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0 Introduction

The idea of the course is to present some mathematical principles of statistics.

The objective of statistics can be described as below: in probability we have
a known distribution and we wish to describe what’s going to happen with
random variables with this distribution. In contrast, in statistics we observe the
behaviour of random variables with some unknown distributions and we try to
recover the distribution.

Formally, for a real-valued random variable X on a probability space Ω, we
define its distribution

F (t) = P(w ∈ Ω : X(w) ≤ t) = P(X ≤ t)

When X is discrete,

F (t) =
∑
x≤t

f(x)

and f is called the probability mass function (pmf ).

When X is continuous,

F (t) =

∫ t

−∞
f(s)ds

and we call f the probability density function (pdf ).

In many problems in statistics, we have a sample X1, X2, ..., Xn, i.e. n indepen-
dent copies of the same random variable X. We call n the sample size, and write
X1, ..., Xn i.i.d..

Often, the distribution is known to belong to a certain class.

Definition. A statistical model, or a parametric model, is any family of pmf/pdf
or probability distribution, indexed by a parameter: {f(θ, ·) : θ ∈ Θ} or {Pθ :
θ ∈ Θ}.

Example. (1) Consider N(θ, 1); θ ∈ Θ = R, the normal distribution;
(2) N(µ, σ2); in this case, θ = (µ, σ2) ∈ Θ = R× (0,∞). This example is to show
that θ doesn’t have to be just one real sigmamber;
(3) Exp(θ); θ ∈ Θ = (0,∞);
(4) N(θ, 1), θ ∈ Θ = [−1, 1].

Definition. For a random variable X with distribution P , we say that the
model

{Pθ : θ ∈ Θ}

is correctly specified if there exists a θ ∈ Θ s.t. Pθ = P .

Remark. If X ∼ N(2, 1), then in the above example, (1) is correctly specified
but (4) is not.
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When the model is correctly specified, we will write θ0 for the value s.t. P = Pθ0 .
theta0 is usually the unknown.

Here are some task/problems in statistics:

1. Estimation: construct θ̂ = θ̂(X1, ..., Xn), i.e. a function of the observation,

such that when Xi ∼ Pθ0 , we have that θ̂ is close to θ0.

2. Testing hypotheses: we want to determine whether we are under a sigmall
hypothesis H0 : θ = θ0 or the alternative H1 : θ 6= θ0.

3. Inference: to find intervals or sets ϕn = ϕn(X1, ..., Xn) such that for some
0 < α < 1, we have

Pθ(θ ∈ ϕn) = 1− α

(sometimes ≥ or → 1− α).
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1 The Likelihood Principle

1.1 Basic ideas and concepts

Let X1, ..., Xn be i.i.d. from {Poi(θ) : θ ≥ 0} with numerical values Xi = xi for
1 ≤ i ≤ n.

The joint distribution is

f(x1, ..., xn; θ) = Pθ(X1 = x1, ..., Xn = xn)

=

n∏
i=1

Pθ(Xi = xi)

=

n∏
i=1

f(xi, θ)

=

n∏
i=1

(
e−θ

θxi

xi!

)

= e−nθ
n∏
i=1

θxi

xi!

= Ln(θ)

where Ln(θ) is the probability of this particular sample under Pθ. We will be
interested in the value(s) of θ that maximize this likelihood.

Mathematical principle: it is helpful to think of Ln(θ) as a random function on
Θ, with the randomness coming from the observations. Different observations
could lead to different Ln.

To maximize Ln(θ), it is often more practical to maximize ln(θ) = log(Ln(θ)),
which is an increasing function and more practical for calculus. We have

ln(θ) = −nθ + log(θ)

n∑
i=1

xi −
n∑
i=1

log(xi!)
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take the derivative, we have

l′n(θ) = 0 ⇐⇒ −n+
1

θ

n∑
i=1

xi = 0

if
∑n
i=1 xi = 0, θ̂ = 0 directly. Otherwise we have

θ̂ =
1

n

n∑
i=1

xi

we can also check l′′n(θ) that this is indeed a maximum.

Definition. Let {f(·, θ) : θ ∈ Θ} be a statistical model of pmf/pdf for the
distribution P of n i.i.d. observations X1, ..., Xn of X ∼ P with realisations
xi1 ≤ i ≤ n (???).

The likelihood function Ln is

Ln(θ) =

n∏
i=1

f(xi, θ)

where f is the probability or density of the realization with iid assumption). The
log-likelihood function is

ln(θ) = logLn(θ) =

n∑
i=1

log f(xi, θ)

and the normalized log-likelihood function is

l̄n(θ) =
1

n
ln(θ) =

1

n

n∑
i=1

log f(xi, θ)

Definition. The maximum likelihood estimator(MLE) is any element θ̂ ∈ Θ
such that

Ln(θ̂) = max
θ∈Θ

Ln(θ)

Remark. By definition of all these functions and of the estimators, we should
see that it’s equivalent to maximize any of the Ln, ln or l̄n. In particular, we
can use any of these in the definition of the maximum likelihood estimator. We
can think of the MLE as a function of the observations, i.e. θ̂ = θ̂(X1, ..., Xn).

The definitions above can be relaxed if the variables are not i.i.d but a joint
distribution can be specified.

Example. • For Xi ∼ Poi(θ), θ ≥ 0; θ̂ = X̄n = 1
n

∑n
i=1Xi.

• For Xi ∼ N(µ, σ2), θ = (µ, σ2) ∈ R× (0,∞), we’ve seen from previous courses
(but it’s also good to check again) that

ln(θ) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
i=1

(Xi − µ)2
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To maximize this, we write τ = σ2, then

∂ln
∂µ

(θ) = (−2)×

(
− 1

2σ2

n∑
i=1

(Xi − µ)

)
∂ln
∂τ

(θ) = −n
2

1

σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2

We need ∇ln = 0, so the first equation gives µ̂ = X̄n. Using this in the second
equation we get

σ̂2 =
1

n

n∑
i=1

(Xi − X̄n)2

By checking the Hessian we could see that these indeed maximizes ln.

In many examples, the MLE is found as a root of the gradient of the log-likelihood
(as we’ve been used to in Part IB statistics). So for convenience we might as
well give it a name.

Definition. For Θ ⊆ Rp, the score function is

Sn(θ) = ∇θln(θ) =

[
∂

∂θ1
ln(θ), ...,

∂

∂θp
ln(θ)

]
.

Remark. One of the main uses of this function is that we have Sn(θ̂) = 0, under
’nice’ conditions (e.g. MLE is not achieved on the boundaries, the likelihood
function is smooth, etc.).

It’s important to note (again) that ln and Sn are random functions of a variable
θ, where the randomness comes from the observations X1, ..., Xn i.i.d. with
Xi ∼ Pθ0 (the true θ). Therefore it only makes sense to take derivative with
respect to the variable θ but not the observations, because they are what
determine the function ln and Sn themselves and should really be considered
fixed.

1.2 Information geometry and likelihood function

Definition. We recall that for a variable X with distribution Pθ on X ⊆ Rd
and g : X ⊂ R, we have

Eθ[g(X)] =

∫
X
g(x)dPθ(x) =

∫
X
g(x)f(x, θ)dx

for the discrete case we just change from integrals to sums.

Theorem. For a model {f(·, θ), θ ∈ Θ} and a variable X ∼ P such that
E[| log f(X, θ)|] < ∞, if the model is well-specified (i.e. θ0 ∈ Θ) with f(x, θ0)
the pdf of P , the function l defined by

l(θ) = Eθ0 [log f(X, θ)]
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is maximized at θ0. In other words, if we somehow had access to the function l
(which is impossible in reality because we don’t know θ0), then we can maximize
it and find the true value of θ0. We usually do the next best thing and take
instead a finite sample approximation

l̄n(θ) =
1

n

n∑
i=1

log f(Xi, θ)

We use it as a proxy for l(θ). The idea is that if l̄n(θ) is a good approximation of

l(θ), then by maximizing it, the MLE θ̂ we find would be a good approximation
for the true value θ0 as well.

Proof. For all θ ∈ Θ,

l(θ)− l(θ0) = Eθ0 [log f(X, θ)]− Eθ0 [log f(X, θ0)]

= Eθ0
[
log

(
f(X, θ)

f(x, θ0

)]
.

For a concave function ϕ, Jenson’s inequality states that

E[ϕ(Z)] ≤ ϕ(E[Z])

And we know log is concave. So

l(θ)− l(θ0) ≤ logEθ0
[
f(X, θ)

f(X, θ0)

]
= log

∫
X

f(x, θ)

f(x, θ0)
f(x, θ0)dx

≤ log(1) = 0.

because f(x, θ) is a distribution. So we see that θ0 maximizes l.

If we satisfy strict identifiability, i.e. f(·, θ) = f(·, θ′) ⇐⇒ θ = θ′, then the strict
version of Jenson’s inequality holds and θ0 is the unique value that maximizes l.

In information theory, we have the notion of divergence between distributions

KL(Pθ0 , Pθ) :=

∫
X
f(x, θ0) log

f(x, θ0)

f(x, θ)
dx

i.e. the expectation of the log under the true (θ0) distribution.

It is equal to l(θ0) − l(θ), and can be thought of as a distance between the
distributions.

So maximizing l(θ) = l(θ0) −KL(Pθ0 , Pθ) can be thought of as minimizing a
distance to θ0.

—-lecture 3—-

We had l̄n(θ) = 1
n

∑n
i=1 log f(Xi, θ), and Eθ0 [l̄n(θ)] = l(θ).
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We saw that the MLE θ̂ is often solution to Sn(θ̂) = ∇θ l̄n(θ̂) = 0. by exchanging
sum and gradient, i.e. 1

n

∑n
i=1∇θ log f(Xi, θ) = 0.

Theorem. For a parametric model {f(·, θ) : θ ∈ Θ} that is ”regular enough”,
we have for all θ in the interior of Θ,

Eθ[∇ log f(X, θ)] = 0

Note that the θ involved in the subscript of E and the argument of f are the
same θ.

Proof.

Eθ[∇ log f(X, θ)] =

∫
X

(∇ log f(x, θ))f(x, θ)dx

=

∫
X

(∇f(x, θ) · 1

f(x, θ)
)f(x, θ)dx

=

∫
X
∇f(x, θ)dx

= ∇
∫
X
f(x, θ)dx

= ∇θ(1) = 0

Note that we interchanged ∇ and
∫
X by assuming enough regularity.

In particular, for the ’true’ θ0, we have

Eθ0 [∇θ log f(X, θ0)] = 0

Definition. For a parameter space Θ ⊆ Rp, we define the Fisher information
matrix as the p× p covariance matrix,

I(θ) = Eθ[∇ log f(X, θ) · ∇ log f(X, θ)T ]

coefficient-wise,

Iij(θ) = Eθ
[
∂

∂θi
log f(X, θ) · ∂

∂θj
log f(X, θ)

]
Remark. In particular, if we are in the one-dimensional case, we have that

I(θ) = Eθ

[(
d

dθ
log f(X, θ)

)2
]

= V arθ

[
d

dθ
log f(X, θ)

]
Theorem. With the same regularity assumptions, for all θ in the interior of Θ
we have

I(θ) = −E[∇2
θ log f(X, θ)]
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Proof.

∇2
θ log f(x, θ) = ∇θ

(
1

f(x, θ)
· ∇θf(x, θ)

)
=

1

f(x, θ)
∇2
θf(x, θ)− 1

f(x, θ)2
· ∇θf(x, θ) · ∇θf(x, θ)T

Now

−Eθ[∇2
θ log f(X, θ)] = −

∫
X

1

f(x, θ)
∇2
θf(x, θ) · f(x, θ)dx

+ Eθ

[(
1

f(X, θ)
· ∇θf(X, θ)

)(
1

f(X, θ)
· ∇θf(X, θ)

)T]
+ Eθ

[
∇θ log f(X, θ) · ∇θ log f(X, θ)T

]
= I(θ)

As the first two terms are 0 by
∫
X f(x, θ)dx = 1.

Remark. In dimension p = 1, we have

I(θ) = V arθ

[
d

dθ
log f(X, θ)

]
= −Eθ

[
d2

dθ2
log f(X, θ)

]

We shall mention here that the ”regularity assumptions” will be specified later
although they can just be stated as here. It is not the main focus of the course,
nor examinable.

Definition. For a random vector X = (X1, ..., Xn) ∈ Rn, the Fisher information
is naturally defined as

In(θ) = Eθ
[
∇θ log f(X1, ..., Xn, θ) · ∇θ log f(X1, ..., Xn, θ)

T
]

Proposition. When X = (X1, ..., Xn) consists of n i.i.d. observations of a
random variable from {f(x, θ) : θ ∈ Θ},

In(θ) = nI(θ).

Proof. Using that

f(X1, ..., Xn, θ) =

n∏
i=1

f(X, θ)

by independence, we have

∇θ log f(X1, ..., Xn, θ) =

n∑
i=1

∇θ log f(Xi, θ)
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So

In(θ) =

n∑
i=1

n∑
j=1

Eθ[∇θ log f(Xi, θ) · ∇θ log f(Xj , θ)
T ]

For i = j, each term of the sum is equal to I(θ) and there are n of them. For
i 6= j, Eθ[∇θ log f(Xi, θ)] = 0 (we’ve proved that before), so all those terms are
0.

Theorem. (Cramer-Rao lower bound)
Let {f(·, θ) : θ ∈ Θ} be a ’regular’ parametric model with p = 1, Θ ⊆ R. Also
let θ̃ = θ̃(X1, ..., Xn) be an unbiased estimator of θ0 where Xi ∼ Pθ0 are i.i.d.
For all θ0 in interior of Θ, we have

V arθ0(θ̃) = Eθ0 [(θ̃ − θ0)2] ≥ 1

nI(θ0)

Proof. For V arθ0 [θ̃] <∞, we first treat the case n = 1. We recall the Cauchy-
Schwarz inequality: for Y,Z random variables,

Cov(Y,Z)2 ≤ V ar(Y ) · V ar(Z)

Now take Y = θ̃, and

Z =
d

dθ
log f(X, θ)

we have

V arθ0(θ̃) ≥
Cov2

θ0
(θ̃, Z)

V arθ0(Z)

but we know V arθ0(Z) = I(θ0). We recall that Eθ0 [Z] = 0, so Covθ0(θ̃, Z) =
Eθ0 [θ̃ · Z] i.e.

Eθ0
[
θ̃
d

dθ
log f(X, θ0)

]
=

∫
X
θ̃(x)

1

f(x, θ0

d

dθ
f(x, θ0) · f(x, θ0)dx

=
d

dθ

∫
X
θ̃(x) · f(x, θ0)dx

=
d

dθ
Eθ0 [θ̃]

= 1

for n = 1.

Proposition. For a differentiable function Φ : Θ→ R and an unbiased estimator
Φ̃ of Φ(θ), we have for all θ in the interior of Θ,

V arθ0(Φ̃) ≥ 1

n
∇θΦ(θ0)T I−1(θ0)∇θΦ(θ0).

For example, consider Φ(θ) = αT θ =
∑p
i=1 αiθi, so ∇Φ = α. So the lower bound

is

V arθ0(Φ̃) ≥ 1

n
αT I−1(θ0)α.



1 THE LIKELIHOOD PRINCIPLE 12

Another example: let (X1, X2)T ∼ N(θ,Σ) where Σ is a known covariance
matrix. There are several cases:
• case 1: estimating θ1 when θ2 is known, the model is 1-dimensional and one
must compute I(θ1) (a scalar, one dimensional model);
• case 2: estimating θ1 when θ2 is unknown. We can consider Φ(θ) = θ1 when
θ2 is unknown: we can consider Φ(θ) = θ1 and must compute I(θ), which is a
2*2 matrix.
(Discussion: what if Σ is diagonal, i.e. we have independence between variables?)
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2 Asymptotic theory for the MLE

Many estimates (in particular the MLE) are not unbiased, but reasonable
estimators should satisfy

Eθ[θ̃]→ θ

as n→∞. A stronger statement is of the form

θ̃
(?)−−→ θ

in some sense (that we wish to define) when n→∞ when sampling from Pθ.

2.1 Stochastic convergence

Definition. (Convergence a.s. and in probability)
Let (Xn)n≥0, X be random vectors in Rk defined in a probability space.

(i) We say Xn converges to X almost surely (a.s.), written as Xn
a.s.−−→ X if

P(ω ∈ Ω : ||Xn(ω)−X(ω)|| → 0 as n→∞) = 1.

(ii) We say Xn converges to X in probability, written as Xn
P−→ X if

∀ε > 0 P(||Xn −X|| > ε)→ 0.

Definition. (Convergence in distribution)
We say (Xn)n≥0 converges to X in distribution if for all t ∈ Rk,

P(Xn � t)→ P(X ≤ t)

where LHS means P(X(1) ≤ t1, X(2) ≤ t2, ..., X(k) ≤ tk), i.e. ≤ in each compo-
nent.

Usually we just have
P(Xn � t) = F (t).

We write this as Xn
d−→ X.

Proposition. Xn
a.s.−−→ X =⇒ Xn

P−→ X =⇒ Xn
d−→ X, as n→∞.

Proposition. (Continuous mapping theorem)
If Xn, X take values in X ⊆ Rd and g : X → R is a continuous function, then

Xn
a.s./P/d−−−−−→ X =⇒ g(Xn)

a.s./P/d−−−−−→ g(X)

respectively.

Proposition. (Slutsky’s lemma)

Let Xn
d−→ X and Yn

d−→ c, where c is deterministic and non-stochastic, i.e.
P(C = c) = 1, then:

(a) Yn
P−→ c; this only works because c is deterministic – the same doesn’t apply
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for Xn;

(b) Xn + Yn
d−→ X + c;

(c) (k = 1) XnYn
d−→ cX, and Xn/Yn

d−→ X/c if c 6= 0;

(d) If (An)n≥0 are random matrices such that (An)ij
P−→ Aij where A is a

similarly non-stochastic matrix, then AnXn
d−→ AX.

Proposition. If Xn
d−→ X as n→∞, then (Xn)n≥0 is bounded in probaility or

Xn = OP (1), i.e.
∀ε > 0 ∃M(ε) <∞

s.t. for all n ≥ 0, P(||Xn|| ≥M(ε)) < ε.

2.2 Law of Large numbers and Central Limit Theorem

Proposition. (Weak law of large numbers)

LetX1, ..., Xn be i.i.d. copies ofX with V ar(X) <∞. Then X̄n = 1
n

∑n
i=1Xi

P−→
E[X] as n→∞.

Proof. We consider the random variable Zn = 1
n

∑n
i=1(Xi − E[X]),

P(|X̄n − E[X]| > ε) = P(

∣∣∣∣∣ 1n
n∑
i=1

(Xi − E[X])

∣∣∣∣∣ > ε)

≤ V ar(Zn)

ε2

by Chebyshev’s inequality. Then

V ar(Zn) = V ar(X)/n

by direct computation using independence,

P(|X̄n − E[X]| > ε) ≤ V ar(X)

ε2
· 1

n
→ 0

as n→∞.

Proposition. (Strong law of large numbers)
Let X1, ..., Xn be i.i.d. copies of X ∼ P in Rk, and E[||X||] < ∞. Then as
n→∞,

1

n

n∑
i=1

Xi
a.s.−−→ E[X].

Theorem. (Central limit theorem)
Let X1, ..., Xn be i.i.d. copies of X ∼ P on R (p = 1) and V ar(X) = σ2 < ∞.
We have, as n→∞,

√
n

(
1

n

n∑
i=1

Xi − E[X]

)
d−→ N(0, σ2)
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Definition. (Multivariate normal)
A random variable X on Rk has normal distribution with mean µ and covariance
Σ, denoted by Nk(µ,Σ) (sometimes the dimension is omitted), if either
• its (joint) density is

f(x) =
1

(2π)k/2
1

|det(Σ)|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
or
• it is the unique random variable such that for all linear functions αTX ∼
N(µtα, αTΣα) (in dimension 1).

Note that the second definition works even if Σ is not positive definite.

Proposition. • For a d×k matrix A and b ∈ Rk, AX + b ∼ N(Aµ+ b, AΣAT );

• If An
P−→ A are random matrices and Xn

d−→ N(µ,Σ), then

AnXn
d−→ N(Aµ,AΣAT )

which is a consequence of Slutsky’s lemma;
• If Σ is diagonal, all the coefficients X(j) are independent.

Theorem. (Multivariate CLT)
Let X1, ..., Xn be i.i.d. copies of a random variable X ∼ P on Rk with Cov(X) =
Σ and is positive definite. Then as n→∞ we have

√
n

(
1

n

n∑
i=1

Xi − E[X]

)
d−→ N(0,Σ)

Proof of this will be exactly the same as the univariate case.

Corollary. Under the condition of the theorem above,

1

n

n∑
i=1

Xi − E[X] = OP

(
1√
n

)
i.e. the deviation of X̄n around E[X] are ’of order’ 1√

n
’in probability’.

In light of the results and of the Cramer-Rao lower bound, we can expect that
for ’optimal estimation’ θ̃n,

nCovθ(θ̃n)→ I−1(θ)

as n→∞, sampling from Pθ. In dimension one we have

nV arθ(θ̃n)→ I−1(θ)

and we can also expect results ”of the type”

√
n(θ̃n − θ)

d−→ N(0, I−1(θ))

If we have a result of this type for an estimator, it is also useful for inference.
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Example. (Confidence interval)
Let X1, ..., Xn be a sequence of i.i.d. copies of X ∼ P , real-valued random
variable, with unknown mean µ0 and known variance σ2. For any α ∈ (0, 1), we
define the confidence region

Cn =

{
µ ∈ R : |µ− X̄n| ≤

σzα√
n

}
where zα is taken s.t. P(|Z| ≤ zα) = 1− α, for Z ∼ N(0, 1).

To show that Cn is a good confidence region, we compute (note that µ0 is fixed
but Cn is random)

P(µ0 ∈ Cn) = P
(
|µ0 − X̄n| ≤

σzα√
n

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ0

σ

∣∣∣∣∣ ≤ zα√
n

)

= P

(∣∣∣∣∣ 1n
n∑
i=1

(X̃i − E[X̃i])

∣∣∣∣∣ ≤ zα√
n

)

where X̃i = Xi−µ0

σ , so E[X̃i] = 0 and V arX̃i = 1. The above is then equal to

= P

(
√
n

∣∣∣∣∣ 1n
n∑
i=1

(X̃i − E[X̃i])

∣∣∣∣∣ ≤ zα
)

by CLT,
√
n
(

1
n

∑n
i=1 X̃i − E[X̃i]

)
d−→ N(0, 1). Then by the continuous mapping

theorem, the absolute value of above converges in distribution to |Z| wher
Z ∼ N(0, 1). Finally, by the definition of zα, we know that the above probability
converges to 1− α as n→∞.

Remark. Here, we assumed that the variance σ2 was known.
Note that it can be substituted by an estimate of the variance as well (see
example sheet).

Here, we have shown that an estimator based on X̄n converges to the true
value and has deviations that are asymptotically normal (by LLN and CLT
respectively). In next lecture, we would show that the same results (under
assumptions) using mainly the same theorem will apply to the MLE.

Definition. (Consistency)
Consider X1, ..., Xn i.i.d. from a model {Pθ : θ ∈ Θ}. An estimator θ̃n =
θ̃n(X1, ..., Xn) is consistent whenever θ̃n → θ0 in probability, when sampling
from Pθ0 (Xi ∼ Pθ0).

Remark. We will simply write this as θ̃n
Pθ0−−→ θ0.

Assumptions: Let {f(·, θ) : θ ∈ Θ} be a model of pdf/pmf on X ⊆ Rd such that
• f(x, θ) > 0 for all x ∈ X , θ ∈ Θ;
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•
∫
X f(x, θ)dx = 1 for all θ ∈ Θ; in the discrete case, the sum is 1;

• The function f(x, ·) : θ → f(x, θ) is continuous for all x ∈ X ;
• The parameter space Θ ⊆ Rp is compact;
• For all θ, θ′ ∈ Θ, we have f(·, θ) = f(·, θ′) ⇐⇒ θ = θ′, i.e. θ uniquely
determines a distribution;
• Eθ supθ′ | log f(X, θ′)| <∞.

These things can be stated as usual regular assumptions. The idea is that in the
most models in the real world obey these assumptions.

Remark. Assumption 1,2,5,6 guarantee that l has a unique maximum at θ0.
With these hypothesis (particularly 6) guarantee that l(θ) = Eθ[log f(X, θ)] is
continuous.
These subtleties are not examinable; just refer to ”usual regularity assumptions”.

Theorem. (Consistency of MLE)
Let X1, ..., Xn be i.i.d. from the mode {f(·, θ) : θ ∈ Θ} satisfying the assumption
above. Then the MLE exists, and any MLE is consistent.

Proof. Proof of existence: The mapping θ → l̄nθ = 1
n

∑n
i=1 log f(Xi, θ) is

continuous and defined on a compact set Θ. Therefore, a maximum θ̂MLE = θ̂n
exists (maximum value theorem, see Analysis II).
Note: The idea is that for all θ ∈ Θ, l̄n(θ) converges to l(θ) since

1

n

n∑
i=1

log f(Xi, θ)
Pθ0−−→ Eθ0 [log f(X, θ)]

by LLN. We need to have a stronger fact: as n→∞,

sup
θ∈Θ
|l̄n(θ)− l(θ)|

Pθ0−−→ 0

Proof of consistency: define Θε = {θ ∈ Θ : ||θ−θ0|| ≥ ε} for ε > 0. Θε is a closed
subset of a compact set Θ, so is also compact. The function l is continuous, so
it has a maximum value on Θε, with l(θε) = supθ∈Θε l(θ) = c(ε) < l(θ0). As a
consequence, there exists δ(ε) > 0 such that

c(ε) + δ(ε) < l(θ0)− δ(ε)

By the triangle inequality, we have

sup
θ∈Θε

l̄n(θ) = sup
θ∈Θε

[l̄n(θ)− l(θ) + l(θ)]

≤ sup
θ∈Θε

l(θ)︸ ︷︷ ︸
c(ε)

+ sup
θ∈Θ
|l̄n(θ)− l(θ)|︸ ︷︷ ︸

<δ(ε) on An(ε)

We consider the sequence of events An(ε) = {supθ∈Θ |l̄n(θ)− l(θ)| < δ(ε)}.

On these events,

sup
θ∈Θε

l̄n(θ) ≤ c(ε) = δ(ε) < l(θ0)− δ(ε)
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We also have that l(θ0)− l̄n(θ0) ≤ δ(ε), i.e. the function l̄n has a greater value
at θ0 than anywhere on Θε. As a consequence, we have that

sup
θ∈Θε

l̄n(θ) ≤ l̄n(θ0)

on An(ε). On An(ε), θ̂n cannot lie in Θε as this would lead to a contradiction

l̄(θ̂n) ≤ l̄n(θ0)

We therefore have that An(ε) ⊆ {||θ̂n − θ0|| < ε}. Since P(An(ε)) → 1 by the

uniform law of large numbers, we have P(||θ̂n − θ0|| < ε)→ 1.

Remark. This proof can be simplified if the likelihood function has additional
properties, such as differentiablility. This can be applied to examples where Θ is
not compact.

We digress a bit on the uniform law of large numbers. The point is to prove that

supθ∈Θ |l̄n(θ)− Eθ0 [l̄n(θ)]︸ ︷︷ ︸
l(θ)

| P−→ 0.

We state an observation for the finite case: Let X1, ..., Xn be i.i.d. in X ⊆ Rd
and hj : X → R for 1 ≤ j ≤M . As n→∞, we have

max
1≤j≤M

∣∣∣∣∣ 1n
n∑
i=1

hj(Xi)− E[hj(X)]

∣∣∣∣∣ P−→ 0

Consistency of the MLE: θ̂n
Pθ0−−→ θ0, as n→∞. One of the results in the proof:

sup
θ∈Θ
|l̄n(θ)− Eθ0 [l̄n(θ)︸ ︷︷ ︸

l(θ)

]| a.s.−−→ 0

Observation (LLN, from 1 to finite case): Let X1, ..., Xn i.i.d. in X ⊆ Rd
and h : X → R a function. The variables h(Xi) are also i.i.d. in R, so if
E[|h(X)|] <∞,

1

n

n∑
i=1

h(Xi)︸ ︷︷ ︸
Yi

−E[h(x)︸︷︷︸
E[Y ]

]
a.s.−−→ 0

by LLN. Consider h1, ..., hM a finite class of functions such that E[hj(X)] <∞.
On events Aj s.t. P(Acj) = 0, for all 1 ≤ j ≤M , we have (for every ω ∈ Aj),

1

n

n∑
i=1

hj(Xi(ω))− E[hj(X(ω))]→ 0

as n→∞. Hence A =
⋂M
j=1Aj .We have

max
1≤j≤M

∣∣∣∣∣ 1n
n∑
i=1

hj(Xi)− E[hj(X)]

∣∣∣∣∣→ 0
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in the reals, with implicit ω for X (i.e. X(ω)) as well.

Furthermore, we have P(Ac) − P(
⋃M
j=1A

c
j) ≤

∑M
j=1 P(Acj) = 0 (finite union of

events with probability 0).

max
1≤j≤M

∣∣∣∣∣ 1n
n∑
i=1

hθ(Xi)− E[hj(X)]

∣∣∣∣∣ a.s.−−→ 0

as n→∞.

The uniform law of large number therefore holds over a finite set. In order to
extend this result to log f(Xi, θ) = hθ(Xi) (j becomes θ), we have to use some
properties of hθ, and of Θ.

The main idea is to use continuous analogue to finiteness: compactness of Θ +
continuity of the function at hand.

(maybe missing a bit here)

Theorem. (Uniform LLN) Let Θ be a compact set in Rp and q : X ×Θ→ R
be continuous in θ for all x ∈ X such that E[supθ∈Θ |q(X, θ)|] < ∞. Then, as
n→∞, we have

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

q(Xi, θ)− E[q(X, θ)]

∣∣∣∣∣ a.s.−−→ 0

Proof. Idea: since Θ is compact, there exists Θ′ finite that covers Θ up to
precision δ. The uniform LLN holds on Θ′. By continuity in θ of q, it therefore
extends to the whole Θ.

2.3 Asymptotic normality of the MLE

We have that θ̂n
Pθ0−−→ θ0 using an extension of the LLN (just like in the special

case). We can similarly obtain that (θ̂n − θ0) ·
√
n averages in distribution,

Xn = 1
n

∑n
i=1Xi using an extension of the CLT.

Assumptions:
0. All the assumptions from consistency;
1. The true θ0 belongs to the interior of Θ;
2. There exists U ⊆ Θ open such that θ ∈ f(x, θ) is twice differntiably continuous,
for all x ∈ X .
3. The p×p Fisher information matrix I(θ0) is non singular... (more technicalities,
see lecture notes).

Theorem. Let the statistical model {f(·, θ) : θ ∈ Θ} satisfy all the assumptions

above, and θ̂n be the MLE based on X1, ..., Xn i.i.d .from Pθ0 (with pdf/pmf
f(·, θ0)). We have, as n→∞,

√
n(θ̂n − θ0)

d−→ N(0, I(θ0)−1)
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Proof. By assumptions, and consistency of the MLE, θ̂n
Pθ0−−→ θ0, so θ̂n is in

the interior of Θ on events of probability → 1. By regularity assumptions, this
implies that ∇θ l̄n(θ̂n) = 0. By regularity of θ → ∇θ l̄n(θ), we can apply the

mean value theorem from each coordinate, between θ0 and θ̂n,

0 = ∇θ l̄n(θ̂n) = ∇θ l̄n(θ0) + An︸︷︷︸
≈∇2

θ l̄n(θ0)

·(θ̂n − θ0)

Assuming (for this lecture) that An converges in probability to Eθ0∇2
θ l̄n(θ0)] =

−I(θ0), this yields that

√
n(θ̂n − θ0) = (−A−1

n )︸ ︷︷ ︸
P−→I(θ0)−1

·
√
n∇θ l̄n(θ0)

By definition of l̄n, we have

√
n∇θ l̄n(θ0) =

1√
n

n∑
i=1

(∇θ log f(Xi, θ)− Eθ0 [∇θ log f(Xi, θ)︸ ︷︷ ︸
=0

])

As a consequence, by CLT we have

√
n∇θ l̄n(θ0)

d−→→ N(0, Covθ0(∇θ log f(X, θ))︸ ︷︷ ︸
=I(θ0)

)

Applying Slutsky’s to the formula above, we get

√
n(θ̂n − θ0)

d−→ N(0, I−1(θ0)I(θ0)I(θ0)−1︸ ︷︷ ︸
AΣA

)

A result from asymptotic normality of the MLE is that, if θ̂n is the MLE, then

√
n(θ̂n − θ0)

d−→ N(0, I−1(θ0)

Definition. (Asymptotic efficiency)

In a parametric model {f(·, θ), θ ∈ Θ}, a consistent estimator θ̂n is called

asymptotically efficient if nV arθ0(θ̂n)→ I−1(θ0) (missing a few lines here)

Remark. (about theorem/assumptions/definitions) • at the exposure of more
complicated proofs, one can reduce the regularity assumptions in the theorem
(eg: laplace distribution).
• Same regularity is required: example of the uniform distribution

f(x, θ) =
1

θ
1[0,θ)(x)

the MLE is not asymptotically normal in this case.
• For θ at the boundary of the parameter space, the result might not hold. For
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a model N(0, 1) with θ ∈ Θ = [0,∞), in the case where θ0 = 0(boundary),
• This result (asymptotic normal) reinforces the intuition given by the Cramer-

Rao lower bound, that nV arθ0(θ̂n) ∼ I−1(θ0) is optimal. The lower bound

holds only for unbiased estimators. The Hodge estimator θ̂n defined as the

modification of any estimator θ̂n on R with
√
n(θ̂n − θ0)

d−→ N(0, σ2) by

θ̃n =

{
θ̂n |θ̂n| > n−4

0 otherwise

In order to ’solve’ these paradoxes, we will consider different ways of comparing
estimators, in particular, in terms of their worst performance over θ0 ∈ Θ.

2.4 Plug-in MLE and Delta method

It is often practical to consider estimation problems with {f(·, θ) : θ ∈ Θ} and
Φ : Θ→ Rk. (ex: in Bin(n, p) with θ = p and V ar(X) = np(1− p) = Φ(p)).

Definition. For Θ = Θ1 × Θ2 with θ = (θ1, θ2)T , θ1 ∈ Θ1 and θ2 ∈ Θ2, we
define the profile likelihood for Φ(θ) = θ1, by

L(p)(θ1) = sup
θ2∈Θ2

L((θ1, θ2)T )

Remark. We note that it is equivalent to maximize L(p) in θ1 or to maximize
in θ and to take the first coefficient.

More generally, we shows that the MLE in a new parametrization

{f(·, φ) : φ = Φ(θ) for some θ ∈ Θ}

is equal to Φ(θ̂MLE) (see example sheet).

Definition. For a statistical model {f(·, θ) : θ ∈ Θ} and Φ : Θ → Rk, the

plug-in MLE of Φ(θ, 0) is the estimator Φ(θ̂MLE).

Using the limiting distribution of an estimator and the regularity properties of
Φ to derive properties of Φ(θ̂MLE) is known as the Delta method.

Theorem. (Delta method)

Let Φ : Θ → R (k = 1) with gradient satisfying ∇θΦ(θ0) 6= 0. Let θ̂n be a
sequence of continuously differentiable random variables (estimators) satisfying
√
n(θ̂n · θ0)

d−→ Z, where Z is a random variable in R. Then we have, as n→∞,

√
n(Φ(θ̂n)− Φ(θ0))

d−→ ∇θΦ(θ0)TZ

Proof. We have, by mean value theorem, for some θ̃n in the segment [θ0, θ̂n],

√
n(Φ(θ̂n − Φ(θ0)) = ∇θΦ(θ̃n) ·

√
n(θ̂n − θ0)
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Since
√
n(θ̂n − θ0)

d−→ Z, it is bounded in probability, and ||θ̂n − θ0|| = Op(
1√
n

).

As a consequence, θ̂n
Pθ0−−→ θ0, so θ̃n

Pθ−→ θ0, by continuous mapping theorem,

∇θΦ(θ̃n)
Pθ0−−→ ∇θΦ(θ0). Applying Slutsky’s lemma we get the final result.

Remark. We can generalize this result to other estimators with rn instead of√
n, provided that rn →∞ (???).

For the MLE under regularity assumptions, this yields for the plug-in MLE,

√
n(Φ(θ̂n)− Φ(θ0))

d−→ N(0,∇θΦ(θ0)T I−1(θ0)∇θΦ(θ0))

(plug-in MLE is asymptotically efficient). If Θ ⊆ R, then

LHS
d−→ N(0,Φ′(θ0)2I−1(θ0))

which is the 1-d version of the result.

2.5 Asymptotic inference with the MLE

In previous example about hte mean of a random variable, we were able to
construct confidence region and to control P(µ ∈ Cn) as n→∞, using the CLT.

Generalization: Consider a statistical model with usual regularity assumption.
If we are interested in confidence regions for θ0,j (the j-th coefficient of θ0), we
can use

√
n(θ̂n,j − θ0,j) = eTj

√
n(θ̂n − θ0)

d−→ N(0, eTj I
−1(θ0)ej︸ ︷︷ ︸

I−1(θ0))jj

)

By continuous mapping theorem, where ej is the j-th vector of the canonical
basis.
Using the same logic as in the previous example, we take

Cn = {v ∈ R : |v − θ̂n,j | ≤
∗I−1(θ0))

1/2
jj zα√

n
}

for P(|Z| ≤ zα) = 1− α when Z ∼ N(0, 1).

We compute

P(θ0,j ∈ Cn) = Pθ0(
√
n(I−1(θ0))

−1/2
jj |θ̂n,j − θ0,j | ≤ zα)

the variable
√
n(I−1(θ0))

−1/2
jj (θ̂n,j−θ0,j)

d−→ Z → P(|Z| ≤ zα) = 1−α by remark
above (asymptotic normality).

Remark. To construct this region Cn, one requires I(θ0) , which is unknown in
general.

Definition. The observed Fisher information is the p× p matrix

in(θ) =
1

n

n∑
i=1

∇θ log f(Xi, θ)∇θ log f(Xi, θ)
T
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Remark. • This estimate allows us to have a proxy for the function θ → I(θ).
It is defined as

Eθ0
[
∇θ log f(X, θ) · ∇θ log f(X, θ)T

]
• We also need to know where to evaluate it, we commonly take în = in(θ̂MLE)
as an estimator for I(θ0).

Proposition. Under the usual regularity assumption, as n→∞,

în
Pθ0−−→ I(θ0)

Proof. We have, noting g(X, θ) = ∇θ log f(X, θ) · ∇θ log f(X, θ)T , that in(θ) =
1
n

∑n
i=1 g(Xi, θ), and I(θ) = Eθ0 [g(X, θ)]. We therefore have

în − I(θ0) =

 in(θ̂MLE)− I(θ̂MLE)︸ ︷︷ ︸
approximating the function

+

 I(θ̂MLE)− I(θ0)︸ ︷︷ ︸
approximating the evaluation point


• The first term satisfies∣∣∣in(θ̂MLE)− I(θ̂MLE)

∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g(xi, θ)− Eθ0 [g(X, θ)]

∣∣∣∣∣ Pθ0−−→ 0

by uniform law of large numbers.

• The second term satisfies∣∣∣I(θ̂MLE)− I(θ0)
∣∣∣ Pθ0−−→ 0

by consistency of θ̂MLE and continuity of I(·).
By triangle inequality, the result holds.

Remark. It is also possible to use jn(θ) = − 1
n

∑n
i=1∇2

θ log f(Xi, θ) and ĵn =

jn(θ̂MLE). The same result will hold with essentially the same proof.

Definition. (The Wald Statistic)
For all θ ∈ Θ, the Wald statistic is defined as

Wn(θ) = n(θ̂MLE − θ)T în(θ̂MLE − θ0)

(we can really think of the n as the product of two
√
n, one from each bracket.)

This is a quadratic form, with positive semidefinite în. Its level sets (contours?)
are ellipsoids.

Proposition. (Confidence ellipsoids)
Under the same regularity assumptions, the confidence region defined by Cn =
{θ : Wn(θ) ≤ ξα} for ξα satisfying P(|χ2

p| ≤ ξα) = 1−α, is an α-level asymptotic
confidence region.
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Proof. We compute P(Wn(θ0) ≤ ξα) = P(θ0 ∈ Cn). We have

Wn(θ0) =
√
n(θ̂n − θ0)T · în ·

√
n(θ̂n − θ0)

=
√
n(θ̂n − θ0)T I(θ0)

√
n(θ̂n − θ0) +

√
n(θ̂n − θ0)T (̂in − I(θ0)) ·

√
n(θ̂n − θ0)

Since
√
n(θ̂n − θ0)

d−→ N(0, I−1(θ0)), the ’original’ first term converges in distri-
bution to vT v, where v ∼ N(0, Ip) = v2

1 + ...+ v2
p ∼ χ2

p.

The second term is a product of
√
n(θ̂n − θ0)

d−→ N(0, I−1(θ0)) and√
n(θ̂n − θ0)T︸ ︷︷ ︸

d−→Z

(̂in − I(θ0))︸ ︷︷ ︸
Pθ0−−→0

.

Applying Slutsky’s lemma gives the second term converges to 0 in distribution,
the product of thes two terms converges to 0 in distribution , and hence the sum
with the original first term converges to χ2

p in distribution.

Remark. This statistic can therefore be used in hypothesis testing problems, to
distinguish H0 : θ = θ0 ∈ Θ from H1 : Θ\{θ0}. (?) Having P(Wn(θ0) > ξα)→ α
controls the error.

Last lecture we see how Wn(θ0) is useful in testing H0 : θ = θ0 against H1 : θ ∈
Θ \ {θ0}.

Generalization to H0 : θ ∈ Θ0, H1 : θ ∈ Θ \ Θ0: we want to construct a test
ψn, function of the data (observations) with values in {0, 1}. Its objective is to
output 0 under H0, and 1 under H1.

Measure of performance of a test:
• Type I error (false positive): Pθ(ψn = 1) = Eθ[ψn], θ ∈ Θ0;
• Type II error (false negative): Pθ(ψn = 0) = Eθ[(1− ψn)], θ ∈ Θ \Θ0.

Definition. (likelihood ratio)
We define the likelihood ratio statistic as

Λn(Θ,Θ0) = 2 log
supθ∈Θ

∏n
i=1 f(Xi, θ)

supθ∈Θ0

∏n
i=1 f(Xi, θ)

= 2 log

∏n
i=1 f(Xi, θ̂MLE)∏n
i=1 f(Xi, θ̂MLE,0)

where θ̂MLE,0 denotes the MLE on Θ0.

Theorem. (Wilks Theorem)
Let {f(·, θ) : θ ∈ Θ} be a model satisfying the usual regularity assumptions
(everything’s smooth, continuous, regular etc.), and a hypothesis testing problem
value Θ0 = {θ0} for some fixed θ0 in the interior of Θ. We have, under H0

(θ ≥ θ0), as n→∞,

Λn(Θ,Θ0)
d−→ χ2

p

(p=dimension – i.e. Θ ⊆ Rp)
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Proof. Considering events of probability → 1, where θ̂n is in the interior of Θ
(here θ̂n = θ̂MLE). We have, by definition of this statistic

Λn(Θ,Θ0) = 2ln(θ̂n)− 2ln(θ0)

= (−2ln(θ0))− (−2ln(θ̂n))

= −2∇θln(θ̂n)T (θ0 − θ̂n) +
√
n(θ0 − θ̂n)TAn

√
n(θ0 − θ̂n);

(seems there’s some expansion here) where An is the matrix of second order
derivatives, i.e.

(An)ij =
∂2

∂θi∂θj
l̄n(θ(j))

with θ(j) ∈ [θ0, θ̂n], as in the proof of asymptotic normality of the MLE, similarly
to consistency of în (to I(θ0)). By definition/property of MLE,

∇θln(θ̂n) = 0

and An
Pθ0−−→ (−I(θ0)) and

√
n(θ̂n − θ0)

d−→ N(0, I−1(θ0)), we have, similar to

the proof on the convergence of Wald’s statistics, Λn
d−→ χ2

p.

Remark. • As a consequence ψn = 1{Λ(Θ,Θ0) ≥ ξα}, we can control the
probability of type 1 error. (Reminder: P(|χ2

p| ≤ ξα) = 1− α).
• For Θ ⊆ Rp, if Θ0 has dimension p0 < p under the same assumptions, the limit
is χ2

p−p0 .
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3 Bayesian Inference

For a given {f(·, θ) : θ ∈ Θ}, in many applications, it can be practical to consider
that θ is a random variable with some known distributions.

Example. Consider a finite parameter space Θ = {θ1, ..., θk}, and possible
hypothesis Hi : θ = θi, with prior beliefs πi = P(Hi). If the true hypothesis is
Hi, the distribution of the observation X is fi(x), i.e. P(X = x| Hi︸︷︷︸

θ=θi

) = fi(x).

By Bayes rule, when observing X = x,

P(Hi|X = x) =
P(X = x,Hi)

P(X = x)

=
πifi(x)∑
j πjfj(x)

We will consider Hi more likely than Hh if

P(Hi|X = x)

P(Hj |X = x)
=
fi(x)

fj(x)
· πi
πj

> 1

If the πi are all equal (i.e. no prior information), this is the usual likelihood
ratio rule based on fi(x)/fj(x). Otherwise, the priors are her to update these
priors.(?)

Definition. For a sample space X , and a parameter space Θ we can consider
the product measure Q over X ×Θ such that

Q(x, θ) = f(x, θ) · π(θ)

The distribution π is the prior distribution of θ. As expected, the distribution

X|θ ∼ f(x, θ)π(θ)∫
X f(x′, θ)π(θ)dx′

= f(x, θ)

since the integral is 1.

The posterior distribution is the law of θ given X,

θ|X ∼ f(X, θ)π(θ)∫
Θ
f(X, θ′)π(θ′)dθ′

= π(θ|X)

Similarly we define π(θ|X1, ..., Xn).

Remark. The posterior distribution (as a function of θ) is a renormalized and
reweighted (by π(θ)) version of the likelihood.

Note that the denominator doesn’t depend on θ, and can usually be ignored in
computation.
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Example. Let X|θ ∼ N(θ, 1) with prior θ ∼ N(0, 1). The posterior satisfies

Π(θ|X1, ..., Xn) ∝ e−θ
2/2︸ ︷︷ ︸

∝π(θ)

·
n∏
i=1

exp(− (Xi − θ)2

2︸ ︷︷ ︸
∝f(Xi,θ)

)

∝ exp(−nθX̄n −
n+ 1

2
θ2)

∝ exp(− (θ
√
n+ 1− nX̄n/

√
n+ 1)2

2
)

∝ exp(− (θ − nX̄n/(n+ 1))2

2/(n+ 1)
)

We recognize a normal distribution, with mean 1
n+1

∑n
i=1Xi, and variance 1

n+1 ,
i.e.

θ|X1, ..., Xn ∼ N(
1

n+ 1

n∑
i=1

Xi,
1

n+ 1
)

(recall θ ∼ N(0, 1)).

Definition. In a statistical model {f(·, θ) : θ ∈ Θ}, when the prior π(θ) and the
posterior Π(θ|X) belong to the same class of distribution, it is called a conjugate
prior.

Example. Normal prior + normal sampling gives normal posterior;
Beta prior + binomial sampling gives beta posterior;
Gamma prior + poisson sampling gives gamma posterior.

Note that the definition of the posterior doesn’t require Π to integrate to 1, i.e.
to be a proper distribution. This can be useful when taking a prior with ’a
simple formula’ over a ’complicated set’.

Indeed, in the natural case where
∫

Θ
π(θ)dθ <∞, we can renormalize the prior

without affecting the posterior.

Note that it is not even required that π(θ) has a finite integral to define a
posterior, only that f(x, θ)π(θ) does is enough.

Definition. A prior nonnegative function over Θ with infinite integral is an
improper prior.

This can be useful when a prior is not available (from model or prior belief), but
we have to construct it. This allows us to put constant mass π(θ) = const over
any parameter space.

For example, taking π(θ) = 1 for N(0, 1) model and N(θ3, 1) model will give
different results.

Definition. The prior π(θ) proportional to
√

det(I(θ)) is called the Jeffreys
prior.

In a N(µ, τ) model with unknown θ = (µ, τ)T ∈ R× (0,∞), the Fisher informa-
tion is [

1/τ 0
0 1

2τ2

]
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As a consequence, the Jeffreys prior is given by π(µ, τ) ∝ 1
τ3/2 .

However, in this case, the prior is improper, but the posterior is well-defined. In
particular, the posterior marginal distribution for µ is N(X̄n, τ/n).

3.1 Statistical inference with the posterior distribution

The probability measure Π(·|X1, ..., Xn) is a random probability measure that
depends on observations. It can be used to answer question about the value of
the parameter.

Definition. For a Bayesian model with posterior Π(·|X1, ..., Xn),
• ESTIMATION: we can take, as an estimator of θ, the posterior mean

θ̄(X1, ..., Xn) = EΠ[θ|X1, ..., Xn]

we can also take the median and the mode.
• UNCERTAINTY ESTIMATION: Any subset Cn such that the posterior

Π(Cn|X1, ..., Xn) = 1− α

is a level 1− α credible set for θ.
• HYPOTHESIS TESTING: As in the motivating example, for Θ0,Θ1 ⊆ Θ, the
Bayes factor satisfies

P(X1, ..., Xn|Θ0)

P(X1, ..., Xn|Θ1)
=

∫
Θ0

∏n
i=1 f(Xi, θ)π(θ)dθ∫

Θ1

∏n
i=1 f(Xi, θ)π(θ)dθ

=
Π(Θ0|X1, ..., Xn)

Π(Θ1|X1, ..., Xn)

Remark. Having different priors will yield in general different posterior distri-
bution and different estimators. For example, consider a N(0, 1) model. With
N(0, 1) prior we get 1

n+1

∑n
i=1Xi, as the posterior mean, while with Jeffreys

prior we get 1
n

∑n
i=1Xi. In both cases (and in this example), the estimator θ̄n

computes the ’true value’.

In the previous lecture we discussed the posterior mean θ̄ = EΠ[θ|X1, ..., Xn]
as an estimator of θ and behaviour of θ̄ (and more generally, of Π) when

Xi
i.i.d.∼ f(x, θ0).

Example. Sampling the Xi
i.i.d.∼ N(0, 1), θ ∈ R with prior θ ∈ N(0, 1). Posterior

distribution

Π : θ|X1, ..., Xn ∼ N(
1

n+ 1

n∑
i=1

Xi,
1

n+ 1
)

and mean
1

n+ 1

n∑
i=1

Xi =
n

n+ 1
X̄n

which is different from the MLE θ̂n = X̄n.
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Under the assumption Xi
i.i.d.∼ N(0, 1),

θ̄n =
n

n+ 1
θ̂n

Pθ0−−→ θ0

as n→∞. For the deviation

√
n(θ̄n − θ0) =

√
n(θ̄n − θ̂n) +

√
n(θ̂n − θ0)

but the second term
d−→ N(0, 1) (applying CLT). The first term is

√
n(θ̄n− θ̂n) =

√
n( 1

n+1 −
1
n )
∑n
i=1Xi = −

√
n

n+1 (X̄n − θ0 + θ0)
Pθ0−−→ 0. By Slutsky’s lemma,

√
n(θ̄n − θ0)

d−→ N(0, 1).

One of the consequences:

Cn =

{
v : |v − θ̄n| ≤

I(θ0)−1/2zα√
n

}
are ’good’ confidence regions.

In a Bayesian formalism, the equivalent are credible sets, built not based on the
limiting distribution of the estimator, but on the posterior:

Cn = {v : |v − θ̂n| ≤
Rn√
n

or

{v : |v − θ̄n| ≤
Rn√
n
}

where Rn is chosen such that Π(Cn|X1, ..., Xn) = 1− α.

In order to prove that credible sets are confidence regions of level 1 − α, i.e.
Pθ0(θ0 ∈ Cn) → 1 − α as n → ∞, we have to understand the behaviour of
Π(·, |X1, ..., Xn) = Πn.

Theorem. (Bernstein-von Mises theorem)
For a parametric model with the usual regularity assumptions, and a prior
continuous at θ0 such that π(θ0) > 0, consider the posterior Πn = Π(·|X1, ..., Xn)

and φn the random distribution N(θ̂n, I
−1(θ0)/n). We have, for Θ ⊆ R with

n→∞, ||Πn − φn||TV , i.e. the total variation, is equal to∫
Θ

|Πn(θ)− φn(θ)|dθ a.s.−−→ 0

Remark. This implies, for any event A, φn(A)−Πn(A)
a.s.−−→ 0. In particular,

for credible sets Cn, φn(Cn)→ 1− α almost surely.

Recall the Bayesian formalism: given observation x1, ..., xn, we can build a

posterior Πn, treating Xi
i.i.d.∼ f(x, θ0) makes Πn, φn random objects.



3 BAYESIAN INFERENCE 30

Proof. (Informal)
φn,Pn are probability distributions, so∫

Θ

(Πn(θ)− φn(θ))dθ = 1− 1 = 0

This means ∫
Θ

|Πn(θ)− φn(θ)|dθ = 2

∫
Θ

(Πn(θ)− φn(θ))+dθ

where we denote x+ = max(x, 0).
For φn > 0, we have the above is

2

∫
Θ

(
Πn(θ)

φn(θ)
− 1

)+

φn(θ)dθ

The first term in the product, Πn(θ)
φn(θ) → 1 almost surely for all θ, x→ (x− 1)+ is

bounded, so by dominated convergence theorem (see PM) we could obtain the
conclusion.

Intuition: we have that Πn(θ) =
π(θ)

∏n
i=1 f(Xi,θ)

Zn
where Zn is a normalization

factor independent of θ. The variation V =
√
n(θ − θ̂n) (missing two lines?)

Taking logarithms, we have

log Πn,v(v) = log Πn(θ̂n +
v√
n

) + log
1√
n

= log π(θ̂n +
v√
n

) + ln(θ̂n +
v√
n

)− logZ ′n

≈ log π(θ0) + ln(θ̂n) + l′(θ̂n) · v√
n

+
1

2
l′′n(θ̂n)

v2

n
− logZ ′n

≈ −1

2
I(θ0)v2 − log Z̃n

(??)

Under φn, θ ∼ N(θ̂n, I(θ0)−1/n), we have that v ∼ N(0, I−1(θ0)), so

log φn,v = −1

2
I(θ0)v2 − logC(θ0)

(what’s C(θ0)? or is it l)

Remark. A full proof is beyond the scope here, but special case can be done
explicitly (see example sheet).
The message is that as n→∞, the impact/influence of the prior vanishes, and
the behaviour of the posterior is dominated by the observations.
Laplace’s method (not in this course) is concerned with the evaluation of enf(θ)

for all θ such that f(θ) < f(θ∗) we have enf(θ) << enf(θ∗) (where << means
exponentially smaller as n grows), and

f(θ∗ +
x√
n
≈ f(θ∗) +∇θf(θ∗) · x√

n
− 1

2

x+

√
n
∇2
θf(θ∗)

x√
n

≈ f(θ∗)− 1

2

1

n
xTQx
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where Q = −∇2
θf(θ∗) � 0,

e
nf(θ∗+ x√

n
) ≈ enf(θ∗) · e− 1

2x
TQx

—- For the past lecture there is an error: we need to use (1− Πn(θ)
φn(θ) )+ instead of

the other way round, as (1− x)+ is bounded for positive x but (x− 1)+ is not.
—-

3.2 Credible sets

Let Cn = {v : |v − θ̂n| ≤ Rn√
n
}, where Rn is s.t. Πn(Cn) = 1− α.

Our objective is to let Pθ0(θ0 ∈ Cn)→ 1− α.

Remark: for confidence sets C′n = {v : |v−θ̂n| ≤ I(θ0)−1/2zα√
n

}, P(θ0 ∈ C′n)→ 1−α,

• Rn converges almost surely to ’its frequentist equivalent’;
• This implies that Cn (credible set) is a confidence set of level 1 − α when
n→∞.

Definition. (Notation)
For all t > 0, we define Φ0, function defined by

Φ0(t) = P(|Z0| ≤ t)︸ ︷︷ ︸
Z0∼N(0,I−1(θ0))

=

∫ t

−t
φ0(x)dx

It is an increasing continuous function, one-to-one from [0,∞) to [0, 1). Its
well-defined inverse Φ−1

0 is also continuous.

Lemma. Under the regularity assumption of the B-vM theorem, we have that
Rn converges almost surely to Φ−1

0 (1− α) as n→∞.

Proof. We have

Φ0(Rn) =

∫ Rn

−Rn
φ0(v)dv

=

∫ θ̂n+Rn/
√
n

θ̂n−Rn/
√
n

φn(θ)dθ = φn(Cn)

= φn(Cn)−Πn(Cn) + Πn(Cn)

where v =
√
n(θ − θ̂n), and φn = N(θ̂n,

I(θ0)−1

n ). By the B-vM theorem,

φn(Cn)−Πn(Cn)
a.s.−−→ 0 as n→∞. Also, by definition of Cn, Πn(Cn) = 1− α,

so Φ0(Rn)
a.s.−−→ 1− α. So by CMT on Φ−1

0 , Φ−1
0 (Φ0(Rn))︸ ︷︷ ︸

Rn

a.s.−−→ Φ−1
0 (1− α).

Theorem. Under the same assumption above, for α ∈ (0, 1), n→∞, we have
Pθ0(θ0 ∈ Cn)→ 1− α.
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Proof. We compute

Pθ0(θ0 ∈ Cn) = Pθ0(|θ̂n − θ0| ≤
Rn√
n

)

= Pθ0
(

Φ−1
0 (1− α)

Rn

√
n|θ̂n − θ0| ≤ Φ−1

0 (1− α)

)
we have that

√
n(θ̂n − θ0

d−→ N(0, I−1(θ0)). By the lemma above, we have

Φ−1
0 (1− α)

Rn

a.s.−−→ 1

So by Slutsky’s lemma, the LHS term of the inequality converges in distribution
to N(0, I−1(θ0)).
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4 Decision theory

Given a statistical model {f(·, θ) : θ ∈ Θ}, an observation X ∈ X , from this
model that belongs to sample space X , we can phrase statistical problems often
as decision problems, with an action space A and decision rules δ : X → A.

Example. • In an hypothesis testing problem A = {0, 1} and δ is a test.
δ(X) ∈ {0, 1};
• In an estimation problem, A = Θ is a parameter space, and delta is an
estimator: δ(X) ∈ Θ.
• Inference problems: A =”all subsets of Θ”, and δ is a confidence region Cn.

Definition. The performance of a decision δ is assessed by a loss function
L : A×Θ→ [0,∞). L(a, θ) describes the ”loss” of action a when the true value
is θ.

Example. • In a hypothesi testing problem, we can consider L(a, θ) = 1{a 6= θ},
where θ ∈ {0, 1} is the index of the hypothesis (either we are right or wrong).
• In estimation problems, we care about the distance from the truth. We can
consider

L(a, θ) = |a− θ|
which is the absolute deviation, or

L(a, θ) = |a− θ|2

which is the squared deviation.

Definition. For a loss function L, and a decision rule δ, we call the risk of δ,
for X ∼ Pθ,

R(δ, θ) = Eθ[L(δ(X), θ)] =

∫
X
L(δ(X), θ)f(x, θ)dx

if Pθ has pdf f(x, θ).

Example. In a hypothesis testing

R(δ, θ) = Eθ[1{δ(X) 6= θ}] = Pθ(δ(X) 6= θ)

is the probability of error.

In an estimation problem we look at the squared risk

R(δ, θ) = Eθ[(δ(X)− θ)2]

For X ∼ Bin(n, θ) and θ ∈ [0, 1], we can take δ(X) = θ̂(X) = X
n ,

R(θ̂, θ) = Eθ[(θ̂(X)− θ)2] =
θ(1− θ)

n

a function of θ for fixed estimation. We can also take δ(X) = η̂(X) = 1
2 (not

very smart). In this case

R(η̂, θ) = Eθ[(1/2− θ)2] = (θ − 1/2)2

So we see that we can’t uniformly compare θ̂ and n̂ in terms of their risk.
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In the previous lecture we discussed about loss function L, decision rule δ, which
results in risk R(δ, θ) = Eθ[L(δ(X), θ)] where X ∼ Pθ.

4.1 Bayes rule for risk minimization

Definition. Given a loss function L, a decision rule δ, and a prior π over Θ,
the (π-)Bayes risk of δ is

Rπ(δ) = Eπ[R(δ, θ)] =

∫
Θ

R(δ, θ)π(θ)dθ

=

∫
Θ

∫
X
L(δ(x), θ)π(θ)f(x, θ)dxdθ

from definition of pdf.

Example. In a binomial model Bin(nθ) with uniform prior on θ, we have for
the quadratic risk, R(X/n, θ) = θ(1− θ)/n and R(1/2, θ) = (θ − 1/2)2. Then

Rπ(X/n) = Eπ[
θ(1− θ)

n

=
1

n

∫ 1

0

θ(1− θ)dθ =
1

6n
,

Rπ(1/2) =

∫ 1

0

(θ − 1/2)2dθ =
1

12

Definition. For a Bayesian model (i.e. statistical model + prior), the corre-
sponding posterior risk is defined for all observation x ∈ X as

RΠ(δ) = EΠ[L(δ(x), θ)|x]

Remark. The expectation is taken with respect to θ ∼ Π(·|x). In any model
with a quadratic loss,

RΠ(δ) = EΠ[(δ(x)− θ)2|x] = δ(x)2 − 2δ(x)EΠ[θ|x] + EΠ[θ2|x]

Proposition. An estimator δ that minimizes the Π-posterior risk for all x ∈ X
also minimizes the Bayes risk.

Proof. The π-Bayes risk (for a model with pdf)

Rπ(δ) =

∫
Θ

Eθ[L(δ(X), θ)]π(θ)dθ

=

∫
Θ

∫
X
L(δ(x), θ)f(x, θ)π(θ)dxdθ

=

∫
X

∫
Θ

L(x, θ)
f(x, θ) · π(θ)∫
Θ
f(x, θ′)π(θ′)

·
∫

Θ

f(x, θ′)π(θ′)dθ′︸ ︷︷ ︸
:=m(x)≥0

·dθdx

=

∫
X
EΠ[L(δ(x), θ|x] ·m(x)dx



4 DECISION THEORY 35

Now let δΠ be a decision rule that minimizes the posterior risk, i.e.

EΠ[L(δΠ(x), θ)|x] ≤ EΠ[L(δ(x), θ)|x]

for all x ∈ X . Multiplying on both sides by m(x) ≥ 0 and integrating gives the
result.

Example. For the quadratic risk, for all x, minimizing this function in δ gives

δΠ(x) = θ̄Π = E[θ|x]

As a consequence, in a Bayesian model with quadratic risk, the posterior mean
is a rule that minimizes the Bayesian risk.

Definition. A decision rule that minimizes the Bayes risk is called a (π-) Bayes
rule, denoted by δπ.

Proposition. Let |delta be an unbiased decision rule, i.e. Eθ[δ(X)] = θ for all
θ ∈ Θ. If δ is also a Bayes rule for some prior π in the quadratic risk, then
EQ[(δ(X)−θ)2] =

∫
Θ
Eθ[(δ(X)−θ)2]π(θ)dθ = 0, where EQ is taken with respect

to the join distribution of (X, θ), Q(x, θ) = f(x, θ)π(θ). In particular, δ(X) = θ
with Q-probability 1.

Proof. We recall that for any random variable Z(X, θ), we can apply the ’tower
rule’

EQ[Z(X, θ)] = EQ[EΠ[Z(X, θ)|X]]

= EQ[Eθ[Z(X, θ)]]

For a π-decision rule, for the quadratic risk, we have that δ(x) = EΠ[θ|X]. As a
consequence, taking Z(X, θ) = θδ(X) gives

EQ[θ(δ(X)] = EQ[EΠ[δ(X)EΠ[θ|X]] = EQ[δ(X)2]

and
EQ[θδ(X)] = EQ[θEθ[δ(x)]]

= EQ[θ2]

by unbiasedness. So

EQ[(δ(X)− θ)2] = EQ[δ(X)2] + EQ[θ2]− 2EQ[θδ(X)] = 0

Remark. The result is counter-intuitive (estimator exactly correct with proba-
bility 1). The consequence of this idea is that ’unbiasedness’ and minimization
of the Bayes risk are usually disjoint properties.

In a normal model N(θ, 1), the MLE X̄n is unbiased. It is not a Bayes rule for
any prior π.

In a Bin(n, θ) model, the MLE X/n is only a Bayes rule in very degenerate
cases (see example sheet).

In the previous lecture we discussed the risk R(δ, θ) = Eθ[L(δ(X), θ)], Bayes risk
Rπ(δ) = Eπ[R(δ, θ)].
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4.2 Mimimax risk

Definition. The maximal risk of the decision rule δ over Θ (parameter space)
is defined as Rm(δ,Θ) = supθ∈ΘR(δ, θ).

Proposition. For any prior π and decision rule δ, we have

Rπ(δ) ≤ Rm(δ,Θ)

Proof. We have that

Rπ(δ) = Eπ[R(δ, θ)] ≤ sup
θ∈Θ

R(δ, θ) = Rm(δ,Θ)

Definition. (Minimax risk)
The infimum over all decision rules of the maximal risk is known as the minimax
risk: infδ supθ∈ΘR(δ, θ).

Taking the maximal risk as a way to evaluate estimates is a conservative approach.
We want to mitigate the risk of the worst possible θ.

Definition. A decision rule that attains the minimax risk (as its maximal risk)
is known as minimax.

Definition. A prior λ is called least favourable if for every prior λ′, Rλ(δλ) ≥
Rλ′(δλ′) corresponding to the worst case Bayes estimator.

Proposition. Let λ be a prior on Θ such that Rλ(δλ) = supθ∈ΘR(δλ, θ), where
δλ is a λ-Bayes rule. Then it holds
1. The rule δ is minimax;
2. If δλ is unique Bayes, then it is unique minimax;
3. The prior λ is least favourable.

Proof. 1. Let δ be any decision rule. We have

sup
θ∈Θ

R(δ, θ)︸ ︷︷ ︸
Rm(δ,θ)

≥ Eλ[R(δ, θ)] ≥ Eλ[R(δλ, θ)]

the first inequality is by the proposition above, and the second is by definition
of δλ. The third term is then equal to sup

θ∈Θ
R(δλ, θ)︸ ︷︷ ︸

Rm(δ,λ,θ)

.

2. If δλ is unique, the second inequality is strict for δ 6= δλ. So Rm(δ, θ) >
Rm(δ, θ) for all δ 6= δλ.
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3. For any prior λ′, we have

Rλ′(δλ′)︸ ︷︷ ︸
λ′−Bayes risk

= Eλ′ [R(δλ′ , θ)]

≤ Eλ′ [R(δλ, θ)]

≤ sup
θ∈Θ

R(δλ, θ)

= Eλ[R(δλ, θ)]

Where the first inequality is by definition of δλ′ and the second is by proposition
above.

Corollary. If a (unique) Bayes rule δλ has constant risk in θ (i.e. if R(δλ, θ) is
a constant function), then it is (the unique) minimax.

Proof. If δλ has constant risk, then

Rλ(δλ) = Eλ[R(δλ, θ)︸ ︷︷ ︸
const inθ

] = sup
θ∈ Θ

R(δλ, θ)

Example. If the maximal risk of δλ-Bayes risk, λ is leat favourable and δλ is
minimax,
• In aBin(n, θ), let πa,b be aBeta(a, b) prior for θ ∈ [0, 1]. Then the unique Bayes
rule for the quadratic risk is the posterior mean. δa,b = θ̄a,b = EΠa,b [θ|x]. Trying
to find (a, b) such that R(δa,b, θ) = const will give us a∗, b∗ and corresponding
prior πa∗,b∗ with δa∗,b∗ of constant risk, it is minimax, but not MLE (see example
sheet).
• In a N(0, 1) model, with θ ∈ R, the MLE is minimax.

4.3 Admissibility

Definition. A decision rule δ is inadmissible if there exists δ′ s.t.
• R(δ′, θ) ≤ R(δ, θ) for all θ ∈ Θ, and
• R(δ′, θ) < R(δ, θ) for some θ ∈ Θ.
We say that δ′ dominates δ. If δ is not inadmissible, it is admissible.

Remark. The intuition is that if δ is not admissible, we should always prefer
an estimator that dominates δ.

It is not, however, the only criterion for a ’reasonable estimator’. In a lot of
models, a constant estimator δ(X) = θ1 is admissible.

Recall the previous example that Bin(n, θ), θ ∈ [0, 1], πa,b = Beta[a, b].

Theorem. Let X1, ..., Xn i.i.d. N(θ, σ2), σ2 known, and θ ∈ Θ = R. Then

θ̂MLE = X̄n = 1
n

∑n
i=1Xi. The MLE is adimissible and minimax in the quadratic

risk (square loss L(δ, θ) = (δ − θ)2).
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Remark. 1-dimension Gaussian model.

Proof. WLOG let σ2 = 1. The risk of the MLE:

R(X̄n, θ) = Eθ[(X̄n − θ)2] = V arX̄n =
1

n

which is constant in θ. For any decision rule δ we have

R(δ, θ) = Eθ[(δ(X)− θ)2]

= Eθ[(δ(X)− Eθ[δ] + Eθ[δ]− θ)2]

= Eθ[(δ(X)− Eθ[δ])2] +B(θ)2

where B(θ) = Eθ[δ]− θ.

If we look at the proof of the CR inequality, we know that for biased estimators

V arθ[δ] ≥
( ddθEθ[δ])
I(θ)

2

=
(1 +B′(θ))2

I(θ)

(bias is differentiable by smoothness, regularity assumption.

We have for decision rule δ,

R(δ, θ) ≥ B2(θ)︸ ︷︷ ︸
bias squared

+
(1 +B′(θ))2

n

If δ dominates the MLE, we have for all θ ∈ R, R(δ, θ) ≤ 1

n︸︷︷︸
R(X̄n,θ)

and B2(θ) +

(1+B′(θ))2

n ≤ 1
n .

This inequality implies that |B(θ)| ≤ 1√
n

and also B′(θ) ≤ 0, so B is non-

increasing. We cannot have B′(θ) ≤ −ε for some ε > 0, for values of θ going to
either +∞ or −∞, otherwise the function would be unbounded. So we can take
sequences (θn)n≥0, one going to +∞, the other to −∞, such that

lim
n→∞

B′(θn) = 0.

As a consequence of B2(θ) + (1 + B′(θ))2/n ≤ 1
n , we therefore have that

limnB(θn) = 0 for both sequences. But B(θ) is non increasing over R, so
B(θ) = 0 for all θ ∈ R. So |delta is unbiased and the CR inequality applies,
R(δ, θ) = 1

n so δ does not dominate X̄n (contradiction) so X̄n is admissible.
Recall that it has constant risk, so it is minimax.

Remark. • X̄n is not a Bayes rule for any prior in this model. It is however
the ”limit” of the Bayes rule δπv2 with a N(0, v2) and v → ∞. In general, all
minimax rules can be obtained in this manner.
• The result still holds in a N(θ, I2) model where θ ∈ R2 (p = 2), but not for
p ≥ 3. In a N(θ, Ip) model with one observation, the MLE for θ is just X.
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We consider the James-Stein estimator

δJS = (δJS1 ...δJSp )T

where δJSi = (1 − p−2
||X||2 )Xi. We will show that R(δJS , θ) = Eθ||δJS − θ||2

dominates R(X, θ) = Eθ||X − θ||2 = E[
∑n
i=1(Xi − θ)2] = p, therefore the latter

is not admissible.

Lemma. (Stein’s formula)
Let X ∼ N(θ, 1) and g : R→ R that is bounded, differentiable, with E[|g′(X)|] <
∞. Then

Eθ[g′(X)] = Eθ[(X − θ)g(X)]

Remark. Think of this a ”Gaussian integration by parts”.

Proof.

Eθ[(X − θ)g(X)] =

∫
R
g(x) · (x− θ)e

− (x−θ)2
2

√
2π

dx

= −
∫
R

1√
2π
g(x) · d

dx
[e−

(x−θ)2
2 ]dx

=
−1√
2π

[g(x)e−
(x−θ)2

2 ]+∞−∞ +

∫
R

1√
2π
g′(x)e−

(x−θ)2
2 dx

= Eθ[g′(X)]

Remark. • If this result holds for some r.v. X for all such functions g, then
X ∼ N(θ, 1).
• If this result ”almost holds” for some r.v. X for all such functions g, then X
is ”close to” N(θ, 1).

Proposition. For all θ ∈ Rp, for p ≥ 3

R(δJS , θ) < R(X, θ) = p.

Proof. Apply definition, R(δJS , θ) = Eθ||(1− p−2
||X||2 )X−θ||2 = Eθ||Xθ− p−2

||X||2X||
2.

That is equal to

= Eθ||X − θ||2 + (p− 2)2Eθ[
||X||2

||X||4
]− 2(p− 2)Eθ

(X − θ)TX
||X||2

= p+ (p− 2)2Eθ[
1

||X||2
]− 2(p− 2)Eθ

(X − θ)TX
||X||2

(∗)

Study the last term,

Eθ
[

(X − θ)TX
||X||2

]
=

p∑
j=1

Eθ
[

(Xj − θj)Xj

||X||2

]

=

p∑
j=1

Eθ
[
Ej [

(Xj − θj)Xj

||X||2
| X(−j)]

]
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where | X(−j) means condition on all the values X1, ..., Xj−1, Xj+1, ..., Xp other
than Xj .

We evaluate

Ej
[

(Xj − θj)Xj

||X||2
| X(−j)

]
= E [(Xj − θj) · g(Xj)]

where Xj ∼ N(θj , 1) and g(Xj) =
Xj

X2
j+

∑
i6=j X

2
i
. g is bounded, differentiate we

get

g′(Xj) =
(X2

j +
∑
i 6=j X

2
i )− 2X2

j

(
∑p
i=1X

2
i )2

Applying Stein’s formula (see page 39, a formula for expectation of derivative),

E[(Xj − θj)g(Xj)] = E[g′(Xj)]

= E

[∑p
i=1X

2
i − 2X2

j

||X||4

]

So
p∑
j=1

E[E[(Xj − θj)g(Xj)]] = E
[

1

||X||4
(p||X||2 − 2||X||2)

]
Putting the result of this computation in (*)(this was in page 39 at the start of
proof), we get

R(δJS , θ) = p+ (p− 2)2Eθ
[

1

||X||2

]
− 2(p− 2)E

[
(p− 2)

||X||2

||X||4

]
= p− (p− 2)2Eθ[

1

||X||2
]

We can show explicitly

Eθ
[

1

||X|2

]
=

∫
Rp

1

||x||2
φ(x− θ)dx

≤
∫
Rp

1

||x||2
φ(x− θ)dx ≥ 1

c2i
Pθ(||x|| ∈ [c1, c2]) > 0

where φ is the pdf of the standard Gaussian in Rp.

Remark. • One proves that the supremum of the risk for this estimator is still
p: they have the same maximial risk.
• While δJS dominates X, it is itself not admissible: the estimator δJS+ =

(1− (p−2)
||X||2 )+X.

• Because it’s not clear what would be a ’best estimator’ in this model and of the
reasons above, we might often prefer θ̂MLE = X (Xn with several observations).

We know the limiting distribution of θ̂MLE and it is easier to work with.
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4.4 Classification problems

This is a finite decision problem of practical importance. For example, we are
given a vector X of clinical measurements X = (X1, ..., Xp)

T of an individual,
and we want to know whether X belongs to a certain group.

Formally, we have two fixed populations in X with distribution X ∼ f1 or
X ∼ f2 (e.g. distribution of X among people who don’t or who do have the flu).
This is similar in principle to a hypothesis testing problem, but only for one
observation, not several.

In order to determine whether X belongs to population 1 or 2, we use a decision
rule δ, with associated region R ⊆ X,

δ = δR(x) =

{
1 x ∈ R
2 x ∈ Rc

The probability of misclassifying X ∼ f1 is

P (2|1, R) =

∫
Rc
f1(x)dx = P1(X ∈ Rc)

and for X ∼ f2 it is

P (1|2, R) =

∫
R

f2(x)dx = P2(x ∈ R)

If π = (q1, q2) (q2 = 1− q1) for q1 ∈ [0, 1] is a prior probability of the index of
the population, the Bayes classification risk is

Eπ[R(δR, θ)] = q1P (2|1, R) + q2P (1|2, R)

Remark. Consider the joint distribution Q on X ×{1, 2}, Q(x, y) = f(x, y)π(y)
where π(1) = q1, π(2) = q2 and f(x, 1) = f1(x), f(x, 2) = f2(x). Two interpre-
tation for (X,Y ) ∼ Q.
• Y is drawn randomly from π. X is drawn from f(x, y), conditionally on Y = y.
• X is drawn from PX , the marginal distribution of X in the model

PX(x) =
∑
y

Q(x, y) = q1f1(x) + q2f2(x)

Y is drawn conditionally on X = x with distribution

Π(1|X = x) =
q1f1(x)

q1f1(x) + q2f2(x)
,

Π(2|X = x) =
q2f2(x)

q1f1(x) + q2f2(x)

(η(x), 1− η(x)) is a frequent notation.

These two interpretations give the same joint distribution, because

Q(x, y) = PX(x)Π(y|X = x)
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Proposition. The classification error, or Bayes classification risk, is given by

Rπ(δ) = PQ(δ(X) 6= Y )

Proof. (informal)
PQ(δ(X) 6= Y ) = PQ(Y = 1, δ(X) 6= 1) + PQ(Y = 2, δ(X) 6= 2) (first interpreta-
tion), and PQ(δ(X) 6= Y ) = EQ[1{δ(X) 6= Y }] =

∫
X

Π(δ(x))dPX(x), where δ(x)
is the local probability of making a mistake.

Definition. For a prior π = (q1, q2), 0 < q1 < 1, the Bayes classifier is given by

δπ = δR =

{
1 x ∈ R
2 x ∈ Rc

where R{x ∈ X : q1f1(x)
(1−q1)f2(x) ≥ 1}.

δπ = δR =

{
1 η(x) ≥ 1/2
2 η(x) < 1/2

Proposition. δπ is a Bayes rule, it minimizes the Bayes classification risk. If

Pfi(
f1(X)

f2(X)
=

1− q1

q1
) = 0

then δπ is the unique Bayes rule.

Proof. Let J be some classification region. Its classification error is

q1

∫
Jc
f1(x)dx+ (1− q1)

∫
J

f2(x)dx

=

∫
Jc

[q1f1(x)− (1− q1)f2(x)]dx+ (1− q1)

∫
X=J∪Jc

f2(x)dx

the first integral is minimized when taking

J = {x ∈ X :
f1(x)

f2(x)
≥ 1− q1

q1
}

and the second is independent of J .

Remark. The intuition is that we minimize the probability of error by picking
the most likely (locally) outcome, according to Π(y|X = x) (= y(x)).
• Since a unique Bayes risk is admissible, the rule δΠ is admissible.
• To find a minimax decision rule, we look for a prior π such that

qP (2|1, Rq) = (1− q)P (1|2, Rq)

πq = {q, 1− q} associated decision rule δπq , with region Rq.

Example. Consider f1 = N(µ1,Σ), and f2 = N(µ2,Σ), where µi ∈ Rp, Σ is a
p× p covariance matrix. One can show that hte Bayes classification m|y on the
discriminant function

D(X) = XTΣ(µ1 − µ2)
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Remark. In practice, f1, f2, π are not known in advance. In modern applications,
we have (X1, Y1), ..., (Xn, Yn) from this distribution (e.g. a collection of images,
with associated label ”digit”, ”letter” etc). The objective is to minimize P(δ(X) 6=
Y ) in δ. We minimize instead

1

n

n∑
i=1

1{δ(Xi) 6= Yi}

If we can choose any function δ, the risk is to ”overfit”, i.e. taking δ(xi) = yi
and whatever else for the rest.

To avoid this, we usually consider a class of decision function of the type
δβ(x) = 1{fβ(x) ≥ 1/2}, (Y ∈ {0, 1} here), where fβ is smooth, or otherwise
regular, parametrized by β.

In order to have a ”tractable” optimization problem, instead of minimizing

1

n

m∑
i=1

1{δβ(Xi) 6= Yi} =
1

n

n∑
i=1

1{|fβ(Xi)− Yi| > 1/2}

we minimize
1

n

∑
l(fβ(Xi), Yi)

i.e. the loss.
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