σ(X1, ..., Xn) = smallest
sub-σ-algebra of F which makes all Xi, i ≤ n measurable, so Fn+1 ⊇ Fn.

Definition. The tail σ-algebra of (Xn)n≥1 is defined as

T =
⋂
n≥1

σ(Xn, Xn+1, ...)

Example. The following events belong to T :

{lim supXn ≥ T}or{ω ∈ Ω|(Xn(ω))n≥1 converges}

Definition. (Kolmogorov 0-1 law)
Suppose (Xn)n≥1 is a sequence of independent random variable. Then the tail
σ-algebra T is trivial, i.e. ∀A ∈ T , P(A) ∈ {0, 1}.

Proof. Let A ∈ T , let B ∈ σ(X1, ..., Xn). Then A and B are independent,
because σ(X1, ..., Xn) and T are independent. So P(A

⋂
B) = P(A) ·P(B). Now

the measures B → P(A
⋂
B) and B → P(A)P(B) coincide on σ(X1, ..., Xn)

for all n; so they coincide on σ(X1, ..., Xn, ...). But T ⊆ σ(X1, ..., Xn, ...). In
particular, P(A

⋂
A) = P(A)P(A).

Example. Take an iid sequence (Xn)n≥1 of RV at T ≥ 0, R(X1 < t) < 1. Then
as lim supXn = +∞. Indeed,

∑n
k=1 P(Xk ≥ T ) = nP(X1 ≥ T ) = n(1− P(X1 <

T ))
n→∞−−−−→∞, so the 2nd Borel-Cantelli lemma applies and P(lim supAn) = 1.

Example. Take (εn)n≥1 be iid RV, with P(ε1 = 1) = P(ε1 = −1) = 1/2. Take
(an)n≥1 some sequence of real numbers. When does

∑
n≥1 εnan converge?

The Kolmogorov 0-1 law tells us that this happens with probability 0 or 1
depending only on the sequence (an)n≥1.

Theorem. (Rademochan-Paley-Zygmund)∑
εnan converges almost surely iff

∑
a2
n <∞.

Let µ be a probability measure on R. Can you find a probability space (Ω,F .P)
and a RV X s.t. µ is the law of X? Yes: Ω = R, F be the Borel sets, P = µ,
and X(ω) = ω.

Definition. If X is a RV, the kth moment of X is, by definition, E(Xk) for
k ∈ N.

Some additional basic terminologies: for X a random variable, E(X) is called the
mean,E((X − EX)2) is called the variance. We have V arX = E(X2)− (EX)2.
Also if X,Y are independent then V ar(X + Y ) = V arX + V arY .
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Theorem. (Strong law of large numbers (under a 4th moment assumption))
Let (Xn)n≥1 be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with common law µ. Assume

∫
R x

4dµ(x) <∞ (⇐⇒ E(|X1|4 <
∞), then

1

n

n∑
k=1

xk
a.s.−−→ E(X1)

Example. Ω = [0, 1], P = L, ω = 0.ε1ε2...εn..., εi ∈ {0, ..., 9} decimal expansion
of ω.

We observe that (εn(ω))n≥1 were independent and uniformly distributed in

{0, 1, ..., 9}. Set X
(i)
n (ω) = 1{εn(ω)=i}. These are i.i.d. random variables and

|X(i)
n | ≤ 1 ( =⇒ 4th moment <∞). So the SSC applies that

1

n

n∑
k=1

X
(i)
k =

1

n
#{k ≤ n, εk(ω) = i} → E(X

(i)
1 ) =

1

10

for Lebesgue a.e., i.e. ω the proportion of each digit is the same (normal number).

Cauchy Schwartz inequality: let f, g be square integrable functions on (X,A, µ).
Then fg is integrable, and

|
∫
fgdµ| ≤

√∫
f2dµ

√∫
g2dµ

In probabilistic terms, this means: if X,Y are r.v. s.t. E(X2) <∞,E(Y 2) <∞,

then E(|XY |) ≤
√
EX2 · EY 2.

Proof. Look at t → E((X + tY )2) = EX2 + t2EY 2 + 2tE(XY ) which is non-
negative for all t. Then consider discriminant.

Proof. (of SLL)
wlog we may assume that E(X1) = 0, because replace Xn by Xn − E(X1). This
is allowed because E((Xn − EX1)4) <∞, indeed

(Xn − EX1)4 = [(Xn − EX1)2]2

≤ (2X2
n + 2(EX1)2)2

≤ 8[X4
n + (EX1)4]

So we have E(Xn) = 0 for all n. Now let Sn = 1
n (X1 + ... + Xn). Then after

some calculation we get

E(S4
n) =

1

n4
(X4

1 + ...+X4
n + 6

∑
i<j

EX2
i · EX2

j )

=
1

n4

(
nE(X4

1 ) + 6
n(n− 1)

2
(E(X2

1 ))2

)
= O(

1

n2
)
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So we conclude that ∑
n≥1

E(S4
n) = E(

∑
n≥1

S4
n) <∞

So
∑
n≥1 S

4
n <∞ a.s. =⇒ limn→∞Sn = 0 a.s..

Now we discuss the types of convergence of r.v.’s:

Definition. A sequence of probability measures on (Rd,B(Rd)) say (µn)n≥1 is

said to converge weakly to a measure µ on (Rd,B(Rd)) if for all f ∈ Cb(Rd), µn(f)
n→∞−−−−→

µ(f). We denote Cb(Rd) = space of continuous and bounde real functions on
Rd.

Example. We take µn = δxn a Dirac mass (delta functions) with xn ∈ Rd with
xn → x ∈ Rd. Then clearly µn → δx weakly.

Example. µ = N(0, σ2
n (=centered gaussian with standard deviation σn). As-

sume σn → 0, then µn → δ0 weakly.

Definition. A sequence of Rd-valued random variables (Xn)n≥1 is said to
converge to X
(a) almost surely (a.s.), if for P−a.e ω, Xn(ω)

n→∞−−−−→ X(ω);

(b) in probability (or in measure), if ∀ε > 0,P(||Xn −X|| > ε)
n→∞−−−−→ 0;

(c) in distribution, if µXn
n→∞−−−−→ µX weakly (µXn is the law of Xn on Rd =

probability on Rd).

Remark. We have (a) implies (b), (b) implies (c), but not the other way in
general.
(a) → (b): P(||Xn −X|| > ε) = E(1||Xn−X||>ε)

n→∞−−−−→ 0 by LDC.

(b) → (c): Let f ∈ Cb(Rd). f is uniformly continuous on compact subsets of Rd.
So ∀ε > 0, ∃δ > 0 s.t. if ||x|| < 1/ε, ||x− y|| < δ, then |f(x)− f(y)| < ε. So

|µn(f)− µ(f)| ≤ |E(|f(Xn)− f(X)|
≤ E

(
1||Xn−X||<δ1||X||<1/ε|f(Xn)− f(X)|

)
+ 2||f ||∞P(||Xn −X|| > δ or ||X|| > 1/ε)

≤ ε+ 2||f ||∞[P(||Xn −X|| > δ) + P(||X|| > 1/ε)]

So
lim sup

n
|µn(f)− µ(f)| ≤ ε+ 2||f ||∞P(||X|| > 1/ε)

ε→0−−−→ 0

Remark. When d = 1, (c) is equivalent to saying that the distribution function
Fµn(X) → Fµ(x) for all x ∈ R where F (x) is continuous. (exercise). Here
Fµ(x) := µ((−∞, x]), Fµn(x) := µn((−∞, x]).
To see why continuity is useful, e.g. µn = δ1/n → δ0 = µ, Fµn = 1x≥ 1

n
,

Fµ = 1x≥0. Fµn(0) 6→ Fµ(0).

Proposition. If (Xn)n≥1 converges in probability to X, then ∃ subsequence

(Xnk)k≥1 s.t. Xnk
k→∞−−−−→ X a.s..

Proof. for all k we have P(||Xn −X|| > 1/k)
n→∞−−−−→ 0 =⇒ ∃nk s.t. P(||Xn −

X|| > 1/k) ≤ 1
2k

. So
∑

P(||X − n −X|| > 1/k) < ∞ =⇒ P(lim sup ||Xnk −
X|| > 1/k) = 0 by Borel-Cantelli.



2 PROBABILITY AND MEASURE 33

Yet we introduce another type of convergence:

Definition. (convergence in mean, or L1)
A sequence of Rd-valued integrable random variable (Xn)n≥1 converges in L1 or
in mean towards an integrable r.v. X if

E(||Xn −X||)
n→∞−−−−→ 0

which we’ll write Xn
L1

−−→ X.

Remark. • if Xn
L1

−−→ X then Xn → X in probability. Indeed, for all ε > 0,

εP(||Xn −X|| > ε) ≤ E(||Xn −X||1||Xn−X||>ε) ≤ E(||Xn −X||)

• The markov inequality,

εP(|X| ≥ ε) ≤ E(|X|)

and the Chebyshev inequality,

ε2P(|X − EX| > ε) ≤ V arX

hold for any r.v. X and for any ε > 0.

The converse does not hold in general (convergence in probability doesn’t imply
convergence in L1: for example, take Ω = [0, 1], P=Lebesgue measure, Xn =
n1[0,1/n], but E(Xn = 1 for all n.

• If ∃M ≥ 0 s.t. ||Xn|| ≤M a.s. for all n, then the converse holds:

E(||Xn −X||) = E(||Xn −X||1||Xn−X||≤ε) + E(||Xn −X||1||Xn−X||>ε)
≤ ε+ 2MP(||Xn −X|| > ε)

So
lim supE(||Xn −X||) ≤ ε

Definition. A sequence of integrable random variables (Xn)n≥1 is called uni-
formly integrable (or U.I.) if

sup
n≥1

E(||Xn||1||Xn||>M )
M→∞−−−−→ 0

Remark. If Xn = X for all n, and X is integrable, then (Xn)n is U.I.:

E(||X||1||X||≤M ) ↑ E(||X||)

as M →∞ by MCT, so

E(||X||1||X||>M )
M→∞−−−−→ 0

Suppose theXn’s are dominated, i.e. there exists Y integrable r.v. s.t. ||Xn|| ≤ Y
for all n. Then (Xn)n are U.I.:

E(||Xn||1||Xn||>M ) ≤ E(Y 1Y >M )
M→∞−−−−→ 0
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If Xn
L1

−−→ X, then (Xn)n is U.I.:

E(||Xn||1||Xn||>M ) ≤ E(||Xn −X||1||Xn||>M ) + E(||X||1||Xn||>M )

≤ E(||Xn −X||) + E(||X||1||X||>M1||Xm||>M ) + E(||X||1||X||<M1||Xn||>M )

≤ E(||Xn −X||) + E(||X||1||X||>M ) +ME(1||Xn||≥M )

≤ E(||Xn −X||) + ε(M)

So MP(||X||n > M) ≤ E(||Xn||)→ E(||X||) (?)

Theorem. Let (Xn)n≥1 be a sequence of integrable r.v.’s. Let X be another
random variable. (Xn)n is U.I. and converges in probability to X ⇐⇒ X is

integrable and Xn
L1

−−→ X.

Proof. Suppose (Xn)n is UI and converges to X in probability. Last time we’ve

shown that ∃(Xnk)k of Xnk
k→∞−−−−→ X a.s., and

E(||X||1||X||>M ) ≤ lim inf
k→∞

E(||Xnk ||1||Xnk>M )︸ ︷︷ ︸
ε(M)

by Fatou’s lemma. So

E(||X||) = E(||X||1||X||<M ) + E(||X||1||X||≥M ) ≤M + ε(M) <∞

so X is integrable. Hence

E(||Xn −X||) = E(1||Xn−X||>ε||Xn −X||)︸ ︷︷ ︸
(∗)

+E(1||Xn−X||≤ε||Xn −X||)︸ ︷︷ ︸
≤ε

We have

(∗) = E(1||Xn−X||>ε(1||Xn||<M1||X||<M + 1||Xn||≥M1||X||<M + 1||Xn||≥M1||X||≥M )||Xn −X||)
≤ 2MP(||Xn −X|| > ε) + E(1||Xn−X||>ε(M + ||Xn||)1||Xn||>M )

+ E(1||Xn−X||>ε(M + ||X||)1||X||>M ) + E(||Xn||1||Xn≥M + ||X||1||X||>M )

≤ 4MP(||Xn −X|| > ε) + 2E(||Xn||1||Xn||>M︸ ︷︷ ︸
ε(M)

+2E(||X||1||X||>M )︸ ︷︷ ︸
ε(M)

So
lim supE(||Xn −X||) ≤ 4ε(M)

Let M →∞, ε→ 0.

Remark. This theorem subsumes the Lebesgue Dominated Converged Theorem.

If ∃C > 0 and some p > 1 s.t. E(||Xn||p) ≤ C for all n, then (Xn)n is UI:

Mp−1E(||Xn||1||Xn||>M ) ≤ E(||Xn||p) ≤ C

—2017-11-13—
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Proof. (of the theorem that we failed to proof last time)

• Backward: need to show if Xn
L1

−−→ X then (Xn)n is UI.

Remark. (Xn)n is UI iff lim supn→∞ E(||Xn||1||Xn||>M )
M→∞−−−−→ 0. Reason is:

for any finitely many X1, ..., Xm, E(||Xi||1||Xi||>M )
M→∞−−−−→ 0 for each i = 1, ..., n.

E(||Xn||1||Xn||>M ) ≤ E(||Xn −X||) + E(||X||1||Xn||>M )

≤ E(||Xn −X||(+E(||X||1||Xn||>M (1||X||<M/2 + 1||X||≥M/2))

≤ E(||Xn −X||) + E(||X||(1||Xn−X||>M/21||X||<M/2 + 1||X||>M/2))

≤ E(||Xn −X||)(→ 0) +
M

2
P(||Xn −X|| > M/2)(→ 0) + E(||X||1||X||>M/2)

so

lim supE(||Xn||1||Xn||>M ) ≤ E(||X||1||X||>M/2)
M→∞−−−−→ 0

Remark. (Xn)n is UI iff supn E(||Xn||) < ∞ and ∀ε > 0∃δ > 0∀ event
A,P(A) < δ =⇒ supn E(||Xn||1A) < ε.

Proof. Forward: ∀ε > 0∃M0(ε) ∀M ≥M0, E(||Xn||1||Xn||>M ) < ε by definition
of UI.
St δ = ε/M0(ε), so

E(||Xn||1A) ≤ E(||Xn||1A1||Xn||>M0
) + E(||Xn||1A1||Xn||≤M )

≤ ε+M0P(A) ≤ 2ε

Backward: MP(||Xn|| > M) ≤ E(||Xn||) ≤ supn E(||Xn||) <∞ =⇒ P(||Xn|| ≥
M)

M→∞−−−−→ 0.

We’ll move on to Lp spaces.

Proposition. (Holder’s inequality)
Let p, q ∈ [1,+∞] s.t. 1

p + 1
q = 1, with the convention that 1

∞ = 0. Let f, g be

measurable functions on a measurable space (X,A, µ). Then∫
X

|fg|dµ ≤ p

√∫
X

|f |pdµ · q

√∫
X

|g|qdµ

with equality iff ∃a, b ∈ R not both 0 s.t. a|f |p = b|g|q µ-a.e..

Proof. WLOT we can assume p, q ∈ (1,∞). Also we can assume that
∫
|f |pdµ =

1 =
∫
|g|qdµ (up to changing f and g by a scalar).

Young’s inequality for products: ∀a, b ≥ 0, ab ≤ 1
pa

p + 1
q b
q (this follows from

convexity of x → − log x: log(tap + (1 − t)bq) ≤ t log ap + (1 − t) log bq), for



2 PROBABILITY AND MEASURE 36

t ∈ [0, 1]. Then take t = 1
p ). Write |f(x)g(x)| ≤ 1

p |f(x)|p + 1
q |g(x)|q, and

integrate we get
∫
|fg|dµ ≤ 1.

But − log is trictly conves, so equality holds only if we have equality a.e. that
|f(x)|p = |g(x)|q.

Proposition. (Minkowski inequality)
Let p ∈ [1,∞], f, g measurable on a measure space (X,A, µ). Then

p

√∫
|f + g|pdµ ≤ p

√∫
|f |pdµ+ p

√∫
|g|pdµ

Proof. For p = 1 this is obvious by linearity of
∫

. For p > 1, apply Holder’s to
|f ||f + g|p−1 and to |g||f + g|p−1, we get

∫
|f + g|p ≤

∫
(|f |+ |g|)|f + g|p−1 ≤

(
p

√∫
|f |p + p

√∫
|g|p
)

q

√∫
|f + g|q(p−1)(=p)

We need to check that
∫
|f+g|p <∞. This follows from |f+g|p ≤ (2 max |f |, |g|)p =

2p max |f |p, |g|p ≤ 2p(|f |p + |g|p). So integrability of |f |p and |g|p implies the
result.

Notation. Let Lp(X,A, µ) be the set of functions that are A-measurable of X
s.t.

∫
X
|f |pdµ <∞. By the previous remark, this is a real vector space.

Definition. The Lp-norm of f is defined by

||f ||p = p

√∫
|f |pdµ

for 1 ≤ p <∞. The following holds:
• ||αf ||p = |α|||f ||p∀α ∈ R;
• ||f + g||p ≤ ||f ||p + ||g||p (Minkowski’ inequality implies subadditvity).

Remark. If ||f ||p = 0, then f = 0 µ-a.e.. So || · ||p is only a pseudo-norm on
Lp(X,A, µ).

Note: if f1 = f2 µ-a.e., g1 = g2 µ-a.e., then f1 + g1 = f2 + g2 µ-a.e., f1g1 = f2g2

µ−a.e.. So if we say that two functions f, g on (X,A, µ) are equivalent, write

f
µ∼ g if f − g = 0 µ-a.e., then this is an equivalence relation compatible with +

and ×.

Definition. Let Lp(X,A, µ) be the set of equivalence classes of functions in
Lp(X,A, µ) (note that James Norris chose a different notaiton for this one).
Define ||[f ]||p = ||f ||p. This is a real vector space and ||[]||p is a genuine norm
on it, where [f ] if the equivalence class of f .
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Definition. When p = +∞, we define ||f ||∞ = inf{t ≥ 0, |f(x) ≤ t for µ-a.e.
x}.

Note that this depends on the measure, and is not just a simple maximum of f .

Proposition. (completeness) Lp(X,A, µ), p ∈ [1,∞] is complete, i.e. every
Cauchy sequence converges, iff If (fn)n≥1, fn ∈ Lp(X,A, µ) and ∀ε∃N ||fn −
fm||p < ε∀n,m > N , then ∃f ∈ Lp(x,A, µ) s.t. ||fn − f ||p

n→∞−−−−→ 0.

Proof. Pick a subsequence nk s.t.
∑
k≥1 ||fnk+1

− fnk || ≤ ε.

By Minkowski’s inequality, ||
∑K
k=1 |fnk+1

− fnk |||p ≤ ε for all K < ∞. Let
K → ∞, so by MCT, it holds also for K = ∞. =⇒ µ-a.e.

∑∞
1 |fnk+1

−
fnk |(x) < ∞ =⇒ for µ-a.e. x, (fnk(x))k converges (by completeness of R),
=⇒ let f(x) be the limit, outside the set of x’s, just let f(x) = 0. Finally,
||fn− f ||p = | limk→∞(fn− fnk)||p ≤ lim infk→∞ ||fn− fnk ||q by Fatou’s lemma.
But since fn is Cauchy, the above is ≤ ε if n is large enough.

Last time we defined a Lp(X,A, µ) space for p ∈ (1,∞), as well as L∞. If Lp is
a complete normed vector space, we call it a Banach space.

Remark. (approximation by simple functions)

The vector space of simple functions of the form
∑N
i=1 ai1Ai where ai ∈ R,

Ai ∈ Ai s.t. µ(Ai) < ∞ is dense in Lp(X,A, µ) for all p ∈ [1,∞]. Namely, if
f ∈ Lp(X,A, µ) then let f = f+ − f− (f+

n = max([n2f+/n2], n) is a simple
function), and f+

n → f+, f−n → f− a.e., and |fn| ≤ 2|f |. So when p < ∞ by

DCT we get ||fn − f ||p
n→∞−−−−→ 0, and when p =∞, ||f − fn|| ≤ 1

n2 .

In particular, L∞ ∩ Lp (which is simple finite) is dense in Lp.

Remark. If X = Rd, A = Borel σ-salgebra, µ =Lebesgue measure, then
Cc(Rd)(continuous functions with compact support) and C∞c (Rd) (smooth func-
tions with compact support are dense in Lp(Rd, Leb) when p ∈ [1,∞). However,
this is not true for p =∞. For example, ||1[0,1] − f ||∞ ≥ 1/2 if f is continuous.

Note that it’s possible to have a smooth function with compact support: consider
f(x) = 0 if x ≤ 0 and f(x) = e−1/2 if x > 0, which is in C∞(R). Then let
f2 = f(x)f(1− x), and φ(x) =

∫ x
−∞ f2(u)du we get our desired function.

For I = [a, b], ∀ε, ∃ψI,ε ∈ C∞(R) with 1[a,b] ≤ ψI,ε ≤ 1a−ε,b+ε]. In Rd,
B =

∏d
i [ai, bi] a box, Bε =

∏d
1[ai − ε, bi + ε], define ψB,ε(x) =

∏d
1 ψ[ai,bi],ε(xi)

x = (x1, ..., xl, and then ψB,ε ∈ C∞c (Rd), 1B ≤ ψB,ε ≤ 1Bε .

Now if A is a bounded Borel set, there exists K compact, U open, K ⊆ A ⊆ U ,
µ(U \ K) < ε. Using a cover of K by boxes contained in U , we can build a

function ψ ∈ C(
cRd) s.t. 1K ≤ ψ ≤ 1U .
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2.2 Hilbert spaces

A Hilbert space is a vector space (over R or over C), call it H, which is endowed
with an inner product, i.e. a map H ×H → RorC : (x, y)→< x, y >, s.t.
• < x, x >∈ R+, < x, x >= 0 =⇒ x = 0;
• < x, y >=< y, x > for all x, y ∈ H, and
• < x+ λx′, y >=< x, y > +λ < x′, y > for all λ ∈ R (orC), and
• H is complete w.r.t. the norm ||x||i =

√
< x, x >.

For example, H = Rd with < x, y >=
∑d

1 xiyi or H = Cd with < x, y >=∑d
1 xiȳi are both Hilbert.

Another example is, if (X,A, µ) is a measure space, H = L2(X,A, µ), and

< f, g >=

∫
X

fgdµ

which is well defined by Cauchy-Schwartz. The H is a real Hilbert space.

Lemma. (existence of orthogonal projection)
Let H be a Hilbert space, and let V be a closed vector subspace. Then for all
x ∈ H, ∃!y ∈ V s.t. d(x, V ) = ||x− y|| (here d(x, V ) = inf{||x− z||, z ∈ V }).

Proof. Pick a sequence yn ∈ V s.t. ||x− yn|| → d(x, V ). Note that ||yn− ym|| ≤
||x− yn||+ ||x− ym||. So (yn)n is a Cauchy sequence. H complete implies that
yn → y ∃y ∈ H, V closed implies y ∈ V which shows the existence of y. To show

uniqueness, if y, y′ both satisfy the requirements. Then ||x− y+y′

2 ||
2+ 1

4 ||y−y
′||2 =

1
2 (||x − y||2 = ||x − y′||2). So ||y − y′|| = 0 as the first term in LHS and both
terms in RHS are d(x, V )2, i.e. y = y′.

Oops, but (yn)n is not a Cauchy sequence as ||x−yn|| 6→ 0. So this proof doesn’t
work.

Remark. The parallelogram identity holds in any Hilbert space: ∀a, b ∈ H,
||a+b||2+||a−b||2 = 2(||a||2+||b||2). This is because ||a+b||2 =< a+b, a+b >=<
a,> + < a, b > + < b, a > + < b, b >, and evaluate similarly for ||a− b||2.

Proof. (Correct proof of the above lemma)
To show that (yn)n is a Cauchy sequence, we have to use the parallelogram
identity

||x− yn + ym
2

||2 + ||yn − ym
2

||2 =
1

2
(||x− yn||2 + ||x− ym||2)

as both terms in RHS tend to d(x, V )2, but the first term in LHS is at least
d(x, V )2.

Remark. This holds more generally if V is a closed convex subset of H.

Generalize (Hohn-Banach Lemma?) If V is a closed convex set and x 6∈ V , then
there exists a linear form l on H bounde and ∃c ∈ R s.t. l(x) > c and l(y) < c
for all y ∈ V .
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Corollary. Every closed subspace has an orthogonal complement, namely if
V ⊆ H is a closed vector subspace, then H = V ⊕ V ⊥, where we write V ⊥ =
{x ∈ H,< x, y >= 0∀y ∈ V }. Note that V ⊥ is a closed subspace: xn → x,
< xn, y >= 0 =⇒ < x, y >= 0.

Proof. V ∩ V ⊥ = {0} because < x, x >= 0 =⇒ x = 0. H = V + V ⊥

because x − y ∈ V ⊥ if y is the projection of x to V given by the lemma:
this is because for all z ∈ V , ||x − y − z||2 ≥ ||x − y||2 since z + y ∈ V , i.e.
< x−y−z, x−y−z >≥ ||x−y||2, but LHS = ||x−y||2 + ||z||2 +2Re < x−y, z >.
So ∀z ∈ V , ||z||2 + 2Re < x− y, z >≥ 0. ∀t > 0, t2||z||2 + 2tRe < x− y, z >≥ 0,
t||z||2 + 2Re < x − y, z >≥ 0. When t → 0, Re < X − y, z >≥ 0∀z ∈ V . Now
z → −z gives Re < x − y, z >= 0, z → oz gives im < X − y, z >= 0, so
< x− y, z >= 0, i.e. x− y ∈ V ⊥.

Let E be a Bamach space (=complete normed vector space), E∗ =dual of
E := { bounded functionals on E} = {l : E → C linear, sup||x||≤1 |l(x)| < ∞}.
Then E∗ is also a Banach space (completeness follows that of C), with norm
||l|| = sup||x||≤1 |l(x)|.

Proposition. (Riesz representation theorem) If E = H is a Hilbert space, then
H is self-dual, i.e. H ∼= H∗, namely the map H → H∗ by y → (ly : x→< x, y >)
is an isomorphism, i.e. ∀l ∈ H∗,∃y ∈ H s.t. l(x) =< x, y >.

Proof. Let V = ker l, V is closed because l is bounded. So by previous corollary
H = V ⊕V ⊥ = ker l⊕ (ker l)⊥. Now pick x0 ∈ (ker l)⊥ s.t. l(x0) = 1. Clearly x0

is unique because if l(x1) = 1 then l(x0 − x1) = 0, x0 − x1 ∈ (ker l)⊥ ∩ ker l = 0.
Now l(y)− < y, x0

||x0||2 > must vanish on ker l and (ker l)⊥, so is zero everywhere.

So l(y) =< y, x0

||x0||2 .

Proposition. (Jensen’s inequality) Let Ω ⊆ Rd be a convex set. Let φ : Ω→ R
be a convex (continuous) function. Let X be an integrable R-valued random
variable s.t. X ∈ Ω a.s.. Then E(φ(x)) ≥ φ(E, X).

Remark. Ω convex means: for all x, y ∈ Ω, tx + (1 − t)y ∈ Ω ∀t ∈ [0, 1]; φ
convex means φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y) ∀t ∈ [0, 1].

Proof. (sketch)
We first show EX ∈ Ω: use the geometric Hahn-Banach separation theorem: if
x ∈ Ω, then there exists l affine linear form (l(x) =

∑
aixi + c, l(x) > 0, l(z) < 0

∀z 6∈ Ω. If EX 6∈ Ω then l(EX) < 0, but El(X) ≥ 0, impossible.

Then let F be the set of affine linear forms l s.t. φ(x) ≥ l(x) for all x ∈ Ω.
Then we claim that φ(x) = supl∈F l(x) for all x ∈ Ω (φ continuous). To prove
that we use the geometric Hahn-Banach separation theorem and apply it to
Ωφ = {(x, y), y ≥ φ(x)} which is a convex set.

Proof of Jensen’s inequality: pick l ∈ F s.t. l(EX) = φ(EX), which is also equal
to E(l(x)) ≤ Eφ(X) because l ∈ F .
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Remark. If φ is convex on Ω then φ is continuous at every point in the interior
(exercise).
Using this remark and an induction on d, one can remove the continuity assump-
tion on φ.

Example. • φ = − log x on (0,+∞) is convex. So if X is a real valued r.v.,
X > 0 a.s., then E(logX) ≤ log(EX).
• x → xα, α ≥ 1 is convex. E(|X|α) ≥ E(|X|)α. In particular, if q ≥ p, then
E(|X|p)1/p ≤ E(|X|q)1/q. Hence Lq(Ω,A,P) ⊆ Lp(Ω,A,P).

Careful: in infinite measure e.g Ω = R, µ =Lebesgue, then there is no inclusion
relation between Lp and Lq.

2.3 Conditional Expectation

Let (Ω,F ,P) be a probability space, let G ⊆ F be a sub-σ-algebra.

Proposition. ∀A ∈ F , ∃ a unique G-measurable R.V. denoted by P(A | G) s.t.

∀B ∈ GP(B ∩A) = E(1BP(A | G))

and this is called the conditional probability of A w.r.t. G.

We also say P(A | G) is the ”probability of A knowing G”.

Example. Let G = {B,Bc, φ,Ω}. Then

P(A | G)(ω) =

{
P(A ∩B)/P(B) ω ∈ B
P(A ∩Bc)/P(Bc) Ω ∈ Bc

Notation: P(A | B) = P(A∩B)
P(B) .

If A is independent of G, then P(A | G)(ω) = P(A).

Proof. L2(Ω,G,P) is a closed subspace of L2(Ω,F ,P). Also they are Hilbert
spaces, so ∃Y ∈ L2(Ω,G,P) s.t. 1A−Y ⊥ L2(Ω,G,P), because L2(F) = L2(G)⊕
L2(G)⊥. But this means E(1B(1A − Y )) = 0 ∀B ∈ G, i.e. P(B ∩ A) = E(1AY )
so we showed existence.

For uniqueness, suppose Y, Y ′ (G-measures) satisfy E(1BY ) = E(1BY
′) ∀is ∈ G.

But then E(1B(Y − Y ′)) = 0, so Y = Y ′ a.s..

More generally,

Proposition. Let X be an integrable r.v. on L1(Ω,F ,P) and G a sub-σ-algebra.
Then there exists a unique G-measurable r.v. Y s.t. E(1BX) = E(1BY ) ∀B ∈ G.

Remark. Y is denoted by E(X | G) and is called the conditional expectation of
X w.r.t. G. If X = 1A, then Y = P(A | G).
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2.4 Convolutions

Definition. If f , g are functions in L1(Rd), we define the convolution of f and
g by

f ∗ g(x) =

∫
Rd
f(x− y)g(y)dy

whee dy is a Lebesgue measure.

Remark. This shows that f ∗ g ∈ L1(Rd) and ||f ∗ g||1 ≤ ||f ||1||g||1.

We say L1(Rd) is a Banach algebra: Banach space with a product satisfying the
above inequality.

Note it is commutative: f ∗ g = g ∗ f .

Definition. More generally, one can define the convolution of two measures on
Rd.

If µ, ν are probability measures, then we define µ ∗ ν to be the image of µ⊗ ν
on Rd × Rd to Rd under the addition map a : Rd × Rd → Rd by (x, y)→ x+ y.
µ∗ν = a∗(µ⊗ν), A ⊆ Rd, µ∗ν(A) = µ⊗ν∗a−1(A)) = µ⊗ν{(x, y) : x+y ∈ A} =∫

1A(x+ y)dµ(x)dν(y). We have µ ∗ ν(A) =
∫
µ(A− y)dν(y) =

∫
ν(A−x)dµ(x).

Remark. This is consistent with the previous definition: dµ = fdx, fν = gdx,
f, t ∈ L1(Rd), then d(µ ∗ ν) = f ∗ gdx.

If X,Y are independent Rd-valued random variables with law µx and µy respec-
tively, then X + Y has law µx ∗ µy.

Lemma. (continuity of translation on Lp)
If p ∈ [1,∞), and if f ∈ Lp(Rd), then ||τh(f) − f ||p → 0 as h → 0, where
τh(f)(x) := f(x+ h).

Proof. Step 1: Assume f ∈ Cc(Rd). Then it’s clear by dominated convergence
because τh(f)→ f pointwise as h→ 0.

Step 2: General case. Approximate f by a function g ∈ Cc(Rd), i.e. ∀ε∃ such a
g s.t. ||f −g||p < ε. Then ||τhf −f ||p ≤ ||τjf − τhg||p+ ||τhg−g||p+ ||g−f ||p ≤
2ε+ ||τhg − g||p.

Lemma. (gaussian approximation)

If p ∈ [1,∞), and if f ∈ Lp(Rd), then ||f ∗ gτ − f ||p
σ→0−−−→ 0, where gσ is the

density of a gaussian N(0, σ2),

gσ(x) = (
1√

2πσ2
)de−

x21+...+x2d
2σ2

and gσ(x)dx =law of σ(X1, ..., Xd), where Xi is IID N(0, 1).

Remark. f ∗ gr is C∞ (differentiation under integral sign).
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Proof. f ∗ gr(x) − f(x) = E(f(x − σX) − f(x)) where X = (X1, ..., Xd), Xi’s
IID N(0, 1). By Jensen’s inequality for x→ xp,

||f ∗ gσ − f ||pp ≤ E(||f(x− σX)− f(x)||pp)

then let σ → 0 and use the previous lemma and Dominated Convergence.

2.5 Fourier transform on Rd

Definition. If f ∈ L1(Rd), we can define its Fourier transform by

f̂(u) =

∫
f(x)ei<u,x>dx

where < u, x >= u1x1 + ...+ udxd.

Remark. |f̂(u)| ≤ ||f ||1, so f̂ is bounded;

f̂(u) is continuous in u (by Dominated Convergence).

More generally,

Definition. If µ is a probability measure on Rd, we can define µ̂(u) =
∫
ei<u,x>dµ(x).

Example. If X is on Rd-valued r.v. with law µx, then µ̂X ∗ u) is called the
characteristic function of X.

Example. • X ≡ c ∈ Rd a.s. constant, then µx = δu the dirac mass, and
µ̂X(u) = ei<u,c>.

• X =a normalized gaussian N(0, 1), µx = g(x)dx where g(x) = 1√
2π
e−x

2/2.

Then µ̂X(u) = e−u
2/2.

In particular, µ̂X(u) = ĝ(u) =
√

2πg(u), i.e. this is fixed point of the fourier
transform.

Proof.

ĝ(u) =

∫
g(x)eiuxdx

∫
e−x

2/2eiuxdx

d

du
ĝ(u) =

∫
g(x)ixeiuxdx

but −xg(x) = g′(x). Integrate by parts, the above is

= −
∫
g′(x)ieiux = u

∫
g(x)eiuxdx = uĝ(u)

g′(u) = uĝ so we solve this 1st order ODE and get ĝ(u) = ĝ(0)e−u
2/2, so

ĝ(u) = e−u
2/2.

Theorem. (Fourier Inversion Formula)

If f and f̂ are in L1(Rd), then f(x) = 1
(2π)d

ˆ̂
f(−x) a.e., meaning f decomposes

as a (continuous) linear combination of ”characters”, i.e. χu := x→ ei<u,x>. So

f(x) =
1

(2π)d

∫
f̂(u)e−iuxdu
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Last time we introduced:

Theorem. (Fourier Inversion)

Suppose f ∈ L1(Rd), and assume f̂ ∈ L1(Rd). Then f(x) = 1
(2π)d

ˆ̂
f(−x) =

1
(2π)d

∫
f̂(u)e−i<u,x>du.

< u, x >= u1x1 + ...+ udxd.

Remark. The functions x → ei<u,x> are continuous group homomorphisms
from Rd to {z ∈ C, |z| = 1}.
Exercise: every continuous group homomorphism from Rd to U(the unit circle
in complex plane) is of this form.

Remark. If f, g ∈ L1(Rd) then f ∗ g =
∫
f(x − y)g(y)dy is s.t. ˆf ∗ g = f̂ · ĝ.

To show this, we have

∫
f ∗ g(x)ei<u,x>dx =

∫ ∫
f(x− y)g(y)ei<u,x>dxdy

=

∫ ∫
f(z)g(y)ei<u,y+z>dz

= f̂(u)ĝ(u)

In probabilistic terms, we view X ∼ µX , y ∼ µY , then µ̂X(u) = E(ei<u,x>),
µ̂Y (u) = E(ei<u,y>. X and Y are independent, so E(ei<u,X+Y >) is the product
of the two expectations. Then rewrite the expectations as fourier transforms.

Proof. (of Fourier Inversion)
• First note that if it holds for f ∈ C1(R), it also holds for ft : x → f(tx)

for t > 0 (i.e. dilation) by change of variables: f̂t(u) =
∫
f(tx)ei<u,x>dx =

1
td

∫
f(tx)ei<u/t,x>d(tx) = 1

td
f̂(ut ). So

∫
f̂t(u)e−i<u,x>du = 1

td

∫
f̂(ut )e−i<u/t,x>du =∫

f̂(U)e−i<u,tx>du = (2π)df(tx) = (2π)dft(x).
• The inversion formula holds for f = G a normalized Gaussian:

G(x) =
1

(
√

2π)d
e−

x21+...+x2d
2 = g(x1)...g(xd)

where g(x) = 1√
2π
e−x

2/2, ĝ(u) = e−u
2/2 by last time. This is because

Ĝ(u) =

∫
G(x)ei<u,x>dx =

d∏
1

∫
g(xi)e

−iuixidxi =
∏

e−u
2
i /2

= e−
u21+...+u2d

2 = (2π)d/2G(u),

ˆ̂
G(x) =

∫
Ĝ(u)ei<u,x>du = (2π)d/2

∫
G(u)ei<u,x>du = (2π)d/2Ĝ(x)

= (2π)dG(x) = (2π)dG(−x)

by the previous steps, the formula holds for Gσ ∼ N(0, σ2Id) ∼ σ(X1, ..., Xd)

where Gσ(x) = e
−
x21+...+x2d

2σ2

(
√

2πσ2)d)
= 1

σd
G(x/σ). Now Ĝσ(u) = Ĝ(σu) = e−σ

(u21+...+u2d)

2 .
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Note that Ĝσ(u)→ 1 as σ → 0. Also f ∗Gσ
σ→0−−−→ f , so f̂ Ĝσ → f̂ .

• Special case: f has the form f = φ ∗Gσ for some σ > 0 for some φ ∈ C1(Rd).
Then f̂ = φ̂ · Ĝσ. So

f(x) = φ ∗Gσ(x) =

∫
φ(x− y)Gσ(y)dy

=

∫
φ(x− y)

∫
Ĝσ(u)e−i<u,y>

du

(2π)d
dy

=

∫ ∫
φ(z)Ĝσ(U)e−i<u,x−z>

dudz

(2π)d

=

∫
φ̂(u)Ĝσ(u)︸ ︷︷ ︸

ˆφ∗Gσ=f̂

e−i<u,x>
du

(2π)d

• For the general case, when f, f̂ are in L1, let fσ = f ∗ Gσ. We apply the
Fourier Inversion formula to fσ. So

fσ(x) =

∫
f̂σ(u)e−i<u,x>

du

(2π)d
=

∫
f̂(u)Ĝσ(u)e−i<u,x>

du

(2π)d

However, the last term tends to
∫
f̂(u)e−i<u,x> du

(2π)d
pointwise a.e. x as σ → 0

since f̄ ∈ C1 by Dominated Convergence. Also, fσ(x) tends to f as σ → 0 by
the gaussian approximation lemma. So we have, a.e.,

f(x) =

∫
f̂(u)e−i<u,x>

du

(2π)d

Theorem. (a) If f ∈ L1(Rd)∩L2(Rd), then f̂ ∈ L2(Rd), and ||f̂ ||2 = (2π)d/2||f ||2
(Plancherel formula).

(b) Furthermore, if f, g ∈ L1 ∩ L2(Rd), then < f̂, ĝ >= (2π)d < f, g >, where
< f, g >=

∫
Rd fḡdx.

(c) Finally, the map F : L1∩L2(Rd)→ L2(Rd) by f → 1
(2π)d/2

f̂ extends uniquely

to a linear involutive isometry of L2(Rd). Here, extends means to L2 → L2,
linear means F(f + λg) = Ff + λFg, involutive means F ◦ F = idL2 , and
isometry means ||Ff ||2 = ||f ||2, or < Ff,Fg >=< f, g >.

Proof. Proof of (a) and (b): First assume f, f̂ ∈ L1. Then

||f̂ ||22 :=

∫
f̂(u)f̂(u)du =

∫
[

∫
f(x)ei<x,u>dx]f̂(u)du

but (x, u) → f(x)f̂(U) is in L1(Rd × Rd). So Fubini applies, and above is

equal to
∫ ∫

f(x)(
∫
f̂(u)e−i<u,x>du)dx. Apply Fourier inversion formula, this is

equal to
∫
f(x) ¯f(x)(2π)ddx = (2π)d||f ||22, and this is finite. So f̂ ∈ L2(Rd) and
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||f̂ ||22 = (2π)d||f ||22.

Similarly, if f, g ∈ L1 ∩ L2, s.t. f̂ , ĝ ∈ C1, the same calculation will show that
< f̂, ĝ >= (2π)d < f, g >.

Now assume only f ∈ L1 ∩ L2,, and no assumption on f̂ (general case). Then

consider gaussian approximation fσ := f ∗ Gσ. Now f̂σ = f̂ Ĝσ ∈ L1. So (a)

holds for fσ, and fσ
σ→0−−−→ f in L2 by Gaussian approximation lemma, f̂σ = f̂ Ĝσ,

Ĝσ tends to 1 pointwise as σ → 0 (||f̂σ||22 = (2π)d||fσ||22||f̂ ||22 = (2π)f ||f ||22).
The proof to this is not that important, instead the formula itself is much more
important.
(b) is basically the same thing.
(c) by (a) and (b), ||Ff ||2 = ||f ||2 for all f ∈ L1 ∩ L2(Rd). But L1 ∩ L2(Rd) is
dense in L2(Rd), and the intersection contains Cc(Rd).

Define for f ∈ L2(Rd), Ff = limn→∞ Ffn in L2(Rd) for some (or any) fn ∈
L1 ∩ L2, fn

L2

−−→ f as n→∞.

Recall from last lecture that for f ∈ L1(Rd) we defined its fourier transform,
and for µ a measure in the probability space Rd we defined its characteristic
function µ̂(u) =

∫
ei<u,x>dµ(x). (This looks different from the previous lecture,

but I guess this is the correct version?)

Proposition. If µ, ν are measures on probability space Rd, s.t. µ̂(u) = n̂u(u)
∀u, then µ = ν.

Proof. Use gaussian approximation: pick δ > 0. LetGδ(x) = ( 1√
2πσ2

)de−||x||
2/2σ2

be a gaussian, Gδ(x)dx ∼ δN, where N = (N1, ..., Nn) are i.i.d. normal-
ized gaussian N(0, 1). Consider µ ∗ Gδ, note µ ∗ Gδ ∈ L1(Rd) (?) and

µ̂ ∗Gδ = µ̂Ĝδ ∈ L1(Rd), because |µ̂| ≤ 1, Ĝδ(u) = e−δ||u||
2/2. So we can

apply the Fourier Inversion formula to µ ∗Gδ. Now let g ∈ Cb(Rd). Let X be a
r.v. on Rd with law µ. Then

∫
g(x)dµ(x) = E(g(x)) = lim

δ→0
E(g(X + δN))

but E(g(X + δN)) =
∫
g(x)µ ∗Gδ(x)dx. But µ ∗Gδ is determined by µ̂ and σ

(by the Fourier inversion Formula). So E(g(X + δN)) is determined by µ̂ and σ.
This ends the proof.

Proposition. If µ is a measure on the probability space Rd s.t. µ̂(u) ∈ L1(Rd),
then µ has a density f(x) w.rt. Lebesgue, i.e. dµ(x) = f(X)dx for f ∈ L1(Rd).
In particular, µ̂ = f̂ .(??? ok fine)

Proof. Use Gaussian approximation. Let fδ = µ ∗ Gδ (i.e. f(x) =
∫
Gδ(x −

ydµ(y)). So fδ ∈ L1, f̂δ ∈ L1, so by Fourier inversion,

fδ(x) =
1

(2π)d

∫
µ̂(x) Ĝδ(u)︸ ︷︷ ︸

=e−δ||u||2/2

e−i<u,x>du



2 PROBABILITY AND MEASURE 46

We see by Dominaged convergence (because µ̂ ∈ L1) that

fδ(x)
δ→0−−−→ 1

(2π)d

∫
µ̂(x)e−i<u,x>du︸ ︷︷ ︸
:=f(x)

We need to show dµ = f(x)dx. Pick X r.v. ∼ µ. N = (N1, ..., Nd) i.d. N(0, 1),
g ∈ Cb(Rd). Then

E(g(X)) = lim
σ→0

E(g(X + δN))

= lim
σ→0

∫
g(x)fσ(x)dx

=

∫
g(x)f(x)dx

by dominated convergence.

Now we’ll look at a very important theorem, which is apparently important
looking at the length of its name:

Theorem. (Levy’s criterion for convergence of random variables in distribution)
Let (Xn)n, X be Rd-valued random variables. The following are equivalent:
(i) Xn → X in distribution;
(ii) µ̂Xn → µ̂X(u) for all u ∈ Rd.

Proof. (i) implies (ii) is obvious: x→ ei<u,x> ∈ Cb(Rd)(need to read again).
(ii) implies (i): It’s enough to check E(g(Xn)) → E(g(x)) ∀g ∈ C∞c (Rd) (see
example sheet).
Use Gaussian approximation, µXn ∗Gσ ∼ Xn + σN. Then

|E(g(Xn))− E(g(X))| ≤ |E(g(Xn)− g(Xn + δN))|+ |E(g(Xn + δN)− g(X + δN))|+ |E(g(X + δN)− g(X))|

We consider the three terms in RHS separately:
(1)

|g(x)− g(x+ y)| ≤ ||∇g||∞||y||
uniformly on x. So the first term is at most ||∇g||∞E(σ||N||) = oσ(1) when
σ → 0 (or just tend to 0).

(2) Fix σ > 0. Then the second term equals∫
g(x)(µXn ∗Gσ − µ ∗Gσ)(x)dx

n→∞−−−−→ 0

because

µXn ∗Gσ(x) =
1

(2π)d

∫
µ̂Xn(u)e−σ||u||

2/2ei<u,x>du

by dominated convergence, then

lim
n→∞

µXn ∗Gσ(x) = µ ∗Gσ(x)

.

(3) This tends to 0 as σ → 0 by Dominated convergence.
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Now we look at multivariate gaussian random variables.

Recall that a 1-dimensional gaussian is a r.v. X such that dµX(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 dx,

where µ is mean, σ is the standard deviation: σ2 = V arx = E([X − E(x)]2) =
E(X2)− (E(X))2. We denote this by N(µ, σ2).

Definition. An Rd-valued r.v. X is a gaussian if ∀u ∈ Rd, < X,u >=
u1X1+...+udXd is a Gaussian r.v. (see IB statistics, or II Principle of Statistics).

Proposition. A gaussian law is uniquely determined byits mean E(X) ∈
Rd, and its covariance matrix (Cov(Xi, Xj))1≤i,j≤d, where Cov(Xi, Xj) =
E((XiEXi)(Xj − EXj))

Proof. µ̂X(tu) = E(ei<u,X>) = µ̂<X,u>(t), so the law of X is determined by the
law of each < X,u > for u ∈ Rd, i.e. by E(< X,u >) and V ar < X, u >. But:
• E(< X,u >) =< EX,u >;
• V ar < X, u >= E((< X, u > − < EX,u >)2) =

∑
i,j E((Xi − EXi)(Xj −

EXj))uiuj .

Remark. The last calculation shows that (Cov(Xi, Xj))i,j := K) is a symmetric
and non-negative matrix, i.e. (∃A s.t. K = ATA).

Proposition. if X is an Rd-valued gaussian r.v., then ∃A ∈Md(R), b ∈ Rd, s.t.
X ∼ AN + b where N = (N1, ..., Nd) i.i.d. N(0, 1).

Proof. Note: E(AN + b) = b, Cov(AN + b) = Cov(AN) = AAT . This is
because V ar < AN, u >=< u,Cov(AN)u >, but LHS = V ar < N, Atu >=
V ar(

∑
(ATu)iNi) =

∑
[(ATu)i]

2 = ||Atu||2 =< Atu,Atu >=< u,AAtu >.

Definition. X is called non-degenerate if detA 6= 0. In this case, X has density

1

(2π)d/2(detA)
e−

1
2 ||A

01(X−b)||2

and µ̂X(u) = ei<u,b>e−
1
2<u,Ku> where K = AAt = Cov(X) ∈ Md(R), and

b = E(X).

Proposition. If X = (X1, ..., Xd) is a gaussian r.v., then the following are
equivalent:
(i) The X ′is are independent;
(ii) The Xi’s are pairwise independent;
(iii) The covariance matrix of X is a scalar matrix.

Proof. (i) implies (ii) implies (iii) is obvious. (iii) implies (i) follows from the
previous proposition, which shows that X ∼ σN + b.

Recall last time that we have Levy’s criterion for convergence in distribution.
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Theorem. (Central Limit Theorem)
Let (Xn)n≥1 be i.i.d. Rd-valued random variables, with finite second moment.
then

Yn :=
X1 +X2 + ...+Xn − nE(X1)√

n

d−→ N(0,K)

where N(0,K) is the central multi-variate gaussian with covariance matrix K,
i.e. K = Cov(Xi).

Proof. By the Levy’s condition, Yn
d−→ Y ⇐⇒ < Yn, u >

d−→< Y, u > ∀u ∈ Rd.
Therefore wlog we may assume d = 1. Furthermore, looking at Xn−EX1 instead
of Xn, wlog we may assume EX1 = 0. Also we may look at 1

σX1 instead of Xn

(σ2 = EX2
1 ) so wlog we may assume E(X2

1 ) = 1.

So E(X1) = 0, E(X2
1 ) = 1. We need to show that

X1 + ...+Xn√
n

d−→ N(0, 1)

by Levy’s criterion we need to show E(e
iu
X1+...+Xn√

n ) → ĝ(u) where g(x) =
1√
2π
e−x

2/2. By independence,

E(e
i u√

n
(X1+...+Xn)

) =

n∏
i=1

E(e
i u√

n
X

) = [E(e
i u√

n
X

)]n = [µ̂X1

u√
n

]n

We taylor expand u → ûX1
(u) near 0. Since E(X1)2 < ∞, we mayifferentiate

twice ûX1(u) w.r.t. u. So ûX1 is C2. Now the taylor expansion gives

ûX1(u) = ûX1(0) + uû′X1
(0) +

1

2
u2ûx′′1(0) + o(u2)

so ûX1(u) = 1− u2

2 + o(u2).

So

[µ̂X1

u√
n

]n = [1− u2

2n
+ o(1/n)]n

n→∞−−−−→ e−u
2/2

for each u ∈ R. But ĝ(u) = e−u
2/2.

2.6 Ergodic Theory

Let (X,A, µ) be a measure space, and T : X → X a measurable map.

Definition. µ is presented by T , or T is µ-presenting, if µ(T−1A) = µ(A)
∀A ∈ A. Equivalently, T ∗ µ = µ.

Definition. A measurable function f : X → R is called T -invariant if f ◦T = f .

Definition. A set A ∈ A is called T invariant if T−1A = A.

Definition. S = {A ⊂ A, T−1A = A} is a sub-σ-alegbra of A called the
invariant subalgebra.
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Exercise: f is T -invariant ⇐⇒ f is measurable w.r.t. S .

Definition. T is ergodic w.r.t. µ (or equivalently, µ is T -ergodic)) if ∀A ∈ S ,
µ(A) = 0 or µ(Ac) = 0.

Exercise: when X is a finite space, A = discrete boolean algebra of all subsets
of X, µ = counting measure (µ(A) = #A, let T : X → X be a map, then T is
µ-preserving iff T is bijective, and T is ergodic iff ∀x, y∃n ≥ 1 Tnx = y.

Example. (1) X = Rn/Zn, A = Borel, µ = Lebesgue. T = Ta : x → x + a,
a ∈ X. It’s an exercise to show that Ta is ergodic iff (1, a1, ..., an) is LI over Q.
For example, when n = 1 Ta is ergodic iff a 6∈ Q.
(2) X = R/Z. T (x) = 2x− [2x]. Then T is ergodic.
(3) X = R/Z, T = the tent map, i.e. a piecewise-linear function that is 0 at 0
and 1, and 1 at 1/2. Then T is ergodic. In fact, it’s possible to show that the
tent map and example (2) is conjugate, i.e. if one if ergodic, so is the other one.
This map is famous in Dynamical Systems.

Example. (Canonical model)
Let (Xn)n≥1 be a sequence of real random variables on a probability space
(Ω,F ,P). Let X = RN, A = σ(coordinate maps (xn)n≥1), xn : RN → R by
(ωi)i≥1 → ωk(?). Let Y : Ω→ RN by ω → (Xn(ω))n≥1 (sample path map). Let
µ = Y∗P, a probability measure on (X,A), then (X,A, µ) is a probability space.
Let TRN → RN by (xi)i≥1 → (xi+1)i≥1 is called the Shift.

Remark. T preserves |mu ⇐⇒ ∀n, k ≥ 1, (Xn+1, ..., Xn+k) = (X1, ..., Xk) in
distribution.

Definition. A random process with this property is called a stationary process.

Example. If (Xn)n≥1 are i.i.d. then the process is staitonary and T∗µ = µ.

Definition. When the (Xn)n≥1 are i.i.d., the measure space (X,A, µ) together
with T is called a Bernoulli shift.

Note: S = {A ∈ A, T−1A = A} satisfies Y −1(S ) ⊆ T = Total σ-algebra.
(T = ∩nσ(Xn, Xn+1, ...))

Proof. Pick A ∈ A, Y −1A = {ω; (Xn(ω))n≥1 ∈ A}, if T−1A = A, it is also equal
to {ω; (Xn+1(ω))n≥1 ∈ A} = ... = {ω|(Xn−k(ω))n ≥ 1 ∈ A} for all k ≥ 1. So
Y −1A ∈ σ(Xk, Xk+1, ...)∀k, so Y −1A ∈ T .

Consequence: when the (Xn)n≥1 are i.i.d., T is trivial (i.e. P(A) = 0 or 1
∀A ∈ T ). Therefore ∀A ∈ S , µ(A) = P(Y −1A = 0 or 1. So the shift T is
ergodic on (X = RN,A, µ = Y∗P).
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