Number Fields

March 1, 2018

CONTENTS

Contents

-1	Miscellaneous	3
0	Motivation	4
1	Ring of integers	5
2	Complex embeddings	8
3	Discriminants and integral bases	11
4	Unique factorisation in \mathcal{O}_L	16
5	Dedekind's criteion	20
6	Geometry of numbers	22
7	Dirichlet's unit theorem	27

2

-1 Miscellaneous

Book: Number Fields, Marcus

Course notes: www.dpmms.ac.uk/ jat58/nfl2018 $\,$

0 Motivation

Theorem. If p is an odd prime, then $p = a^2 + b^2$ for $a, b \in \mathbb{Z} \iff p \equiv 1 \pmod{4}$.

Proof. If $p = a^2 + b^2$, then $p \equiv 0, 1, 2 \pmod{4}$. So this condition on p is necessary.

Suppose instead $p \equiv 1 \pmod{4}$. Then $\left(\frac{-1}{p}\right) = 1$. Thus $\exists a \in \mathbb{Z}$ such that $a^2 \equiv -1 \pmod{p}$, or $p|a^2 + 1$. We can factor $a^2 + 1 = (a+i)(a-i)$ in the ring $\mathbb{Z}[i]$. Here we introduce a notation: if $R \subseteq S$ are rings and $\alpha \in S$, then

$$R[\alpha] = \{\sum_{i=0}^{n} a_i \alpha^i \in S | a_i \in R\}$$

, the smallest subring of S containing both R and α .

We know from IB GRM that $\mathbb{Z}[i]$ is a UFD. Now p|(a+i)(a-i). If p is irreducible in $\mathbb{Z}[i]$ then p|a+i or p|a-i, contradiction. Thus p is reducible in $\mathbb{Z}[i]$, hence $p = z_1 z_2$ with $z_1, z_2 \in \mathbb{Z}[i]$. If $z_1 = A + Bi$, $A, B \in \mathbb{Z}$, then $A^2 + B^2 = p$. \Box

Another example is when p is an odd prime. Does the equation

$$x^p + y^p = z^p$$

have solutions with $x, y, z \in \mathbb{Z}$ and $xyz \neq 0$?

Theorem. (Kummer, 1850) If $\mathbb{Z}[e^{2\pi i/p}]$ is a UFD, then there are no solutions. Strategy: factor $x^p + y^p = \prod_{j=0}^{p-1} (x + e^{2\pi i j/p}y)$ in $\mathbb{Z}[e^{2\pi i/p}]$.

However, we now know $\mathbb{Z}[e^{2\pi i/p}]$ is a UFD $\iff p \leq 19$.

Theorem. (Kummer, 1850) If p is a *regular* prime, then there are no solutions. If p < 100, then p is regular $\iff p \neq 37, 59, 67$.

We have seen various examples such as $\mathbb{Z} \subseteq \mathbb{Q}$, $\mathbb{Z}[i] \subseteq \mathbb{Q}[i]$, $\mathbb{Z}[e^{2\pi i/p}] \subseteq \mathbb{Q}[e^{2\pi i/p}]$, or in general, $\mathcal{O}_L \subseteq L$, where a ring of "integers" lies in a number field.

1 Ring of integers

Recall: A field extension L/K is an inclusion $K \leq L$ of fields. The degree of L/K is $[L:K] = \dim_K L$. We say L/K is finite if $[L:K] < \infty$.

Definition. (1.1)

A number field is a finite extension L/\mathbb{Q} . Here are two ways to construct number fields:

(1) Let $\alpha \in \mathbb{C}$ be an algebraic number. Then $L = \mathbb{Q}(\alpha)$ is a number field;

(2) Let K be a number field, and let $f(X) \in K[X]$ be an irreducible polynomial. Then L = K[X]/(f(X)) is a number field.

 $(\text{Recall Tower Law: } [L:Q] = [L:K][K:Q] < \infty).$

Definition. (1.2)

(1) Let L/K be a field extension. Then we say $\alpha \in L$ is algebraic over K if there exists a monic $f(X) \in K[X]$ such that $f(\alpha) = 0$;

(2) Let L/\mathbb{Q} be a field extension. Then we say $\alpha \in L$ is an algebraic integer if there exists a monic $f(X) \in Z[X]$ such that $f(\alpha) = 0$.

Definition. (1.3)

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. We call the minimal polynomial of α over K the monic polynomial $f_{\alpha}(X) \in K[X]$ of least degree such that $f_{\alpha}(\alpha) = 0$.

We recall why $f_{\alpha}(X)$ is well-defined: there exists some monic $f(X) \in K[X]$ with $f(\alpha) = 0$ as α is algebraic. If $f_{\alpha}(\alpha), f'_{\alpha}(\alpha) \in K[X]$ both satisfy the definition of minimal polynomial, then we apply the polynomial division algorithm to write

$$f_{\alpha}(X) = p(X)f'_{\alpha}(X) + r(X)$$

where $p(X), r(X) \in K[X]$, and deg $r < \deg f'_{\alpha}$. Evaluate at $X = \alpha$, we have $0 = f_{\alpha}(\alpha) = p(\alpha)f'_{\alpha}(\alpha) + r(\alpha) = r(\alpha)$. By minimality of deg f'_{α} , we must have r = 0. Then deg $f_{\alpha} = \deg f'_{\alpha}$, and $f_{\alpha}(X), f'(\alpha)$ are both monic, i.e. p(X) = 1 and $f_{\alpha}(X) = f'_{\alpha}(X)$.

Lemma. (1.4)

Let L/\mathbb{Q} be a field extension, and let $\alpha \in L$ be an algebraic integer. Then: (1) The minimal polynomial $f_{\alpha}(X)$ of α over \mathbb{Q} lies in $\mathbb{Z}[X]$;

(2) If $g(X) \in \mathbb{Z}[X]$ satisfies $g(\alpha) = 0$, then there exists $q(X) \in \mathbb{Z}[X]$ such that $g(X) = f_{\alpha}(X)q(X)$;

(3) The kernel of the ring homomorphism $\mathbb{Z}[X] \to L$ by $f(X) \to f(\alpha)$ equals $(f_{\alpha}(X))$, the ideal generated by $f_{\alpha}(X)$.

Proof. (1) Recall that if $f(X) = a_n X^n + ... + a_0 \in \mathbb{Z}[X]$, then we define from GRM, the content $c(f) = \gcd(a_n, ..., a_0)$. Recall Gauss' Lemma: If $f(X), g(X) \in \mathbb{Z}[X]$, then c(fg) = c(f)c(g). Since $\alpha \in L$ is an algebraic integer, there exists monic $f(X) \in \mathbb{Z}[X]$ such that $f(\alpha) = 0$, i.e. c(f) = 1. Apply polynomial division in $\mathbb{Q}[X]$ to get $f(X) = p(X)f_{\alpha}(X) + r(X)$, where $p(X), r(X) \in \mathbb{Q}[X]$, deg r <deg f_{α} . The definition of $f_{\alpha}(X)$ implies that r(X) = 0, hence $f(X) = p(X)f_{\alpha}(X)$. Now choose integers $n, m \geq 1$ such that $np(X) \in \mathbb{Z}[X], c(np) = 1$, and $mf_{\alpha}(X) \in$ $\mathbb{Z}[x], c(mf_{\alpha}) = 1$. Then $nmf(x) = (np(x))(mf_{\alpha}(x)) \implies c(nmf(x)) = nm = 1$. So n = m = 1, hence $f_{\alpha}(x) \in \mathbb{Z}[X]$.

(2) Let $g(X) \in \mathbb{Z}[X]$ be such that $g(\alpha) = 0$. WLOG $g(x) \neq 0$ and c(g) = 1. Now apply polynomial division to write $g(x) = q(x)f_{\alpha}(x) + s(x)$ where $q(x), s(x) \in \mathbb{Q}[x]$, deg $s < \deg f_{\alpha}$. Again by definition we have s(x) = 0. Choose an integer $k \geq 1$ such that $kq(x) \in \mathbb{Z}[x]$ and c(kq) = 1. Then $kg(x) = kq(x)f_{\alpha}(x) \Longrightarrow$ $k = c(kg) = c(kq)c(f_{\alpha}) = 1$. So k = 1, hence $q(x) \in \mathbb{Z}[x]$. (3) is a reformulation of (2).

Let L/\mathbb{Q} be a field extension. Last time we said $\alpha \in L$ is an algebraic integer if \exists monic polynomial $f(x) \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. We proved that if $\alpha \in L$ is an algebraic integer and $f_{\alpha}(x) \in \mathbb{Q}[x]$ is the minimal polynomial of α over \mathbb{Q} , then $f_{\alpha}(x) \in \mathbb{Z}[x]$. However there is a small problem, so we'll prove again.

Proof. Choose $f(x) \in \mathbb{Z}[x]$ monic with $f(\alpha) = 0$, and write

$$f(x) = q(x)f_{\alpha}(x) + r(x)$$

where $q(x), r(x) \in \mathbb{Q}[x]$, $\deg r < \deg f_{\alpha}$. Then $r(\alpha) = 0 \implies r(x) = 0$, by minimality of $\deg f_{\alpha}$. I said that we can find integer $n, m \ge 1$ s.t. $nf\alpha(x) \in \mathbb{Z}[x]$, $c(nf\alpha) = 1, mq(x) \in \mathbb{Z}[x], c(mq) = 1$. However we need to explain why do they exist. Note $f_{\alpha}(x)$ and q(x) are both monic. Choose integers $N, M \ge 1$ such that $Nf_{\alpha}(x) \in \mathbb{Z}[x], Mq(x) \in \mathbb{Z}[x]$. Then $c(Nf_{\alpha})|N, c(Mq)|M$ as those are the leading term of the polynomial. Now let $N/c(Nf\alpha) = n \in \mathbb{Z}, M/c(Mq) = m \in \mathbb{Z}$. Now $nmf(x) = (nf\alpha(x))(mq(x))$, so $c(nmf(x)) = nm = 1 \implies n = m = 1$. \Box

Corollary. (1.5)

If $\alpha \in \mathbb{Q}$, then α is an algebraic integer $\iff \alpha \in \mathbb{Z}$.

Proof. By lemma 1.4, α is an algebraic integer $\iff f_{\alpha}(x) \in \mathbb{Z}[x]$. But if $\alpha \in \mathbb{Q}$, then $f_{\alpha}(x) = x - \alpha$, and the first needs to divide the second polynomial. \Box

Notation. If L/\mathbb{Q} is any field extension, we write $\mathcal{O}_L = \{\alpha \in L | \alpha \text{ is an algebraic integer} \}$.

Now we proceed to the first non-trivial result of the course:

Proposition. (1.6)

If L/\mathbb{Q} is a field extension, \mathcal{O}_L is a ring.

Proof. Clearly $0, 1 \in \mathcal{O}_L$. Now if $\alpha \in \mathcal{O}_L$, then $f_{-\alpha}(x) = (-1)^{\deg f_\alpha} f_\alpha(-x) \Longrightarrow -\alpha \in \mathcal{O}_L$.

The hard part is to show that if $\alpha, \beta \in \mathcal{O}_L$, then $\alpha + \beta \in \mathcal{O}_L$ and $\alpha\beta \in \mathcal{O}_L$. Observe that if $\alpha \in \mathcal{O}_L$, then $\mathbb{Z}[\alpha] \subseteq L$ is a finitely generated \mathbb{Z} -module. By definition, $\mathbb{Z}[\alpha]$ is generated by $1, \alpha, \alpha^2, \alpha^3, \dots$ Let $f_{\alpha}(x) = x^d + a_1 x^{d-1} + \dots + ad$, $a_i \in \mathbb{Z}$. Then $\alpha^d = -(a_1 \alpha^{d-1} + \dots + ad)$, so $\alpha^d \in \sum_{i=0}^{d-1} \mathbb{Z} \alpha^i$. By induction, we see that $\alpha^n \in \sum_{i=0}^{d-1} \mathbb{Z} \alpha^i$ for all $n \geq d$. Hence $\mathbb{Z}[\alpha] = \sum_{i=0}^{d-1} \mathbb{Z} \alpha^i$. Now take $\alpha, \beta \in \mathcal{O}_L$ and let $d = \deg f_{\alpha}, e = \deg f_{\beta}$. By definition, $\mathbb{Z}[\alpha,\beta] = \mathbb{Z}[\alpha][\beta]$ is generated as a \mathbb{Z} -module by $\{\alpha^i\beta^j\}_{i,j\in\mathbb{N}}$. The same argument show that in fact this ring is generated as a \mathbb{Z} -module by $\{\alpha^i\beta^j\}$ for $0 \leq i \leq d-1, 0 \leq j \leq e-1$. So $\mathbb{Z}[\alpha,\beta]$ is finitely generated. From GRM we know the classification of finitely generated \mathbb{Z} -modules implies that there's an isomorphism $\mathbb{Z}[\alpha,\beta] \cong \mathbb{Z}^r \oplus T$ for some $r \geq 1$ and finite abelian group T. In fact, T = 0: if $\gamma \in T$, then $|T|\gamma = 0$, by Lagrange's theorem. But $\mathbb{Z}[\alpha,\beta] \subseteq L$, a \mathbb{Q} -vector space, so this forces $\gamma = 0$. Now we can therefore fix an isomorphism $\mathbb{Z}[\alpha,\beta] \cong \mathbb{Z}^r$ ($r \geq 1$. There's an endomorphism $m_{\alpha\beta} : \mathbb{Z}[\alpha,\beta] \to \mathbb{Z}[\alpha,\beta]$ by $\gamma \to \alpha\beta\gamma$ (as a \mathbb{Z} -module). $m_{\alpha\beta}$ corredponds to an $r \times r$ matra $A_{\alpha\beta} \in M_{r \times r}(\mathbb{Z})$. Let $F_{\alpha\beta}(x) = \det(x \cdot 1_r - A_{\alpha\beta}) \in \mathbb{Z}[x]$, a monic polynomial. By the Cayley-Hamilton theorem, $F_{\alpha\beta}(m_{\alpha\beta}) = 0$ as endomorphisms of $\mathbb{Z}[\alpha,\beta]$. Write $F_{\alpha\beta}(x) = x^r + b_1 x^{r-1} + \ldots + b_r$ for $b_i \in \mathbb{Z}$. Thus $m_{\alpha\beta}^r + b_1 m_{\alpha\beta}^{r-1} + \ldots + b_r \cdot 1_r = 0$ as endomorphisms of $\mathbb{Z}[\alpha,\beta]$.

Now the image of 1 is $(\alpha\beta)^r + b_1(\alpha\beta)^{r-1} + ... + b_r = F_{\alpha\beta}(\alpha\beta) = 0$. So $\alpha\beta \in \mathcal{O}_L$. The argument to show $\alpha + \beta \in \mathcal{O}_L$ is identical, replacing $m_{\alpha\beta}$ by $m_{\alpha+\beta}$: $\mathbb{Z}[\alpha,\beta] \to \mathbb{Z}[\alpha,\beta]$ by $\gamma \to (\alpha+\beta)\gamma$. The detail is omitted here.

We call \mathcal{O}_L the ring of algebraic integers of L.

Lemma. (1.7)

Let L/\mathbb{Q} be a number field, and let $\alpha \in L$. Then $\exists n \geq 1$ an integer such that $n\alpha \in \mathcal{O}_L$.

Proof. Let $f(x) \in \mathbb{Q}[x]$ be a monic polynomial such that $f(\alpha) = 0$. Then $\exists n \in \mathbb{Z}, n \geq 1$ such that $g(x) = n^{\deg f} f(x/n) \in \mathbb{Z}[x]$ is monic. But then $g(n\alpha) = n^{\deg f} f(\alpha) = 0$. So $n\alpha \in \mathcal{O}_L$.

2 Complex embeddings

Let L be a number field.

Definition. (2.1)

A complex embedding of L is a field homomorphism $\sigma : L \to \mathbb{C}$. Note: in this case, σ is injective, and $\sigma|_{\mathbb{Q}}$ is the usual embedding $\mathbb{Q} \to \mathbb{C}$.

Proposition. (2.2)

Let L/K be an extension of number fields, and let $\sigma_0 : K \to \mathbb{C}$ be a complex embedding. Then there exist exactly [L : K] embeddings $\sigma : L \to \mathbb{C}$ which extends σ_0 ($\sigma|_K = \sigma_0$).

Proof. Induction on [L:K]. If [L:K] = 1, then L = K, so σ_0 determines σ . In general, choose $\alpha \in L - K$ and consider $L/K(\alpha)/K$. By the Tower law, $[L:K] = [L:K(\alpha)][K(\alpha):K]$ and $[K(\alpha):K] > 1$. By induction, it's enough to show there are exactly $[K(\alpha):K]$ embeddings $\sigma:K(\alpha) \to \mathbb{C}$ extending σ_0 . Let $f_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K. Observe there's an isomorphism $K[x]/(f_{\alpha}(x)) \to K(\alpha)$ by sending $x \to \alpha$. To give a complex embedding $\sigma:K(\alpha) \to \mathbb{C}$ extending σ_0 , it's equivalent to give a root β of $(\sigma_0 f)(x)$ in \mathbb{C} $(\sigma_0 f(x) \in \mathbb{C}[x]$ means apply σ_0 to the coefficients of f(x)). Dictionary: $\sigma \to \beta = \sigma(\alpha)$. We have $[K(\alpha):K] = \deg f_{\alpha} = \deg \sigma_0 f_{\alpha}$. It's enough to show $\sigma_0 f_{\alpha}$ has distinct roots in \mathbb{C} . The polynomial $f_{\alpha}(x) \in K[x]$ is irreducible, so is prime to its derivative $f'_{\alpha}(x)$ (char K = 0). So α is separable over K.

Recall from last lecture, let L be a number field, a complex embedding is a field homomorphism $\sigma: L \to \mathbb{C}$. The number of such embeddings is $[L:\mathbb{Q}]$. If $L = \mathbb{Q}(\alpha)$, and $f_{\alpha}(x) \in \mathbb{Q}[x]$ is the minimal polynomial, then there is a bijection $\{\sigma: L \to \mathbb{C}\} \leftrightarrow \{ \text{ roots } \beta \in \mathbb{C} \text{ of } f_{\alpha}(x) \}$ by sending $\sigma \to \beta = \sigma(alpha)$.

Notation: if $\sigma : L \to \mathbb{C}$ is a complex embedding, then $\bar{\sigma} : L \to \mathbb{C}$ is also a complex embedding, where $\bar{\sigma}(\alpha) = \overline{\sigma(\alpha)}$ (complex conjugation). If $\sigma = \bar{\sigma}$, then $\sigma(L) \subseteq \mathbb{R}$. Otherwise $\sigma \neq \bar{\sigma}$ and $\sigma(L) \not\subseteq \mathbb{R}$.

We write r for the number of complex embedding σ such that $\sigma = \bar{\sigma}$, s for the number of pairs of embeddings $\{\sigma, \bar{\sigma}\}$ where $\sigma \neq \bar{\sigma}$. Then $r + 2s = [L : \mathbb{Q}]$.

Example. Let $d \in \mathbb{Z}$ be square-free, $d \neq 0, 1$. Let $\mathbb{Q}(\sqrt{d}) = \mathbb{Q}[x]/(x^2 - d)$. If d > 0, then r = 2, s = 0 (real quadratic field).

If d < 0, then r = 0, s = 1 (imaginary quadratic field).

Example. Let $m \in \mathbb{Z}$ cube-free, $m \neq 0, 1, -1$. Let $\mathbb{Q}(\sqrt[3]{m}) = \mathbb{Q}[x]/(x^3 - m)$. Then r = 1, s = 1, since $x^3 - m$ has one real and two complex roots.

Definition. (2.3)

Let L/K be an extension of number fields, and let $\alpha \in L$. Let $m_{\alpha} : L \to L$ be the K-linear map defined by $m_{\alpha}(\beta) = \alpha\beta$. Then we define

$$\operatorname{tr}_{L/K}(\alpha) = \operatorname{tr} m_{\alpha} \in K$$
$$N_{L/K}(\alpha) = \det m_{\alpha} \in K$$

the trace and norm of α respectively.

Lemma. (2.4)

If L/K is an extension of number fields and $\alpha \in L$, then

$$\operatorname{tr}_{L/K}(\alpha) = [L:K(\alpha)] \operatorname{tr}_{K(\alpha)/K}(\alpha)$$
$$N_{L/K}(\alpha) = N_{K(\alpha)/K}(\alpha)^{[L:K(\alpha)]}$$

Proof. There's an isomorphism $L \cong K(\alpha)^{[L:K(\alpha)]}$ of $K(\alpha)$ -vector spaces(?). \Box

Lemma. (2.5)

Let L/K be an extension of number fields and let $\alpha \in L$. Let $\sigma_0 : K \to \mathbb{C}$ be a complex embedding, and let $\sigma_1, ..., \sigma_n : L \to \mathbb{C}$ be the embeddings of L extending σ_0 .

Then

$$\sigma_0(\operatorname{tr}_{L/K}(\alpha)) = \sigma_1(\alpha) + \dots + \sigma_n(\alpha)$$

$$\sigma_0(N_{L/K}(\alpha)) = \sigma_1(\alpha) \dots \sigma_n(\alpha).$$

Proof. WLOG let $L = K(\alpha)$. Let $f_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K. Then

$$(\sigma_0 f_\alpha)(x) = (x - \sigma_1(\alpha))(x - \sigma_2(\alpha))...(x - \sigma_n(\alpha))$$

If $f(\alpha) = x^n + a_1 x^{n-1} + \dots + a_n$, then $\sigma_0(a_1) = -(\sigma_1(\alpha) + \dots + \sigma_n(\alpha)), \sigma_0(a_n) = (-1)^n \sigma_1(\alpha) \dots \sigma_n(\alpha).$

Let $g(x) \in K[x]$ be the characteristic polynomial of m_{α} . If $g(x) = x^n + b_1 x^{n-1} + \ldots + b_n$, then $b_1 = -\operatorname{tr} m_{\alpha} = -\operatorname{tr}_{L/K}(\alpha)$, $b_n = (-1)^n \det m_{\alpha} = (-1)^n N_{L/K}(\alpha)$.By Cayley-Hamilton, $g(m_{\alpha}) = 0 \implies g(\alpha) = 0 \implies f_{\alpha}(x) = g(x)$.

Corollary. (2.6) If $\alpha \in \mathcal{O}_L$, then $\operatorname{tr}_{L/K}(\alpha), N_{L/K}(\alpha) \in \mathcal{O}_K$.

Proof. If $\beta \in K$ then $\beta \in \mathcal{O}_K \iff \sigma_0(\beta) \in \mathcal{O}_{\mathbb{C}}$ (as $\forall f(x) \in \mathbb{Z}[x], f(\beta) = 0 \iff f(\sigma_0(\beta)) = 0$). By the lemma, $\sigma_0 \operatorname{tr}_{L/K}(\alpha) = \sigma_1(\alpha) + \ldots + \sigma_n(\alpha)$. If $\alpha \in \mathcal{O}_L$, then $\sigma_1(\alpha), \ldots, \sigma_n(\alpha) \in \mathcal{O}_{\mathbb{C}} \implies \sigma_1(\alpha) + \ldots + \sigma_n(\alpha) \in \mathcal{O}_{\mathbb{C}} \implies \sigma_0 \operatorname{tr}_{L/K}(\alpha) \in \mathcal{O}_{\mathbb{C}} \implies \operatorname{tr}_{L/K}(\alpha) \in \mathcal{O}_K$.

The same argument works for the norm.

Proposition. (2.7)

Let $d \in \mathbb{Z}$ be squarefree, $d \neq 0, 1$, and let $L = \mathbb{Q}(\sqrt{d})$. Then

$$\mathcal{O}_L = \begin{cases} \mathbb{Z}[\sqrt{d}] & d \equiv 2,3 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & d \equiv 1 \pmod{4} \end{cases}$$

Proof. If $\alpha \in L$, then $\alpha \in \mathcal{O}_L$ if and only if both trace and norm (over L/\mathbb{Q}) of α is in \mathbb{Z} . Why? Forward direction is the previous corollary; if $\alpha \in L$, then $f(\alpha) = 0$, where $f(x) = (x - \sigma_1(\alpha))(x - \sigma_2(\alpha)) = x^2 - \operatorname{tr}_{L/\mathbb{Q}}(\alpha)x + N_{L/\mathbb{Q}}(\alpha) \in \mathbb{Q}[x]$, where σ_1, σ_2 are complex embeddings of L. So backward holds too.

Let $\alpha \in L$. Write $\alpha = \frac{u}{2} + \frac{v}{2}\sqrt{d}$ where $u, v \in \mathbb{Q}$. If $\alpha \in \mathcal{O}_L$, then $\operatorname{tr}_{L/\mathbb{Q}}(\alpha) = u \in \mathbb{Z}$, and $N_{L/\mathbb{Q}}(\alpha) = \frac{1}{4}(u + \sqrt{d}v)(u - \sqrt{d}v) = \frac{1}{4}(u^2 - dv^2) \in \mathbb{Z} \implies u^2 - dv^2 \in 4\mathbb{Z}$ $\implies dv^2 \in \mathbb{Z}$.

Write $v = \frac{r}{s}$ where $r, s \in \mathbb{Z}, s \neq 0, (r, s) = 1$. Then we get $dr^2 \in s^2\mathbb{Z} \implies s^2|dr^2$. If p is a prime and p|s then $p^2|d$. But we assumed d is square-free. So s = 1, so $v \in \mathbb{Z}$.

We've shown if $\alpha \in \mathcal{O}_L$, then $\alpha = \frac{u}{2} + \frac{v}{2}\sqrt{d}$ where $u, v \in \mathbb{Z}$ and $u^2 \equiv d^2 \pmod{4}$.

Case 1: $d \equiv 2, 3 \pmod{4}$. Then $u^2, v^2 \equiv 0, 1 \pmod{4}$. Considering the congruence $u^2 \equiv dv^2 \pmod{4}$ shows that both $u, v \in 2\mathbb{Z}$. Hence $\alpha \in \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} | a, b \in \mathbb{Z}\}$, and $\mathcal{O}_L = \mathbb{Z}[\sqrt{d}]$.

Case 2: $d \equiv 1 \pmod{4}$. Hence $u^2 \equiv v^2 \pmod{4}$, so $u \equiv v \pmod{2}$. Hence $\mathcal{O}_L \subseteq \{\frac{u}{2} + \frac{v}{2}\sqrt{d} | u, v \in \mathbb{Z}, u \equiv 1 \pmod{2}\} = \mathbb{Z} \oplus \mathbb{Z}(\frac{1+\sqrt{d}}{2})$. It remains to show that $\frac{1+\sqrt{d}}{2}$ is an algebraic integer.

We have $\operatorname{tr}_{L/\mathbb{Q}}(\frac{1+\sqrt{d}}{2}) = 1$, $N_{L/\mathbb{Q}}(\frac{1+\sqrt{d}}{2}) = \frac{1-d}{4} \in \mathbb{Z}$.

Recall that if R is a ring, then a unit in R is an element $u \in R$ such that there exists $v \in R$ such that uv = 1.

The set $\mathbb{R}^* = \{ u \in R | u \text{ is a unit} \}$ forms a group under multiplication.

Lemma. (2.8)

If L is a number field, then the units in \mathcal{O}_L are $\mathcal{O}_L^* = \{ \alpha \in \mathcal{O}_L | N_{L/\mathbb{Q}}(\alpha) = \pm 1 \}.$

Proof. next time.

It's next time now! Let's prove this lemma. $N_{L/\mathbb{Q}}(\alpha\beta) = N_{L/\mathbb{Q}}(\alpha)N_{L/\mathbb{Q}}(\beta)$ for any $\alpha, \beta \in L$. If $\alpha \in \mathcal{O}_L^*$, then $\exists \beta \in \mathcal{O}_L$ such that $\alpha\beta = 1 \implies N_{L/\mathbb{Q}}(\alpha)N_{L/\mathbb{Q}}(\beta) = 1$. Since $N_{L/\mathbb{Q}}(\alpha), N_{L/\mathbb{Q}}(\beta) \in \mathbb{Z}$, we get $N_{L/\mathbb{Q}}(\alpha) \in \{\pm 1\}$. Conversely, suppose $\alpha \in \mathcal{O}_L$ and $N_{L/\mathbb{Q}}(\alpha) = \pm 1$. Then $\alpha^{-1} \in L$. Let $\sigma_1, ..., \sigma_n : L \to \mathbb{C}$ be the distinct complex embeddings of L. Then

$$N_{L/\mathbb{Q}}(\alpha) = \sigma_1(\alpha)...\sigma_n(\alpha) = \pm 1$$
$$\implies \sigma_1(\alpha^{-1}) = \pm \sigma_2(\alpha)...\sigma_n(\alpha) \in \mathcal{O}_{\mathbb{C}}$$
$$\implies \alpha^{-1} \in \mathcal{O}_L$$

Remark. We'll prove later in the course that \mathcal{O}_L^* is a finite group \iff either $L = \mathbb{Q}$ or L is an imaginary quadratic field.

3 Discriminants and integral bases

Let L be a number field, $n = [L : \mathbb{Q}], \sigma_1, ..., \sigma_n : L \to \mathbb{C}$ be distinct complex embeddings.

Definition. (3.1)

Let $\alpha_1, ..., \alpha_n \in L$. Then their discriminant is $disc(\alpha_1, ..., \alpha_n) = \det(D)^2$, where $D = M_{n \times n}(F)$ is $D_{ij} = \sigma_i(\alpha_j)$. Note: this is independent of the choice of ordering of $\sigma_1, ..., \sigma_n$ and $\alpha_1, ..., \alpha_n$, as that's just permuting the rows or columns, hence changing only possibly signs; but we took a square in the definition.

Lemma. (3.2)

Let $\alpha_1, ..., \alpha_n \in L$. Then $disc(\alpha_1, ..., \alpha_n) = det(T)$, where $T \in M_{n \times n}(\mathbb{Q})$ is $T_{ij} = tr_{L/\mathbb{Q}}(\alpha_i \alpha_j)$.

Proof.
$$T_{ij} = \sum_{k=1}^{n} \sigma_k(\alpha_i \alpha_j) = \sum_{k=1}^{n} D_{ki} D_{kj} = (D^T D)_{ij}.$$

Corollary. (3.3)

 $disc(\alpha_1,...,\alpha_n) \in \mathbb{Q}$. If $\alpha_1,...,\alpha_n \in \mathcal{O}_L$, then $disc(\alpha_1,...,\alpha_n) \in \mathbb{Z}$.

Proof. $disc(\alpha_1, ..., \alpha_n) = \det(T)$, and entries of T is trace of some elements of L (over \mathbb{Q}) so is in the base field \mathbb{Q} (think a bit). So this must be rational. If $\alpha_1, ..., \alpha_n \in \mathcal{O}_L$, then $\forall i, j, D_{ij} \in \mathcal{O}_{\mathbb{C}} \implies disc(\alpha_1, ..., \alpha_n) \in \mathcal{O}_{\mathbb{C}} \cap \mathbb{Q} = \mathbb{Z}$. \Box

Proposition. (3.4)

Let $\alpha_1, ..., \alpha_n \in L$. Then $disc(\alpha_1, ..., \alpha_n) \neq 0 \iff \alpha_1, ..., \alpha_n$ form a basis of L as \mathbb{Q} -vector space.

Proof. First suppose $\alpha_1, ..., \alpha_n$ are linearly dependent. Then the columns of the matrix $D_{ij} = \sigma_i(\alpha_j)$ are linearly dependent $\implies disc(\alpha_1, ..., \alpha_n) = 0$ (determinant is 0).

Now suppose $\alpha_1, ..., \alpha_n$ are linearly independent. Then $disc(\alpha_1, ..., \alpha_n) \neq 0$ $\iff \det(T) \neq 0 \iff$ the symmetric bilinear form $\phi: L \times L \to \mathbb{Q}$ by $\phi(\alpha, \beta) = \operatorname{tr}_{L/\mathbb{Q}}(\alpha\beta)$ is non-degenerate, i.e. $\forall \alpha \in L^*, \exists \beta \in L$ such that $\phi(\alpha, \beta) \neq 0$. If $\alpha \in L^*$, then $\phi(\alpha, \alpha^{-1}) = \operatorname{tr}_{L/\mathbb{Q}}(1) = n \neq 0$.

Definition. (3.5)

We say elements $\alpha_1, ..., \alpha_n \in L$ form an *integral basis for* \mathcal{O}_L , if: (i) $\alpha_1, ..., \alpha_n \in \mathcal{O}_L$; (ii) $\alpha_1, ..., \alpha_n$ generate \mathcal{O}_L as a \mathbb{Z} -module.

Lemma. (3.6)

If $\alpha_1, ..., \alpha_n$ form an integral basis for \mathcal{O}_L , then the function

$$f: \mathbb{Z}^n \to \mathcal{O}_L$$

 $(m_1, ..., m_n) \to \sum_{i=1}^n m_i \alpha_i$

is an isomorphism of $\mathbb Z\text{-}module.$

Proof. f is a homomorphism, we must show it's bijective. Observe that $\alpha_1, ..., \alpha_n$ form a basis of L as \mathbb{Q} -vector space. We know that if $\beta \in L$, then $\exists N \in \mathbb{Z}^+$ such that $N\beta \in \mathcal{O}_L$ (I think (1.7)). So we can write $N\beta = \sum_{i=1}^n m_i \alpha_i$ for some $m_1 \in \mathbb{Z} \implies \beta = \sum_{i=1}^n \frac{m_i}{N} \alpha_i$. Hence $\alpha_1, ..., \alpha_n$ span L, so they form a basis of L.

If $f(m_1, ..., m_n) = 0$, then $\sum_{i=1}^n m_i \alpha_i = 0 \implies (m_1, ..., m_n) = (0, ..., 0)$, as $\alpha_1, ..., \alpha_n$ are independent over \mathbb{Q} . This shows f is injective. It's surjective by definition.

Lemma. (3.7, sandwich lemma)

(i) If $H \leq G$ are groups and $G \cong \mathbb{Z}^a$ for some $a \geq 0$, then $H \cong \mathbb{Z}^b$ for some $b \leq a$.

(ii) If $K \leq H \leq G$ are groups and $K \cong \mathbb{Z}^a$, $G \cong \mathbb{Z}^a$ for some $a \geq 0$, then $H \cong \mathbb{Z}^a$.

(iii) If $H \leq G$ are groups and $H \cong \mathbb{Z}^a$, $G \cong \mathbb{Z}^a$ for some $a \geq 0$, then G/H is finite.

Proof. (i) $H \leq G, G \cong \mathbb{Z}^a$. Then G/H is f.g abelian group. By the classification, there's an isomorphism $G/H \cong \mathbb{Z}^N \oplus A$, A finite abelian group. Choose p prime, $p \mid \mid \mid A \mid$. Then the map $f : G/H \to G/H$ by $x + H \to px + H$ is injective, so $f' : H/pH \to G/pG$ by $x + pH \to x + pG$ is injective – why? If $x \in H, x \in pG$, then x = py for some $y \in G$; then $y + H \in \ker(f) = H$. Hence $x \in pH$. So indeed f' is injective. By the classification, $H \cong \mathbb{Z}^b$. f' injective $\implies |H/pH| \leq |G/pG|$, i.e. $p^b \leq p^a$ so $b \leq a$.

(ii) Apply (i) to $K \leq H$ and $H \leq G$ to get $H \cong \mathbb{Z}^b$ where $a \leq b \leq a$.

(iii) $H \leq G$, $H \cong \mathbb{Z}^a$, $G \cong \mathbb{Z}^a$. Again G/H is finitely generated, so by the classification $G/H \cong \mathbb{Z}^N \oplus A$ where A is a finite abelian group.

Let p be a prime, p |/|A|. same proof as in (i) shows that $f' : H/pH \to G/pG$ is injective. Since $|H/pH| = |G/pG| = p^a$, f' is a group isomorphism $G/H + pG \cong (\mathbb{Z}/p\mathbb{Z})^N$. There's a surjective homomorphism $G/pG \to G/H + pG$ which has kernel containing the image of f'. Hence $G/pG \to G/H + pG$ is surjective with kernel G/pG. This forces N = 0.

Let *L* be a number field, $n = [L : \mathbb{Q}], \sigma_1, ..., \sigma_n : L \to \mathbb{C}$ be distinct complex embeddings; $\alpha_1, ..., \alpha_n \in L$, we defined $disc(\alpha_1, ..., \alpha_n) = det(\sigma_i(\alpha_j))^2$. An alternative notation is $\Delta(\alpha_1, ..., \alpha_n)$. We also said $\alpha_1, ..., \alpha_n$ form an integral basis for \mathcal{O}_L if they generate \mathcal{O}_L as a \mathbb{Z} -module.

Proposition. (3.8)

There exists an integral basis for \mathcal{O}_L .

Proof. Let $\beta_1, ..., \beta_n \in L$ be a basis for L as \mathbb{Q} -vector space. WLOG, $\beta_1, ..., \beta_n \in \mathcal{O}_L$. Then $\mathcal{O}_L \supset \bigoplus_{i=1}^n \mathbb{Z}\beta_i$.

Recall $\phi: L \times L \to \mathbb{Q}$ by sending $(\alpha, \beta) \to \operatorname{tr}_{L/\mathbb{Q}}(\alpha\beta)$ is a non-degenerate symmetric bilinear form (we showed that last time). Let $\beta_1^*, ..., \beta_n^*$ be the dual basis. Then $\operatorname{tr}_{L/\mathbb{Q}}(\beta_i\beta_i^*) = \delta_{ij}$ (why?).

If $\alpha \in \mathcal{O}_L$, then we can write $\alpha = \sum_{i=1}^n a_i \beta_i^*$ where $a_i \in \mathbb{Q}$. We know $\alpha \beta_i \in \mathcal{O}_L$, hence $\operatorname{tr}_{L/\mathbb{Q}}(\alpha \beta) \in \mathbb{Z}$. However LHS $= \sum_{j=1}^n \operatorname{tr}_{L/\mathbb{Q}}(a_j \beta_j^* \beta_i) =$

3 DISCRIMINANTS AND INTEGRAL BASES

 $\sum_{j=1}^{n} a_j \operatorname{tr}_{L/\mathbb{Q}}(\beta_j^* \beta_i) = a_j. \text{ So } \mathcal{O}_L \subseteq \bigoplus_{i=1}^{n} \mathbb{Z}\beta_i^*. \text{ By sandwich lemma there is an isomorphism between } \mathbb{Z}^n \text{ and } \mathcal{O}_L.$

If $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$ are both integral bases for \mathcal{O}_L , then there exists $A \in M_{n \times n}(\mathbb{Z})$ such that $\beta_j = \sum_{i=1}^n A_{ij}\alpha_i$ for each j = 1, ..., n. Moreover, we must have $\det(A) \in \{\pm 1\}$, and $A \in GL_n(\mathbb{Z})$. Then $disc(\beta_1, ..., \beta_n) = \det(D')^2$, where $D'_{ij} = \sigma_i(\beta_j), D_{ij} = \sigma_i(\alpha_j)$. We have $D'_{ij} = \sum_{k=1}^n \sigma_i(A_{kj}\alpha_k) = \sum_{k=1}^n \sigma_i(\alpha_k)A_{kj} = (DA)_{ij}$.

We find $disc(\beta_1, ..., \beta_n) = \det(D')^2 = \det(DA)^2 = \det(D)^2 = disc(\alpha_1, ..., \alpha_n)$. Therefore we could define:

Definition. (3.9)

The discriminant D_L of the number field L is $disc(\alpha_1, ..., \alpha_n)$, where $\alpha_1, ..., \alpha_n$ is any integral basis for \mathcal{O}_L .

Proposition. (3.10)

Let $L = \mathbb{Q}(\alpha)$, and let $f(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} . Then

$$disc(1, \alpha, \alpha^2, ..., \alpha^{n-1}) = \prod_{i < j} (\sigma_i(\alpha) - \sigma_j(\alpha))^2 = (-1)^{n(n-1)/2} N_{L/\mathbb{Q}}(f'(\alpha))$$

In part II Galois theory, we defined the discrimant of a polynomial, $discf = \prod_{i < j} (\sigma_i(\alpha) - \sigma_j(\alpha))^2$ where α_i 's are the roots of f.

Proof. If $D_{ij} = \sigma_i(\alpha^{j-1}), D \in M_{n \times n}(\mathbb{C})$, then $disc(1, \alpha, ..., \alpha^{n-1}) = \det(D)^2$. D is a Vandermonde matrix, so we know $\det(D) = \prod_{i < j} (\sigma_j(\alpha) - \sigma_i(\alpha))$. On the other hand, $N_{L/\mathbb{Q}}(f'(\alpha)) = \prod_{i=1}^n \sigma_i(f'(\alpha)) = \prod_{i=1}^n f'(\sigma_i(\alpha))$. Using $f(x) = \prod_{j=1}^n (x - \sigma_j(\alpha))$, we get RHS $= \prod_{i=1}^n \prod_{j \neq i} (\sigma_i(\alpha) - \sigma_j(\alpha)) = (-1)^{\binom{n}{2}} \prod_{i < j} (\sigma_i(\alpha) - \sigma_j(\alpha))^2$.

Note: if $\alpha \in \mathcal{O}_L$ and $\mathbb{Z}[\alpha] = \mathcal{O}_L$, then $1, \alpha, ..., \alpha^{n-1}$ is an integral basi for \mathcal{O}_L . We can then use proposition to calculate D_L .

Example. Let $d \in \mathbb{Z}$ square-free, $d \neq 0, 1, L = \mathbb{Q}(\sqrt{d})$. Then

$$D_L = \begin{cases} 4d & d \equiv 2,3 \pmod{4} \\ d & d \equiv 1 \pmod{4} \end{cases}$$

To see this, if $d \equiv 2,3 \pmod{4}$, then $\mathcal{O}_L = \mathbb{Z}[\sqrt{d}]$ (shown previously). Apply proposition to $x^2 - d = f(x)$, we get $D_L = disc(1,\sqrt{d}) = -N_{L/\mathbb{Q}}(2\sqrt{d}) = 4d$. On the other hand, if $d \equiv 1 \pmod{4}$, then $\mathcal{O}_L = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$. Apply proposition to the minimal polynomial of this element, $f(x) = x^2 - x + \frac{1-d}{4}$, so f'(x) = 2x - 1, so $f'(\alpha) = \sqrt{d}$. Therefore $D_L = -N_{L/\mathbb{Q}}(\sqrt{d}) = \sqrt{d}$.

Proposition. If $\alpha_1, ..., \alpha_n \in \mathcal{O}_L$ are such that $disc(\alpha_1, ..., \alpha_n)$ is a non-zero square-free integer, then $\alpha_1, ..., \alpha_n$ form an integral basis for \mathcal{O}_L .

Note: this is a sufficient condition, but is not necessary (the previous example).

Proof. Let $\beta_1, ..., \beta_n$ be an integral basis for \mathcal{O}_L . There exists $A \in M_{n \times n}(\mathbb{Z})$ such that $\alpha_j = \sum_{i=1}^n A_{ij}\beta_i \forall j = 1, ..., n$. Then $disc(\alpha_1, ..., \alpha_n) = \det(A)^2 disc(\beta_1, ..., \beta_n)$ (we proved this in the beginning of lecture: D' = DA). In particular, if this is square-free and non-zero, then $\det(A)$ must be $\{\pm 1\}$. So $A \in GL_n(\mathbb{Z})$. Hence $\alpha_1, ..., \alpha_n$ generate \mathcal{O}_L (as they can generate β_i) and form an integral basis. \Box

This could save a lot of calculation if we are lucky.

Example. Let $f(x) = x^3 - x - 1$. Then $discf = -4a^3 - 27b^2 = -23$. This is square-free! If $L = \mathbb{Q}(\alpha)$, α a root of f(x), then $\mathcal{O}_L = \mathbb{Z}[\alpha]$.

Definition. (3.12)

Let $I \subseteq \mathcal{O}_L$ be a no-zero ideal. Then elements $\alpha_1, ..., \alpha_n \in L$ form an integral basis for I if:

(i) $\alpha_1, ..., \alpha_n \in I$; (ii) $\alpha_1, ..., \alpha_n$ generate I as a \mathbb{Z} -module.

Proposition. (3.13)

Let $I \subseteq \mathcal{O}_L$ be a non-zero ideal. Then there exists an integral basis for I.

Definition. By definition, $I \subseteq \mathcal{O}_L \cong \mathbb{Z}^n$. Let $\alpha_1, ..., \alpha_n \in \mathcal{O}_L$ be an integral basis for \mathcal{O}_L . Let $\alpha \in I$ be non-zero. Then $(\alpha) \subseteq I$, hence $\bigoplus_{i=1}^n \mathbb{Z} \alpha \alpha_i \subseteq I \subseteq \mathcal{O}_L$. So by sandwich lemma, there is an isomorphism between I and \mathbb{Z}^n as \mathbb{Z} -module. Hence there exists an integral basis for I.

An interesting consequence of the proof:

Definition. (3.14)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then we define its norm

$$N(I) = [\mathcal{O}_L : I]$$

which is finite by the sandwich lemma.

Definition. (3.15)

If $I \subset \mathcal{O}_L$ is a non-zero ideal then we define $disc(I) = disc(\alpha_1, ..., \alpha_n)$ where $\alpha_1, ..., \alpha_n$ is an integral basis for I. (same argument shows disc(I) depends only on I).

Lemma. (3.16)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then $disc(I) = disc(\mathcal{O}_L)N(I)^2$.

Proof. Let $\alpha_1, ..., \alpha_n, \beta_1, ..., \beta_n$ be integral bases for \mathcal{O}_L and I respectively. Then $\exists A \in M_{n \times n}(\mathbb{Z})$ such that $\beta_j = \sum_{i=1}^n A_{ij}\alpha_i \ \forall j = 1, ...n$, and $disc(\alpha_1, ..., \alpha_n) \det(A)^2 = disc(\beta_1, ..., \beta_n)$. We must show $\det(A)^2 = [\mathcal{O}_L : I]^2$.

In fact, we'll show if $B \in M_{n \times n}(\mathbb{Z})$ and $\det(B) \neq 0$, then $|\mathbb{Z}^n/B\mathbb{Z}^n| = |\det(B)|$. This suffices after identify $\mathcal{O}_L \cong \mathbb{Z}^n$.

Recall: $\exists P, Q \in GL_n(\mathbb{Z})$ such that $PBQ = D = Diag(d_1, ..., d_n), d_i \in \mathbb{Z}$ (Smith normal form). Hence we have $\mathbb{Z}^n/B\mathbb{Z}^n \cong \mathbb{Z}^n/D\mathbb{Z}^n \cong \bigoplus_{i=1}^n \mathbb{Z}/d_i\mathbb{Z} \Longrightarrow$ $|\mathbb{Z}^n/B\mathbb{Z}^n| = |\mathbb{Z}^n/D\mathbb{Z}^n| = \prod_{i=1}^n |d_i|.$ On the other hand, $|\det(B)| = |\det(D)| = \prod_{i=1}^n |d_i|.$ Remember we have L a number field, $n = [L : \mathbb{Q}], \sigma_1, ..., \sigma_n : L \to \mathbb{C}$ are distinct complex embeddings of L.

Lemma. (3.17)

Let $\alpha \in \mathcal{O}_L \setminus \{0\}$. Then $N((\alpha)) = |N_{L/\mathbb{Q}}(\alpha)|$ (Note that's an ideal).

Proof. Let $\alpha_1, ..., \alpha_n$ be an integral basis for \mathcal{O}_L . Then $\alpha \alpha_1, ..., \alpha \alpha_n$ is an integral basis for $I = (\alpha)$. So

$$disc(I) = disc(\alpha\alpha_1, ..., \alpha\alpha_n)$$

= det($\sigma_i(\alpha\alpha_j)$)²
= det($\sigma_i(\alpha)\sigma_i(\alpha_j)$)²
= $(\prod_{i=1}^n \sigma_i(\alpha))^2 \det(\sigma_i(\alpha_j))^2$
= $N_{L/\mathbb{Q}}(\alpha)^2 disc(\mathcal{O}_L)$

And we showed last time that for any non-zero ideal $J \subseteq \mathcal{O}_L$, $disc(J) = N(J)^2 disc(\mathcal{O}_L)$.

Notation: If $\alpha \in \mathcal{L} - \{0\}$, we let $N(\alpha) = N((\alpha))N(0) = 0$. Then $\forall \alpha, \beta \in \mathcal{O}_L$, $N(\alpha\beta) = N(\alpha)N(\beta)$.

4 Unique factorisation in \mathcal{O}_L

Recall: we say a ring R is a unique factorisation domain (UFD) if (i) R is an integral domain;

(ii) if $x \in R$ is non-zero and not a unit, then there exists an expression $x = p_1 \dots p_r$ where $p_i \in R$ are irreducible elements. This expression is unique in the sense that if $x = q_1 \dots q_s$ is another such expression, then r = s and after re-ordering, each q_i is an associate of p_i (i.e. $q_i \in R^* p_i$, where R^* is the field of units).

After 2 years of Cambridge Maths we certainly know \mathbb{Z} is a UFD. However, if L is a number field, \mathcal{O}_L need not be a UFD.

In fact, any non-zero $x \in \mathcal{O}_L$ which is not a unit can be expressed as a product of irreducible elements.

If $x \in \mathcal{O}_L$, then x is a no-zero non-unit $\iff N(x) > 1$. Suppose $x \in \mathcal{O}_L$ is a non-zero non-unit which cannot be written as a product of irreducible elements, and with N(x) minimal among elements with this property. Then x = yz with N(y) > 1, N(z) > 1, hence N(y) < N(x), N(z) < N(x). By minimality of N(x), both y, z can be written as products of irreducible; contradiction.

Example. Consider $L = \mathbb{Q}(\sqrt{-5}, \mathcal{O}_L = \mathbb{Z}[\sqrt{-5}])$, and $\mathcal{O}_L^* = \{\pm 1\}$. In \mathcal{O}_L we have $6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$, and all of the four are irreducibles, and no two are associates (norms). So \mathcal{O}_L is not a UFD (famous example).

Idea: introduce ideal multiplication in order to reduce elements further.

Recall that if R is a ring and I, J are ideals of R, then we define

$$IJ = \{\sum_{i=1}^{k} a_i b_i | a_i \in I, b_i \in J\},\$$
$$I + J = \{a + b | a \in I, b \in J\}$$

We can define an ideal $I \subsetneq R$ to be irreducible if it does not admit an expression I = JK where J, K are proper ideals of R.

Key point: even if $\alpha \in \mathcal{O}_L$ is irreducible, the ideal (α) need not be irreducible. For example in $\mathbb{Z}[\sqrt{-5}]$, we have $(2) = (2, 1 + \sqrt{-5})^2$, $(3) = (3, 1 + \sqrt{-5})(3, 1 - \sqrt{-5})$.

Definition. (4.1)

If R is a ring, we say that an ideal $P \subsetneq R$ is prime if $\forall x, y \in R, xy \in P \implies x \in P$ or $y \in P$.

Lemma. (4.2)

Let R be a ring, and let $I, J, P \subseteq R$ be ideals, and suppose P is prime and $IJ \subseteq P$. Then $I \subseteq P$ or $J \subseteq P$.

Proof. WLOG $I \not\subseteq P$. Choose some $x \in I \setminus P$. If $y \in J$, is any element, then $xy \in IJ \subseteq P$. So $y \in P$. So $J \subseteq P$. \Box

From now on, L is a number field.

Lemma. (4.3)

Any non-zero prime ideal $P \subseteq \mathcal{O}_L$ is a maximal ideal.

Proof. Recall: if R is a ring and $I \subsetneq R$ is an ideal, then I is prime $\iff R/I$ is an integral domain, and I is maximal $\iff R/I$ is a field. If you don't remember these statements then I strongly encourage you to review GRM. If $p \subseteq \mathcal{O}_L$ is a non-zero prime ideal, then \mathcal{O}_L/P is a finite integral domain (of cardinality N(P)); any such ring is a field, so P is also maximal. \Box

Lemma. (4.4)

If $I \subsetneq \mathcal{O}_L$ is a non-zero ideal, then there exist non-zero prime ideals $P_1, ..., P_r \subseteq \mathcal{O}_L$ such that $P_1...P_r \subseteq I$.

Proof. For contradiction, let $I \subsetneq \mathcal{O}_L$ be an ideal which does not have this property, and such that N(I) is minimal among ideals not having this property. Then I is not prime, so there exist elements $x, y \in \mathcal{O}_L$ such that $xy \in I$ but $x \notin I, y \notin I$. But then it follows that $I \subsetneq I + (x)$ and $I \subsetneq I + (y)$. So N(I + (x)), N(I + (y)) < N(I). By minimality of N(I), we can find non-zero prime ideals $P_1...P_r \subseteq I + (x)$ and $Q_1...Q_r \subseteq I + (y)$. Then $P_1...P_rQ_1...Q_r \subseteq$ $(I + (x))(I + (y)) \subseteq I^2 + xI + yI + (xy) \subseteq I$. Contradiction. \Box

Lemma. (4.5)

If $I \subsetneq \mathcal{O}_L$ is a non-zero ideal, then there exists $\gamma \in L \setminus \mathcal{O}_L$ such that $\gamma I \subseteq \mathcal{O}_L$.

Proof. Let $\alpha \in I \setminus \{0\}$. Let $P_1, ..., P_r \subseteq \mathcal{O}_L$ be non-zero prime ideals such that $P_1...P_r \subseteq (\alpha)$. WLOG r is minimal with this property. Let P be a minimal ideal containing I. Then $P \supseteq I \supseteq (\alpha) \supseteq P_1...P_r$, hence $P \supset P_i$ for some i. After relabelling assume $P \supset P_1$. Since non-zero prime ideals are maximla, we have $P = P_1$. Since r is minimal, we have $P_2...P_r \not\subseteq (\alpha)$. Choose $\beta \in P_2...P_r \setminus (\alpha)$. Claim: the element $\gamma = \beta/\alpha$ has the desired property. If $\gamma \in \mathcal{O}_L$, then $\beta = \alpha \gamma \in (\alpha)$, contradiction; $\gamma I = \frac{\beta}{\alpha}I \subseteq \frac{1}{\alpha}P_2...P_r \cdot I \subseteq \frac{1}{\alpha}P_1P_2...P_r \subseteq \mathcal{O}_L$.

Let L be a number field. Last lecture we proved that if $I \subsetneq \mathcal{O}_L$ is a non-zero ideal, then there exist $\gamma \in L \setminus \mathcal{O}_L$ such that $\gamma I \subseteq \mathcal{O}_L$.

Proposition. (4.6)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, there exists a non-zero ideal $J \subseteq \mathcal{O}_L$, such that IJ is principal.

Proof. Choose $\alpha \in I \setminus \{0\}$. Define $J = \{\beta \in \mathcal{O}_L | \beta I \subseteq (\alpha)\}$. J is a non-zero ideal, as $\alpha \in J$. We have $IJ \subseteq (\alpha)$. We will show $IJ = (\alpha)$.

Let $K = \frac{1}{\alpha}IJ \subseteq \mathcal{O}_L$. We will show in fact that $K = \mathcal{O}_L$. Suppose otherwise, that $K \neq \mathcal{O}_L$, then $\exists \gamma \in L \setminus \mathcal{O}_L$ such that $\gamma K \subseteq \mathcal{O}_L$.

We have $(\alpha) \subseteq I$, hence $\frac{1}{\alpha}I \supseteq \mathcal{O}_L$, hence $underbrace \frac{1}{\alpha}IJ_K \supset J$. Hence $\gamma J \subseteq \gamma K \subseteq \mathcal{O}_L$.

Another observation is that, we also have $\gamma IJ = \gamma \alpha K \subseteq (\alpha)$.

4 UNIQUE FACTORISATION IN \mathcal{O}_L

If we have $\beta \in \gamma J$, on one hand $\beta \in \mathcal{O}_L$; on the other hand, $\beta I \subseteq (\alpha)$. So $\beta \in J$, hence $\gamma J \subseteq J$.

Recall that J admits an integral basis, so ther's an isomorphism $J \cong \mathbb{Z}^n$. If $A \in M_{n \times n}(\mathbb{Z})$ is the matrix representing multiplication by γ , and if $f(x) \in \mathbb{Z}[x]$ is the characteristic polynomial of A, then $f(\gamma) = 0$. Hence $\gamma \in \mathcal{O}_L$. Contradiction. So $K = \mathcal{O}_L$.

Corollary. (4.7)

If $I, J, K \subseteq \mathcal{O}_L$ are non-zero ideals and IJ = IK, then J = K.

Proof. Choose a non-zero ideal $A \subseteq \mathcal{O}_L$ such that $AI = (\alpha)$ is principal. Then $AIJ = \alpha J = AIK = \alpha K \implies J = K$.

If $I, J \subseteq \mathcal{O}_L$ are non-zero ideals, say I divides J (or I|J) if there exists an ideal $K \subseteq \mathcal{O}_L$ such that IK = J.

Corollary. (4.8)

If $I, J \subseteq \mathcal{O}_L$ are non-zero ideals, then $I | J \iff I \supseteq J$.

Proof. If IK = J, then $J \subseteq I$.

Suppose instead that $I \supseteq J$. Choose a non-zero ideal $A\mathcal{O}_L$ such that $AI = (\alpha)$ is principal (by 4.6). Then $AI = (\alpha) \supseteq AJ$, hence $\mathcal{O}_L \supseteq \frac{1}{\alpha}AJ$. So $K = \frac{1}{\alpha}AJ$ is a non-zero ideal of \mathcal{O}_L , and $IK = \frac{1}{\alpha}AIJ = J$.

Theorem. (4.9)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then there exist prime ideals $P_1, ..., P_r \subseteq \mathcal{O}_L$ such that $I = P_1 P_2 ... P_r$. Moreover, this expression is unique up to re-ordering of terms.

Proof. We show existence by contradiction. Suppose I is an ideal which cannot be written as product of primes, and with N(I) minimal subject to this condition. We can find a maximal ideal $P \supset I$. P is also prime. Then P|I, so we can write I = PJ for some ideal $J \subseteq \mathcal{O}_L$. Then J|I, hence $J \supset I$. If J = I, then we get I = IP, hence $\mathcal{O}_L = P$ as we can cancel, but that's a contradiction as prime ideals by definition cannot be \mathcal{O}_L .

Therefore $J \supseteq I$, hence N(J) < N(I). By minimality, we can write J as $J = P_2...P_r$ where each $P_i \subseteq \mathcal{O}_L$ are prime ideals. Then we have I = PJ. Contradiction. This shows existence.

For uniqueness, suppose $P_1, ..., P_r, Q_1, ..., Q_s$ are non-zero prime ideals in \mathcal{O}_L such that $P_1...P_r = Q_1...Q_s$. Then $P_1|Q_1...Q_r$, so $P_1 \supseteq Q_i$ for some i = 1, ..., s. WLOG $P_1 \supset Q_1$. Since both P_1, Q_1 are maximal, $P_1 = Q_1$. Then we cancel to obtain $P_2...P_r = Q_2...Q_s$; continue this to get r = s and $P_i = Q_i$ after re-ordering.

Definition. (4.10)

The ideal class group $Cl(\mathcal{O}_L) = \{I \subseteq \mathcal{O}_L \text{ non-zero ideal}\}$. $I \sim J$ if $\exists \alpha \in L^*$ such that $\alpha I = J$.

We write [I] for the equivalence class containing I.

Lemma. (4.11) $Cl(\mathcal{O}_L \text{ is a group under the operation})$

$$[I][J] = [IJ]$$

with identity $[\mathcal{O}_L]$.

Proof. If $I, J \subseteq \mathcal{O}_L$ are non-zero ideals and $\alpha, \beta \in L^*$ are such that $\alpha I \subseteq \mathcal{O}_L$ and $\beta J \subseteq \mathcal{O}_L$. Then

$$(\alpha I)(\beta J) = \alpha \beta I J$$

so ideal multiplication is well-defined on equivalent classes.

For any $I \subseteq \mathcal{O}_L$, $\mathcal{O}_L I = I$, so $[\mathcal{O}_L]$ is an identity. We showed that if $I \subseteq \mathcal{O}_L$ is any non-zero ideal, then there exists a non-zero ideal $J \subseteq \mathcal{O}_L$ such that $IJ = (\alpha)$ is principal. Then $[I][J] = [IJ] = [(\alpha)] = [\mathcal{O}_L]$. Hence $[I]^{-1} = [J]$.

Proposition. (4.12)

The following are equivalent:

(i) \mathcal{O}_L is a PID;

(ii) \mathcal{O}_L is a UFD;

(iii) The ideal class group, $Cl(\mathcal{O}_L)$, is trivial.

Proof. (i) implies (ii): In IB GRM.

(ii) implies (iii): We must show any ideal $I \subseteq \mathcal{O}_L$ is principal. We know that we can write $I = P_1 \dots P_r$ as a product of prime ideals.

It's therefore enough to show that every prime ideal of \mathcal{O}_L is principal. Let $P \subseteq \mathcal{O}_L$ be a non-zero prime ideal, let $\alpha \in P$ be non-zero, and let $\alpha = \alpha_1 \dots \alpha_r$ be an expression of α as a product of irreducibles.

Recall: if R is a ring, then we say $x \in R$ is prime if $\forall y, z \in R, x | yz \implies x | y$ or x | z. Also we learned from GRM that if R is a UFD then irreducible elements of R are prime.

We find $P \supset \alpha = (\alpha_1)...(\alpha_r) \implies P|P_1...P_r$ where $P_i = (\alpha_i)$. Since α_i is prime, P_i is a prime ideal. Hence we must have $P = P_i = (\alpha_i)$ for some *i*, and hence *P* is principal.

(iii) implies (i): Let $I \subseteq \mathcal{O}_L$ be a non-zero ideal. Since $Cl(\mathcal{O}_L$ is trivial, we have $[I] = [\mathcal{O}_L]$, so there exists $\alpha \in L^*$ such that $\alpha \mathcal{O}_L = I$. We have $\alpha \cdot 1 = \alpha \in I \subseteq \mathcal{O}_L$, so $\alpha \in \mathcal{O}_L$, hence $I = (\alpha)$ is principal. \Box

Lemma. (4.13)

If $I, J \subseteq \mathcal{O}_L$ are non-zero ideals, then N(IJ) = N(I)N(J).

Proof. Example sheet 2.

Example sheet 2 now available!

Last time we learned that, if L is a number field, then we know any non-zero ideal $I \subseteq \mathcal{O}_L$ can be written uniquely as $I = \prod_{i=1}^r P_i^{e_i}$, wher the p_i are distinct prime ideals, and $e_i \geq 1$. We also defined $Cl(\mathcal{O}_L)$ as the obstruction to \mathcal{O}_L being a UFD.

5 Dedekind's criteion

If $P \subseteq \mathcal{O}_L$ is a non-zero prime ideal, then there's a unique prime number $p \in \mathbb{Z}_{\geq 0}$ such that $p \in P$. $(p) = \ker(\mathbb{Z} \to \mathcal{O}_L/P)$. Then $P|p\mathcal{O}_L$, and $N(P) = p^f$ for some $f \geq 1$.

Lemma. (5.1)

Let p be a prime number, and factor $p\mathcal{O}_L = \prod_{i=1}^r P_i^{e_i}$ where $P_1, ..., P_r$ are distinct prime ideals of \mathcal{O}_L , $e_i \geq 1$. Define $f_i \geq 1$ by $N(P_i) = p^{f_i}$. Then $\sum_{i=1}^r e_i f_i = [L:\mathbb{Q}]$. In particular, $r \leq [L:\mathbb{Q}]$.

Proof. Apply norm to get $N(p\mathcal{O}_L)(=p^{[L:\mathbb{Q}]}) = \prod_{i=1}^r N(P_i)^{e_i}(=p^{\prod_{i=1}^r e_i f_i}).$

Definition. (5.2)

Let p be a prime number, and let $p\mathcal{O}_L = \prod_{i=1}^r P_i^{e_i}$ be the factorization as above. (i) We say p ramifies in L if $e_i > 1$ for some i. We say p is totally ramified if r = 1 and $e_1 = [L : \mathbb{Q}]$. In other words, $p\mathcal{O}_L = P_i^{[L:\mathbb{Q}]}$.

(ii) We say p is *inert* in L if r = 1 and $e_1 = 1$, i.e. $p\mathcal{O}_L$ is prime.

(iii) We say p splits completely in L if $r = [L : \mathbb{Q}]$ and $e_i = f_i = 1$ for all i.

Note that these don't cover all the possible cases.

Theorem. (5.3, Dedekind's criterion)

Let $\alpha \in \mathcal{O}_L$ be such that $L = \mathbb{Q}(\alpha)$. Let $f(x) \in \mathbb{Z}[x]$ be its minimal polynomial and let p be a prime such that $p \nmid [\mathcal{O}_L : \mathbb{Z}[\alpha]]$.

Let $\bar{f}(x) = f(x) \pmod{p}$, and factor $\bar{f}(x) = \prod_{i=1}^{r} \bar{g}_i(x)^{e_i}$ in $F_p[x]$, where $\bar{g}_1(x), ..., \bar{g}_r(x) \in F_p[x]$ are distinct monic irreducible polynomials. Let $g_i(x) \in \mathbb{Z}[x]$ be any polynomial with $g_i(x) \pmod{p} = \bar{g}_i(x)$, and define $Q_i = (p, g_i(\alpha)) \subseteq \mathcal{O}_L$, an ideal of \mathcal{O}_L . Let $f_i = \deg \bar{g}_i(x)$.

Then $Q_1, ..., Q_r$ are distinct prime ideals of \mathcal{O}_L , and $p\mathcal{O}_L = \prod_{i=1}^r Q - i^{e_i}$, and $N(Q_i) = p^{f_i}$.

For example, let's take $L = \mathbb{Q}(\sqrt{-11})$, p = 5. We see $-11 \equiv 1 \pmod{4}$, so $\mathcal{O}_L = \mathbb{Z}[\frac{1+\sqrt{-11}}{2}]$. Thus $\mathbb{Z}[\sqrt{-11}] \subseteq \mathcal{O}_L$ has index 2 as an additive subgroup. Therefore we can apply Dedekind's criterion to $\alpha = \sqrt{-11}$, with $f(x) = x^2 + 11$ in order to factorize $5\mathcal{O}_L$. We see $\bar{f}(x) = f(x) \pmod{5} = x^2 + 1 = (x+2)(x+3)$ in $F_5[x]$. So $t\mathcal{O}_L = PQ$ where $P = (5, \sqrt{-11} + 2), Q = (5, \sqrt{-11}, 3)$, and hence P, Q are the same prime ideals (of \mathcal{O}_L). Thus $5\mathcal{O}_L$ splits completely in $\mathcal{Q}\sqrt{-11}$.

Proof. (of 5.3)

Recall: if R is a ring and $I \subseteq R$ is an ideal, then there's a bijection between ideals containing I and idealks of R/I. 3rd isomorphism theorem gives $R/J \cong (R/I)/(J/I)$. We have $\mathbb{Z}[\alpha] \subseteq \mathcal{O}_L$ of finite index. Let $A = \mathbb{Z}[\alpha]$, $\phi : A \to \mathcal{O}_L$. By reduction mod p, we get another ring homomorphism $\overline{\phi} : A/pA \to \mathcal{O}_L/p\mathcal{O}_L$ by $\overline{\phi}(\beta + pA) = \beta + p\mathcal{O}_L$.

We claim that this is actually an isomorphism. Both source and targe have cardinality $p^{[L:\mathbb{Q}]}$, so it's enough to show $\bar{\phi}$ is surjective. Let $N = [\mathcal{O}_L : \mathbb{Z}[\alpha]]$. We can find $a, b \in \mathbb{Z}$ such that aN + bp = 1. If $\beta \in \mathcal{O}_L$, then $N\beta \in \mathbb{Z}[\alpha]$ (by Lagrance), and $\beta = aN\beta + bp\beta \implies \overline{\phi}(aN\beta + pA) = \beta + p\mathcal{O}_L$. Therefore there is a bijection between ideals in \mathcal{O}_L containing p and ideals of A/pA.

We have $A = \mathbb{Z}[\alpha] \cong \mathbb{Z}[x]/(f(x))$ by sending α to x. Reduction mod p gives an isomorphism $A/pA \cong \mathbb{Z}[x]/(p, f(x)) \cong F_p[x]/(\bar{f}(x))$. We have $\bar{f}(x) = \prod_{i=1}^r \bar{g}_i(x)^{e_i}$, so there are homomorphisms $F_p[x]/(\bar{f}(x)) \to \mathbb{F}_p[x]/(\bar{g}_i(x))$, given by quotient by the ideal $(\bar{g}_i(x)) \supseteq (\bar{f}(x))$. Define $\mathbb{Q}_i \subseteq \mathcal{O}_L$ to be the ideal containing p such that $\mathbb{Q}_i/(p)$ is the kernel of the ring homomorphism $\mathcal{O}_L/p\mathcal{O}_L \xrightarrow{\bar{\phi}^{-1}} A/pA \xrightarrow{\cong} F_p[x]/(\bar{f}(x)) \to F_p[x]/(\bar{g}_i(x))$. This ring homomorphism is surjective, and its image is a field of cardinality p^{f_i} . Hence $\mathcal{O}_L/\mathbb{Q}_i$ is a finite field of cardinality p^{f_i} , hence \mathbb{Q}_i is a prime ideal of norm $N(\mathbb{Q}_i) = p^{f_i}$.

Also, the \mathbb{Q}_i are distinct, because their images in $\mathcal{O}_L/p\mathcal{O}_L$ are distinct, as if $i \neq j$ then $(\bar{g}_i(x), \bar{g}_j(x))$ is the unit ideal of $F_p[x]$. To show $\mathbb{Q}_i = (p, g_i(\alpha))$, it's enough to show $\mathbb{Q}_i/(p) \subseteq \mathcal{O}_L/p\mathcal{O}_L$ is generated by $\bar{g}_i(\alpha)$. This is equivalent to showing that $\ker(F_p[x]/(\bar{f}(x)) \to F_p[x]/(\bar{g}_i(x)))$ is generated by $\bar{g}_i(x)$. This is true by definition.

It remains to show $Q_1^{e_1}...Q_r^{e_r} = p\mathcal{O}_L$. We have

$$Q_1^{e_1} \dots Q_r^{e_r} = (p_1 g_1(\alpha))^{e_1} \dots (p_r g_r(\alpha))^{e_r} = (p_1 g_1(\alpha)^{e_1}) \dots (p_1 g_r(\alpha)^{e_r}) \leq (p, g_1(\alpha)^{e_1}) \dots (g_r(\alpha)^{e_r}) = (p, f(\alpha)) = (p)$$

Take norms, $N(LHS) = \prod_{i=1}^{r} N(Q_i)^{e_i} = p^{\sum_{i=1}^{r} e_i f_i} = p^{\deg f} = p^{[L:\mathbb{Q}]} = N(p) = N(RHS)$. This forces $Q_1^{e_1} \dots Q_r^{e_r} = p\mathcal{O}_L$.

Let L be a number field. Last time we had that if $\alpha \in \mathcal{O}_L$, $\mathbb{Q}(\alpha) = L$, $p \nmid [\mathcal{O}_L : \mathbb{Z}[\alpha]]$. Dedekind's criterion: can factor $p\mathcal{O}_L$ by factoring $f_{\alpha}(x) \pmod{p}$.

Proposition. (5.4)

Let d be a square-free integer, $d \neq 0, 1, L = \mathbb{Q}(\sqrt{d})$, and let p be a prime number. Then

(1) If p is odd, then:

- if p|d, then $(p) = P^2$, so p ramifies in L;
- if $p \nmid d$ and $(\frac{d}{p}) = 1$, then (p) = PQ, so p splits completely in L;
- if $p \nmid d$ and $(\frac{d}{p} = -1$, then (p) is prime and p is inert in L.
- (2) If p = 2, then:
- if $d \equiv 2, 3 \pmod{4}$, then 2 ramifies in L;
- if $d \equiv 1 \pmod{8}$, then 2 splits completely in L;
- if $d \equiv 5 \pmod{8}$, then 2 is inert in L.

Proof. We just do the case where p = 2. If $d \equiv 2, 3 \pmod{4}$, then $\mathcal{O}_L = \mathbb{Z}[\sqrt{d}]$, so by Dedekind's criterion, we must factor $x^2 - d \pmod{2}$. But $x^2 - d \equiv (x - d)^2 \pmod{2}$. If $d \equiv 1 \pmod{4}$, then $\mathcal{O}_L = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$, so we must factor $x^2 + x + \frac{1-d}{4} \pmod{2}$. If $d \equiv 1 \pmod{8}$, this is $x^2 + x = x(x+1) \pmod{2}$. If $d \equiv 5 \pmod{8}$, this is $x^2 + x + 1 \pmod{2}$ which is irreducible.

6 Geometry of numbers

Definition. (6.1)

If V is a finite dimensional \mathbb{R} -vector space, then a lattice in V is a subgroup of the form $\Lambda = \bigoplus_{i=1}^{m} \mathbb{Z}v_i$, where $v_1, ..., v_n$ is a basis of V as \mathbb{R} -vector space (for example, $\mathbb{Z}^n \subseteq \mathbb{R}^n$).

Definition. (6.2)

If V is a finite-dimensional inner product space over \mathbb{R} , and $\Lambda \subseteq V$ is a lattice, then the covolume of Λ is

$$A(\Lambda) = vol(\{\sum_{i=1}^{n} t_i v_i | t_i \in [0,1)\})$$

where $\Lambda = \bigoplus_{i=1}^{n} \mathbb{Z} v_i$.

Check: this is independent of the choice of basis $v_1, ..., v_n$.

For today, let's consider only a fixed imaginary quadratic field $L = \mathbb{Q}(\sqrt{d})$ where d < 0 is a square-free integer. Let's take $\sigma : L \to \mathbb{Q}$ be a complex embedding. Then $\sigma(\mathcal{O}_L)$ is a lattice in ϕ . If $d \equiv 2, 3 \pmod{4}$, then $\sigma(\mathcal{O}_L) = \mathbb{Z} \oplus \mathbb{Z}[\sqrt{d}]$; if $d \equiv 1 \pmod{4}$ then $\sigma(\mathcal{O}_L) = \mathbb{Z} \oplus \mathbb{Z}(\frac{1+\sqrt{d}}{2})$

If $I \leq \mathcal{O}_L$ is a non-zero ideal, then $\sigma(I)$ is a lattice in \mathbb{C} .

Lemma. (6.3)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then $A(I) = \frac{1}{2}\sqrt{|disc(I)|} = \frac{N(I)}{2}\sqrt{|D_L|}.$

Proof. Let α_1, α_2 be an integral basis for I. Then $\sigma(I) = \mathbb{Z}\sigma(\alpha_1) \oplus \mathbb{Z}\sigma(\alpha_2)$. Write $\alpha_1 = x_1 + iy_1, \alpha_2 = x_2 + iy_2$, then $A(\sigma(I)) = |\det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix}|$ (area of a parallelogram).

Then

$$disc(I) = \det \begin{pmatrix} x_1 + iy_1 & x_2 + iy_2 \\ x_1 - iy_1 & x_2 - iy^2 \end{pmatrix} = (2i)^2 \det \begin{pmatrix} y_1 & y_2 \\ x_1 & x_2 \end{pmatrix}$$

Theorem. (6.4, special case of Minkovski's theorem) Let $\Lambda \subseteq \mathbb{R}^2$ be a lattice, and let $S = D(0, r) \subseteq \mathbb{R}^2$ be the closed disk of radius r. Then if $area(S) \ge 4A(\Lambda)$, then $\exists \lambda \in \Lambda - \{0\}$ such that $\lambda \in S$. In particular, there exists $\lambda \in \Lambda - \{0\}$ such that $|\lambda|^2 \le \frac{4}{\pi}A(\Lambda)$.

Corollary. (6.5)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then there exists $\alpha \in I - \{0\}$ s.t. $N(\alpha) \leq c_L N(I)$, where $c_L := \frac{2}{\pi} \sqrt{|D_L|}$.

Proof. We apply the theorem to $\sigma(I) \subseteq \mathbb{C}$ to get $\lambda \in \sigma(I) - \{0\}$, such that $|\lambda|^2 \leq \frac{4}{\pi} \cdot \frac{N(I)}{2} \sqrt{|D_L|} = c_l N(I)$. If $\alpha \in I$ is such that $\sigma(\alpha) = \lambda$, then $N(\alpha) = \sigma(\alpha)\overline{\sigma(\alpha)} = |\sigma(\alpha)|^2 = |\lambda|^2$.

Corollary. (6.6)

If $[I] \in Cl(\mathcal{O}_L)$, then there exists $J \in [I]$ such that $N(J) \leq c_L$.

Proof. Choose $k \in [I]^{-1}$ so that IK is principal. Apply the corollary to find $\alpha \in K - \{0\}$, such that $N(\alpha) \leq c_L N(K)$. Then $(\alpha) \subseteq K \Longrightarrow K | (\alpha) \Longrightarrow \exists J \subseteq \mathcal{O}_L$ non-zero ideal such that $JK = (\alpha)$. We have $[J] = [K]^{-1} = [I]$, so $J \in [I]$. Also, $N(J) = N(\alpha)/N(K) \leq c_L$.

Theorem. (6.7)

The group $Cl(\mathcal{O}_L)$ is finite. (we'll prove this for any L next time).

Proof. We've shown every class $[I] \in Cl(\mathcal{O}_L)$ has a representative of norm $\leq c_L$. It therefore suffices to show that $\forall m \in \mathbb{Z}, m \geq 1$, the number of ideals $I \subseteq \mathcal{O}_L$ of norm N(I) = m is finite. If N(I) = m, then $[\mathcal{O}_L : I] = m$, so by Lagrance, $m \in I$. Thus I comes from an ideal of the finite ring $\mathcal{O}_L/m\mathcal{O}_L$. \Box

Note: we see $CL(\mathcal{O}_L)$ is generated by ideal classes [P], where $P \subseteq \mathcal{O}_L$ is a nonzerp prime ideal of norm $N(P) \leq c_L$. Why? Any class has the form [I], where $N(I) \leq c_L$. If $I = \prod_{i=1}^r p_i^{e_i}$, then $[I] = (_i i = 1^r [P_i]^{e_i}$ and $N(I) = \prod_{i=1}^r N(P_i)^{e_i}$, so $N(P_i) \leq N(I) \leq c_L$ for each i = 1, ..., r.

Example. Consider d = -7. $d \equiv 1 \pmod{4}$, so $D_L = -d$, $c_l = \frac{2}{\pi}\sqrt{7} < \frac{2}{3}\sqrt{7} < 2$.

 $Cl(\mathcal{O}_L)$ is generated by ideals of norm < 2. There are none except \mathcal{O}_L , so $Cl(\mathcal{O}_L)$ is the trivial group. Hence $\mathcal{O}_L = \mathbb{Z}[\frac{1+\sqrt{-7}}{2}]$ is a UFD.

d = -5: $D_L = -4d$, $c_L = \frac{2}{\pi}\sqrt{70} = \frac{4}{\pi}\sqrt{5} < \frac{4}{3}\sqrt{5} < 3$. Hence $Cl(\mathcal{O}_L)$ is generated by prime ideals $P \subseteq \mathcal{O}_L$ of norm N(P) = 2. We know by Dedekind's criterion that $2\mathcal{O}_L = P^2$. Hence $Cl(\mathcal{O}_L)$ is generated by [P], and $[P]^2 = [2\mathcal{O}_L]$ is the trivial class.

Hence there are two possibilities: if P is principal, then $Cl(\mathcal{O}_L)$ is trivial; if P is not principal, then $Cl(\mathcal{O}_L) \cong \mathbb{Z}/2\mathbb{Z}$. We know \mathcal{O}_L is not a UFD, so we must have $Cl(\mathcal{O}_L) \cong \mathbb{Z}/2\mathbb{Z}$.

Last time we see that if L is an imaginary quadratic field, then $Cl(\mathcal{O}_L)$ is finite, generated by [P] where P is a prime ideal of norm $N(P) \leq C_L$, where $C_L = \frac{2}{\pi} \sqrt{|D_L|}$.

This time we will show the case of a general number field L.

Theorem. (6.8, Minkowski's theorem)

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice, and let $E \subseteq \mathbb{R}^n$ be a measurable subset which is conve, and centrally symmetric $(E = -E = \{x \in \mathbb{R}^n | -x \in E\})$. Then: (i) If $vol(E) > 2^n A(\Lambda)$, then $\exists \lambda \in \Lambda \setminus \{0\}$ such that $\lambda \in E$; (i) If $vol(E) \ge 2^n A(\Lambda)$ and E is compact, then $\exists \lambda \in \Lambda \setminus \{0\}$ such that $\lambda \in E$.

(we used this last time in the special case n = 2, E=closed disk).

Proof. Let $\Lambda = \bigoplus_{i=1}^{n} \mathbb{Z}v_i$, $P = \{\sum_{i=1}^{n} t_i v_i | t_i \in [0,1)\}$. Then $vol(P) = A(\Lambda)$, and $\mathbb{R}^n = \sqcup_{\lambda \in \Lambda} (P + \lambda)$. (i) $vol(P) < \frac{1}{2^n} vol(E) = vol(\frac{1}{2}E) = \sum_{\lambda \in \Lambda} vol([\frac{1}{2}E] \cap [\lambda + P]) = \sum_{\lambda \in \Lambda} vol([\frac{1}{2}E - \lambda] \cap P)$.

We claim that there exists $\lambda \neq \mu \in \Lambda$ such that $(\frac{1}{2}E - \lambda) \cap (\frac{1}{2}E - \mu)$ is non-empty. Why? If not, sets $\frac{1}{2}E - \lambda$ are pairwise disjoint, so vol(P) < 0 $\begin{array}{l} \sum_{\lambda \in \Lambda} vol([\frac{1}{2}E - \lambda] \cap P) \leq vol(P), \mbox{ contradiction.} \\ \mbox{Hence } \exists z, w \in E \mbox{ such that } \frac{z}{2} - \lambda = \frac{w}{2} - \mu, \mbox{ where } \lambda \neq \mu \in \Lambda, \mbox{ so } \lambda - \mu = \frac{z}{2} - \frac{w}{2} = \frac{z}{2} + \frac{(-w)}{2}. \\ \mbox{Since } E \mbox{ is centrally symmetric, } -w \in E, \mbox{ and } E \mbox{ is convex implies that } \frac{z}{2} + \frac{(-w)}{2} \in E, \mbox{ so } \lambda - mu \in (\Lambda \setminus \{0\}) \cap E. \\ \mbox{(ii) } E \mbox{ compact implies that } E \mbox{ is closed and bounded. } vol(E) \geq 2^n A(\Lambda) \mbox{ so } \forall m \geq 1, \ vol((1 + \frac{1}{m})E) > 2^n A(\Lambda). \mbox{ By (i), } \forall m \in \mathbb{N} \exists s \lambda_m \in (\Lambda \setminus \{0\}) \cap ((1 + \frac{1}{m})E), \\ \mbox{ and } (1 + \frac{1}{m})E \subseteq 2E, \mbox{ and } 2E \cap \Lambda \mbox{ is finite as } 2E \mbox{ is bounde. By pigeonhole } \\ \mbox{ principle we can assume } \exists \lambda \in \Lambda \setminus \{0\} \mbox{ such that } \lambda_m = \lambda \forall m \geq 1. \ E \ closed \mbox{ and } \\ \lambda \in (1 + \frac{1}{m})E \forall m \geq 1 \implies \lambda \in E. \ \mbox{ Now let } L \mbox{ be a number field. Let } n = [L : \mathbb{Q}], \\ \mbox{ let } \tau_1, ..., \tau_r : L \to \mathbb{R} \mbox{ be the real embeddings of } L, \mbox{ and let } \sigma_1, \overline{\sigma}_1, ..., \sigma_s, \overline{\sigma}_s : L \to \mathbb{C} \end{array}$

Define a map $S: l \to \mathbb{R}^r \times \mathbb{C}^s$ by $\alpha \to (\tau_1(\alpha), ..., \tau_r(\alpha), \sigma_1(\alpha), ..., \sigma_s(\alpha))$. This is a homomorphism of additive groups. \Box

be the remaining distinct complex embeddings of L. Then r + 2s = n.

Lemma. If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then S(I) is a lattice.

Proof. Let $\alpha_1, ..., \alpha_n$ be an integral basis of I. Then $S(I) = \bigoplus_{i=1}^n \mathbb{Z}s(\alpha_i)$ and $\mathbb{R}^r \times \mathbb{C}^3$ has dimension n as \mathbb{R} -vector space. So we must show that $S(\alpha_1), ..., S(\alpha_n)$ are independent or equivalently that

$$\det \begin{pmatrix} \tau_1(\alpha)1)...\tau_1(\alpha_n) \\ ... \\ \tau_r(\alpha_1)...\tau_r(\alpha_n) \\ Re\sigma_1(\alpha_1)...Re\sigma_1(\alpha_n) \\ Im\sigma_1(\alpha_1)...Im\sigma_1(\alpha_n) \\ ... \\ Im\sigma_n(\alpha_1)...Im\sigma_s(\alpha_n) \end{pmatrix} \neq 0$$

Note: for $z \in \mathbb{C}$,

$$\begin{pmatrix} z \\ z \end{pmatrix} = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \begin{pmatrix} Rez \\ Imz \end{pmatrix}$$

So this determinant equals

$$\left(\frac{1}{-2i}\right)^{s} \det \begin{pmatrix} \tau_{1}(\alpha)1)...\tau_{1}(\alpha_{n}) \\ ... \\ \tau_{r}(\alpha_{1})...\tau_{r}(\alpha_{n}) \\ \sigma_{1}(\alpha_{1})...\sigma_{1}(\alpha_{n}) \\ ... \\ sigma_{n}(\alpha_{1})...\sigma_{s}(\alpha_{n}) \end{pmatrix} \neq 0$$

as $disc(I) \neq 0$.

Lemma. (6.10) If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then

$$A(S(I)) = \frac{1}{2^s} \sqrt{|disc(I)|} = \frac{N(I)}{2^s} \sqrt{|D_L|}$$

Proposition. (6.11)

If $I \subseteq \mathcal{O}_L$ is a non-zero ideal, then there exists $\alpha \in I \setminus \{0\}$ such that $N(\alpha) \leq C_L N(I)$, where $C_L = (\frac{4}{\pi})^s \frac{n!}{n^n} \sqrt{|D_L|}$. Here C_L is called the Minkowski constant of L.

24

6 GEOMETRY OF NUMBERS

Proof. We apply Minkowski's theorem to the lattice S(I), and region $B_{r,s}(t) = \{(\mathbf{x}, \mathbf{z}) \in \mathbb{R}^r \times \mathbb{C}^s | \sum_{i=1}^r |X_i| + 2\sum_{i=1}^s |z_i| \le t\}.$

Note: $B_{r,s}(t)$ is convex, centrally symmetric and compact.

If $vol(B_{r,s}(t)) \geq 2^n A(S(I))$, then there exists $\alpha \in I \setminus \{0\}$ such that $S(\alpha) \in B_{r,s}(t)$.

We use a tuck with the AM-GM inequality to bound $N(\alpha)$:

$$N(\alpha)^{1/n} = (\prod_{i=1}^{r} |\tau_i(\alpha)|) \prod_{i=1}^{s} |\sigma_i(\alpha)|^2)^{1/n} \le \frac{(\sum_{i=1}^{r} |\tau_1(\alpha)| + 2\sum_{i=1}^{s} |\sigma_i(\alpha)|)}{n}$$

Hence $N(\alpha) \leq t^n/n^n$. To get optimal bound, choose t so that $vol(B_{r,s}(t)) = 2^n A(S(I))$.

Exercise: $vol(B_{r,s}(t)) = 2^r(\frac{\pi}{2})^s t^n/n!$ (Induction on r and s). We have

$$2^{r}(\pi/2)^{s}t^{n}/n! = 2^{n}A(S(I)) = 2^{r+s}N(I)\sqrt{|D_{L}|}$$
$$\implies t^{n} = (4/\pi)^{s}n!N(I)\sqrt{|D_{L}|}$$
$$\implies N(\alpha) \le t^{n}/n^{n} = C_{L}N(I)$$

Corollary. (6.12)

For any class $[I] \in Cl(\mathcal{O}_L)$, there exists $J \in [I]$ such that $N(J) \leq C_L$.

Corollary. (6.13)

The group $Cl(\mathcal{O}_L)$ is finite, generated by [P] where P is a prime ideal of norm $N(P) \leq C_L$.

These corollaries are deduced from the proposition exactly as in the case $L = \mathbb{Q}(\sqrt{d}), d < 0.$

Remark. In practice this bound is very effective. For example consider $f(x) = x^5 - x + 1$, this is irreducible mod 5, so over \mathbb{Q} . Let $L = \mathbb{Q}(\alpha)$ where α is a root of f(x). In this case r = 1, s = 2, the discriminant $discf = 2869 = 19 \cdot 151$ is square-free, so $\mathcal{O}_L = \mathbb{Z}[\alpha]$, and $D_L = discf$, so $c_L = (4/\pi)^2 (5!/5^5) \sqrt{2869} < 4$. Hence $Cl \mathcal{O}_L$ is generated by P of norm N(P) = 2 or 3. By Dedekind's criterion, such primes exist iff f(x) has a root in F_2 or F_3 . But there are no such roots. Hence $Cl(\mathcal{O}_L)$ is trivial, hence $\mathbb{Z}[\alpha]$ is a UFD.

Last time we showed $CL(\mathcal{O}_L)$ is generated by [P] where [P] is a prime ideal of norm $N(P) \leq C_L = (4/\pi)^3 n!/n^n \sqrt{|D_L|}$. For example, if $L = \mathbb{Q}(\sqrt{10})$, $C_L = \frac{1}{2}\sqrt{4 \cdot 10} = \sqrt{10} < 4$. $Cl(\mathcal{O}_L$ is generated by [P] where N(P) = 2 or 3. Dedekind's criterion: $2\mathcal{O}_L = P_2^2$, where $P_2 = (2,\sqrt{10})$. $x^2 - 10 \equiv x^2 - 1 \pmod{3}$ so $3\mathcal{O}_L = P_3P'_3$, where $P_3 = (3, 1 + \sqrt{10})$. To find relations in $Cl(\mathcal{O}_L)$, we can calculate norms, e.g. $N(2 + \sqrt{10}) = |4 - 10| = 6$, so $(2 + \sqrt{10}) = P_2P_3$ or $P_2P'_3$. In either case we see that $[P_2]$ generates $Cl(\mathcal{O}_L)$. So either $Cl(\mathcal{O}_L)$ is trivial, or $Cl(\mathcal{O}_L \cong \mathbb{Z}/2\mathbb{Z}$ with the second case occuring iff So P_2 is not principal. P_2 is principal $\iff \exists a + b\sqrt{10} \in \mathcal{O}_L$ such that $(a + b\sqrt{10}) = P_2 \iff \exists a, b \in \mathbb{Z}$ s.t. $a^2 - 10b^2 = \pm 2$.

If $a^2 - 10b^2 = \pm 2$, then either 2 or -2 is a quadratic residue (mod 5). So in fact P_2 is not principal. So $Cl(\mathcal{O}_L) \cong \mathbb{Z}/2\mathbb{Z}$.

6 GEOMETRY OF NUMBERS

Now take $L = \mathbb{Q}(\sqrt{-17})$. $C_l = \frac{4}{\pi} \cdot \frac{1}{2}\sqrt{4 \cdot 17} = 4/\pi\sqrt{17} < \frac{4}{3}\sqrt{17} < 6$. So $Cl(\mathcal{O}_L)$ is generated by primes of norm 2, 3 or 5. Dedekind's criterion: $x^2 + 17 \equiv x^2 + 2$ (mod 5), so $5\mathcal{O}_L$ is prime of norm 25. $x^2 + 17 \equiv x^2 - 1 \pmod{3}$, so $3\mathcal{O}_L = Q_3Q'_3$ where $Q_3 = (3, 1 + \sqrt{-17})$, $Q'_3 = (3, 1 - \sqrt{-17})$. $x^2 + 17 = (x+1)^2 \pmod{2}$, so $2\mathcal{O}_L = Q_2^2$ where $Q_2 = (2, 1 + \sqrt{-17})$. Now $N(1 + \sqrt{-17}) = 18 = 2 \times 3^2$. Note $1 + \sqrt{-17} \in Q_3 \implies Q_3 | (1 + \sqrt{-17})$.

So we must have either $(1 + \sqrt{-17}) = Q_2 Q_3 Q'_3$, or $(1 + \sqrt{-17}) = Q_2 Q_3^2$. To decide between these, we compute

$$\begin{aligned} Q_3^2 &= (0, 3 + 3\sqrt{-17}, (1 + \sqrt{-17})^2) \\ &= (9, 3 + 3\sqrt{-17}, -16 + 2\sqrt{-17}) \\ &= (9, 3 + 3\sqrt{-17}, 2 + 2\sqrt{-17}) \\ &= (9, 1 + \sqrt{-17}) \end{aligned}$$

We see $1 + \sqrt{-17} \in Q_3^2$ so $Q_3^2 | (1 + \sqrt{-17})$, hence $(1 + \sqrt{-17}) = Q_2 Q_3^2$. We see $[Q_3]$ generates $Cl(\mathcal{O}_L)$ and if Q_2 is not principal then $Cl(\mathcal{O}_L) \cong \mathbb{Z}/4\mathbb{Z}$. But Q_2 is principal iff we can solve $a^2 + 17b^2 = 2$ with $a, b \in \mathbb{Z}$. This is impossible, so $Cl(\mathcal{O}_L) \cong \mathbb{Z}/4\mathbb{Z}$.

Remark. Ther are many open questions about ideal class groups even for quadratic fields.

Things we know: Number of $Cl(\mathcal{O}_{\mathbb{Q}(\sqrt{d})} \to \infty \text{ as } d \to -\infty \text{ through squaree-free integers.}$ There are exactly 9 imaginary quadratic fields with trivial ideal class group (hard).

Things we don't know: are there infinitely many real quadratic fields of trivial ideal class group?

Cohen-Lenstra heuristics: let p be an odd prime, and let A be a finite abelian group of p-power order. Then for d < 0 square-free, $\mathbb{P}(Cl(\mathcal{O}_{\mathbb{Q}(\sqrt{d})}) \cong A) = \frac{\prod_{i=1}^{\infty}(1-1/p^i)}{\text{Number of } Aut(A)}$.

For M a finite abelian group, M_p is the (unique) *p*-sylow subgroup.

By definition, The above probablity is the ratio between the number of d < 0 square-free, $Cl(\mathcal{O}_{\mathbb{Q}(\sqrt{d})})_p \cong A$, |d| < X and the number of d < 0 square-free, |d| < x.

7 Dirichlet's unit theorem

Let L be a number field of degree $n = [L : \mathbb{Q}], \tau_1, ..., \tau_r : L \to \mathbb{R}$ are real embeddings, $\sigma_1, ..., \sigma_s, \overline{\sigma}_1, ..., \overline{\sigma}_s : L \to \mathbb{C}$ are distinct complex embeddings.

Theorem. (7.1)

There is an isomorphism $\mathcal{O}_L^* \cong \mu_L \times \mathbb{Z}^{r+s-1}$, where $\mu_L \subseteq \mathcal{O}_L^*$ is the finite cyclic group of roots of unity in \mathcal{O}_L^* . In fact the proof shows omre: define a map $l: \mathcal{O}_L^* \to \mathbb{R}^{r+s}$: $l(\alpha) = (\log |\tau_1(\alpha)|, ..., \log |\tau_r(\alpha)|, 2 \log |\sigma_1(\alpha)|, ..., 2 \log |\tau_1(\alpha)|)$ then this is a homomorphism of abelian groups, and $l(\mathcal{O}_L^*)$ is contained in the hyperplane $H = \{\mathbf{x} \in \mathbb{R}^{r+s} | \sum_{i=1}^{r+s} x_i = 0\} \subseteq \mathbb{R}^{r+s}$. This expresses the condition $\alpha \in \mathcal{O}_L^* \implies \log N(\alpha) = \sum_{i=1}^r \log |\tau_i(\alpha)| + 2\sum_{i=1}^s |\sigma_i(\alpha)|.$

The proof of the theorem will show $l(\mathcal{O}_L^*)$ is a lattice in H.

Example: \mathcal{O}_L^* is finite $\iff r+s=1$, i.e. r=1, s=0 $(L=\mathbb{Q})$, or r=0, s=1 $(L=\mathbb{Q}(\sqrt{d}), d<0$ square-free). The first case where \mathcal{O}_L^* is infinite is $L=\mathbb{Q}\sqrt{d}, d>0$, square-free. Then +s-1=1, so $l(\mathcal{O}_L^*)$ is infinite cyclic. Let's fix $\sigma:\mathbb{Q}(sqrtd)\to\mathbb{R}$ to be the real embedding with $\sigma(\sqrt{d})\geq 0$. $\sigma(\mu_L)\subseteq\mathbb{R}^*$, so $\mu_L=\{\pm 1\}$ in this case. In this case, we can consider the map $l':\mathcal{O}_L^*\to\mathbb{R}$ by $\alpha\to\log|\sigma(\alpha)|$. We know that $l'(\mathcal{O}_L^*)\subseteq\mathbb{R}$ is a lattice, in particular there is a uniquely characterised unit $\alpha\in\mathcal{O}_L^*$ satisfying $\sigma(\alpha)>0$, $\log|\sigma(\alpha)|>0$ and as small as possible. In other words, $\alpha\in\mathcal{O}_L^*$ is the unit for which $\sigma(\alpha)>1$ and $\sigma(\alpha)$ is minimal with respect to this property. We call α the fundamental unit of $L=\mathbb{Q}(\sqrt{d})$. Then we have $\mathcal{O}_L^*=\{\pm\alpha^n|n\in\mathbb{Z}\}$.

Example sheet 3 is now online!

Last time we have: if L is a number field, then $\mathcal{O}_L^* \cong \mu_L \times \mathbb{Z}^{r+s-1}$, where μ_L are roots of unity.

Now suppose $L = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ is a square free integer, d > 1. We identify L with a subfield of \mathbb{R} , where \sqrt{d} is the positive square root.

We saw that the Dirichlet's unit theorem implies $\exists u \in \mathcal{O}_L^*$ such that $u = \min\{v \in \mathcal{O}_L^* | v > 1\}$. u is called the fundamental unit, and $\mathcal{O}_L^* = \{\pm u^n | n \in \mathbb{Z}\}$.

Lemma. (7.2)

(1) If $d \equiv 2,3 \pmod{4}$ and $v \in \mathcal{O}_L^*$ satisfies v > 1, then $v = a + b\sqrt{d}$ where $a \ge b \ge 1$;

(2) If $d \equiv 1 \pmod{4}$, and $v \in \mathcal{O}_L^*$ satisfies v > 1, then $v = \frac{1}{2}(a + b\sqrt{d})$ wher $a \ge b \ge 1$.

Proof. (1) Let $v' = a - b\sqrt{d}$. Then $vv' = a^2 - db^2 = N_{L/\mathbb{Q}}(v) = \pm 1$. So $v > 1 \implies |v'| < 1$. Hence v + v' = 2a > 0, $v - v' = sb\sqrt{d} > 0$. As a, b are integers, we must have $a \ge 1, b \ge 1$. Also, $(a/b)^2 = d \pm 1/b^2 \ge 1$ as $d \ge 2$.

(2) Let $v' = \frac{1}{2}(a - b\sqrt{d})$. Then $vv' = \pm 1$ and $a^2 - db^2 = \pm 4$. Then v + v' = a > 0, and $v - v' = b\sqrt{d} > 0$. Hence $a \ge 1, b \ge 1$. Also, $(a/b)^2 = d \pm 4/b^2$ as $d \ge 5$ as $d \equiv 1 \pmod{4}$.

7 DIRICHLET'S UNIT THEOREM

We can use this to find the fundamental unit $u \in \mathcal{O}_L^*$. First suppose $d \equiv 2, 3 \pmod{4}$ and let $u = a + b\sqrt{d}$. Let $u^k = a_k + b_k\sqrt{d}$. Then $u^{k+1} = (a_1 + b_1\sqrt{d})(a_k + b_k\sqrt{d}) = (a_1a_k + db_1b_k) + (b_1a_k + a_1b_k)\sqrt{d}$. Hence $b_{k+1} = b_1a_k + a_1b_k > b_k$. Hence the sequence b_1, b_2, b_3 is strictly increasing.

We can therefore characterise u as follows: let $b \in \mathbb{N}$ be the least positive integer such that $db^2 + 1$ or $db^2 - 1$ is of the form a^2 for some $a \in \mathbb{N}$. Then $u = a + b\sqrt{d}$. Now suppose $d \equiv 1 \pmod{4}$, and let $u = \frac{1}{2}(a + b\sqrt{d})$, $a, b \in \mathbb{Z}$. Let $u^k = \frac{1}{2}(a_k + b_k\sqrt{d})$. Then $b_{k+1} = \frac{1}{2}(a_1b_k + b_1a_k)$. Using lemma 7.2, we see $b_{k+1} \ge b_k$. If (??)

This is wrong. Let's correct this next time. Sorry!

Example. $d = 2.L = \mathbb{Q}(\sqrt{2})$. b = 1 works: $2 - 1 = 1^2$. So $1 + \sqrt{2}$ is a fundamental unit.

d = 7. Try b = 1: 7 ± 1 is not a square; b = 2, doesn't work either; b = 3: $9 \cdot 7 \pm 1 = 8^2$. So $8 + 3\sqrt{7}$ is a fundamental unit.

Note: This procedure is not always efficient. For example, the fundamental unit in $\mathbb{Q}(\sqrt{22})$ is $197 + 42\sqrt{22}$.

There is a more efficient algorithm which uses continued fractions, but it is not discussed in this course (see number theory).

We now prove the unit theorem (this is non-examinable).

We recall the setup: L is a number field, $\tau_1, ..., \tau_r : L \to \mathbb{R}, \sigma_1, \overline{\sigma}_1, ..., \sigma_s, \overline{\sigma}_s : L \to \mathbb{C}$ are real and complex embeddings of L respectively. Last time we defined a map: $l : \mathcal{O}_L^* \to \mathbb{R}^{r+s}$ by $\alpha \to (\log(\tau_1(\alpha)), ..., \log(\tau_r(\alpha)), 2\log(\sigma_1(\alpha)), ..., 2\log(\sigma_s(\alpha)))$. The image is contained inside the subspace $H = \{\mathbf{x} \in \mathbb{R}^{r+s} | \sum_{i=1}^{r+s} x_i = 0 \}$.

Lemma. (7.3)

Let $\alpha \in \mathcal{O}_L \setminus \{0\}$ be such that the above image vector is $(a_1, ..., a_{r+s}) \in \mathbb{R}^{r+s}$. Fix an integer $1 \leq k \leq r+s$. Then ther exists $\beta \in \mathcal{O}_L \setminus \{0\}$ such that if $l(\beta) = (b_1, ..., b_{r+s}) \in \mathbb{R}^{r+s}$, then $b_i < a_i$ if $i \neq k$. Moreover, $N(\beta) \leq (\frac{2}{\pi})^s \sqrt{|D_L|}$.

Proof. Let $c_1, ..., c_{r+s} \in \mathbb{R}_{>0}$, and let

 $E = \{ (\mathbf{x}, \mathbf{z}) \in \mathbb{R}^r \times \mathbb{C}^s | |x_1| \le c_1, ..., |x_r| \le c_r, |z_1|^2 \le c_{r+1}, ..., |z_r|^2 \le c_{r+s} \}$ Then if $vol(E) \ge 2^{r+2s} A(S(\mathcal{O}_L)) = 2^{r+s} \sqrt{|D_L|}$, then $(S : \mathcal{O}_L \to \mathbb{R}^r \times \mathbb{C}^s)$.

There exists $\beta \in \mathcal{O}_L \setminus \{0\}$ such that $S(\beta) \in E$ (by Minkovski's theorem). In particular, $N(\beta) = \prod_{i=1}^r |\tau_1(\beta)| \prod_{i=1}^s |\sigma_i(\beta)|^2 \leq c_1 \dots c_{r+s}$ (by definition of E).

We choose c_i so that $0 < c_i < e^{a_i}$ if $i \neq k$, and $vol(E) = \pi^s 2^r c_1 \dots c_{r+s} = 2^{r+s} \sqrt{|D_L|}$.

The first property gives $b_i < a_i$ if $i \neq k$, and the second property gives $N(\beta) \geq c_1 \dots c_{r+s} = (\frac{2}{\pi})^s \sqrt{|D_L|}$.

Corollary. (7.4)

Fix an integer $1 \leq k \leq r+s$. Then there exists $\varepsilon \in \mathcal{O}_L^*$ such that if $l(\varepsilon) = (a_1, ..., a_{r+s})$ then $a_i < 0$ if $i \neq k$, and $a_k > 0$.

Proof. By the lemma, we can find elements $\alpha_1, \alpha_2, \dots$ of $\mathcal{O}_L \setminus \{0\}$ such that $N(\alpha_1) \leq (\frac{2}{\pi})^s \sqrt{|D_L|} \quad \forall i \in \mathbb{N}$, and if $l(\alpha_i) = (b_{i_1}, \dots, b_{i,r+s})$, then $b_{ij} < b_{i-1,j}$ if $j \neq k \quad \forall i = 2, 3, \dots$ The ideals (α_i) have bounded norm, so are finite in number, so there exist elements α_N, α_M with $(\alpha_N) = (\alpha_M)$. Then the element $\varepsilon = \alpha_N / \alpha_M \in \mathcal{O}_L^*$ has the desired property. \Box

We continue with the non-examinable proof of Dirichlet's unit theorem.

We proved proportion: let $\alpha \in \mathcal{O}_L \setminus \{0\}$ be such that $l(\alpha)$ fix $1 \leq k \leq r+s$. Then $\exists \beta \in \mathcal{O}_L \setminus \{0\}$ such that $N(\beta) \leq (\frac{2}{\pi})^s \sqrt{|D_L|}$, and if $l(\beta) = (b_1, ..., b_{r+s})$ then $b_i < a_i$ if $i \neq k$.

We deduced Corllary 7.4: fix $1 \le k \le r + s$. Then there exists $\varepsilon \in \mathcal{O}_L^*$ such that if $l(\varepsilon) = (a_1, ..., a_{r+s})$, then $a_i < 0$ if $i \ne k$.

Proof. Choose $\alpha \in \mathcal{O}_L \setminus \{0\}$. By the proposition, we can find elements $\alpha_1, ...$ such that $N(\alpha_i) \leq (2/\pi)^s \sqrt{|D_L|}$, and if $l(i) = (b_{i1,...,ir+s})$ then $b_{ij} > b_{i+1j}$ if $j \neq k$ for all $i \geq 1$.

We now look at the ideals $(\alpha_1), (\alpha_2), \ldots$ These have norm at most $(2/\pi)\sqrt{|D_L|}$. We know there are only finitely many ideals of \mathcal{O}_L of norm at monst that, so there must exist N < M such that $(\alpha_N) = (\alpha_M)$. Hence $\exists u \in \mathcal{O}_L^*$ such that $\alpha_M = u\alpha_N$. Also, $u = \alpha_M/\alpha_N \implies l(u) = (b_{m1} - b_{N1}, \ldots, b_{mr+s} - b_{Nr+s})$. But N < M, so $b_{Nj} > b_{Mj}$ if $j \neq k$. So $B_{Mj} - b_{Nj} < 0$ if $j \neq k$.

Lemma. (7.5) Let $N \ge 1$, and let $A \in M_{N \times N}(\mathbb{R})$ be such that: • $\sum_{i=1}^{N} A_{ij} = 0$ for all j = 1, ..., N; • $A_{ij} > 0$ if i = j, and < 0 if $i \neq j$. Then A has rank N - 1.

Proof. The rank is at most N-1. We show the first N-1 rows of A are LI. Suppose there exist $t_i \in \mathbb{R}, i = 1, ..., N-1$ not all zero s.t. $\sum_{i=1}^{N-1} t_i A_{ij} = 0$ for each j = 1, ..., N. WLOG after rescaling ther exists k that $t_k = 1$ and $t_i \leq 1$ if $i \neq k$. Then $0 = \sum_{i=1}^{N-1} t_i A_{ik} \geq \sum_{i=1}^{N-1} A_{ik} > \sum_{i=1}^{N} A_{ik} = 0$, contradiction. \Box

Lemma. (7.6) Fix B > 0. Let $X_B = \{ \alpha \in \mathcal{O}_L | \forall \sigma : L \to \mathbb{C}, |\sigma(\alpha)| \leq B \}$. Then X_B is finite.

Proof. Recall the map $S : \mathcal{O}_L \to \mathbb{R}^r \times \mathbb{C}^s$. $S(\mathcal{O}_L)$ is a lattice in $\mathbb{R}^r \times \mathbb{C}^s$. $S(X_B)$ is the intersection of the lattice $S(\mathcal{O}_L)$ with a compact subset of $\mathbb{R}^r \times \mathbb{C}^s$. Therefore it must be finite.

Proposition. (7.7) $l(\mathcal{O}_L^*)$ is a lattice in $H \leq \mathbb{R}^{r+s}$.

Proof. We must show there exist units $v_1, ..., v_{r+s-1} \in \mathcal{O}_L^*$ such that $l(v_1), ..., l(v_{r+s-1})$ span H as an \mathbb{R} -vector space and generate $l(\mathcal{O}_L^*)$ as an abelian group. By corollary 7.4, we can find $\varepsilon_1, ..., \varepsilon_{r+s} \in \mathcal{O}_L^*$ such that if $l(\varepsilon_j) = (A_{ij}, ..., A_{r+sj})$,

7 DIRICHLET'S UNIT THEOREM

then $A_{ij} < 0$ if $i \neq j$ and $A_{ij} > 0$ if i = j. By lemma 7.5, the matrix A has rank r + s - 1, so we can find $v_1, ..., v_{r+s-1} \in \mathcal{O}_L^*$ such that $l(v_1), ..., l(v_{r+s-1})$ span \mathcal{O}_L^* as an \mathbb{R} -vector space.

Let $\Lambda = \bigoplus_{i=1}^{r+s-1} \mathbb{Z}l(v_i) \leq H$. This is a lattice in H. Then $\Lambda \leq l(\mathcal{O}_L^*)$ and if $u \in \mathcal{O}_L^*$, then $\exists \lambda \in \Lambda$ such that $l(u) - \lambda \in \{\sum_{i=1}^{r+s-1} t_i l(v_i) | t_1, ..., t_{r+s-1} \in [0, 1]\} = P$. But the set of units l(P) is finite by Lemma 7.6. Hence the quotien $l(\mathcal{O}_L^*)/\Lambda$ is finite. By Lagrange's theorem, $\exists N \in \mathbb{Z}, N > 1$ such that $Nl(\mathcal{O}_L^*) \leq \Lambda$. Hence $\Lambda \leq l(\mathcal{O}_L^*) \leq \frac{1}{N}\Lambda$. By the sandwich lemma, $l(\mathcal{O}_L^*)$ is a free abelian group of rank r+s-1. In particular, it is a lattice in H.

Let's now finish the proof of the unit theorem, i.e. show there's an isomorphism $\mathcal{O}_L^* \cong \mu_L \times \mathbb{Z}^{r+s-1}$, where μ_L is the (finite) group of roots of unity in \mathcal{O}_L .

Proof. We have $\mu_L = \ker l$. If $\xi \in \mu_L$, then $\xi^N = 1$ for some $N \ge 1$, hence $l(\xi^N) = 0 = Nl(\xi) \implies l(\xi) = 0$ as $l(\xi \in \mathbb{R}^{r+s})$. If $\alpha \in \mathcal{O}_L^*$ and $l(\alpha) = 0$ then $\forall \sigma : L \to \mathbb{C}, |\sigma(\alpha)| = 1$. By lemma 7.6, ker *l* is finite. By Lagrange's theorem, it consists of roots of unity.

Choose $v_1, ..., v_{r=s-1} \in \mathcal{O}_L^*$ such that $l(v_1), ..., l(v_{r+s-1})$ is a \mathbb{Z} -basis of $l(\mathcal{O}_L^*)$. Define a map $f : \mu_L \times \mathbb{Z}^{r+s-1} \to \mathcal{O}_L^*$ by $(\xi, n_1, ..., n_{r+s-1}) \to \xi v_1^{n_1} ... v_{r+s-1}^{n_{r+s-1}}$. \Box

Exercise: this is an isomorphism.

Return to the examinable parts:

We now show how to find the fundamental unit in $\mathbb{Q}(\sqrt{d})$, where $\sqrt{d} \in \mathbb{R}_{>0}$ and $d \in \mathbb{Z}$ is a positive square-free integer.

 $d > 1, d \equiv 1 \pmod{4}$:

Recall: the fundamental unit $u \in \mathcal{O}_L^*$ is the least unit u > 1. We saw last time that if $v = \frac{1}{2}(a + b\sqrt{d}) \in \mathcal{O}_L^*$ is any unit with v > 1, then $a \ge b \ge 1$.

Let $u^k = \frac{1}{2}(a_k + b_k\sqrt{d})$. Then $b_{k+1} = \frac{1}{2}(a_1b_k + b_1a_k) \ge \frac{1}{2}(a_1 + b_1)b_k \ge b_k$. We see $b_{k+1} \ge b_k$, with equality iff $a_k = b_k$ and $a_1 = b_1 = 1$. Note: if $a_1 = b_1 = 1$, then $N(u) = |\frac{1-d}{4}| = 1 \implies d = 5$. Assume first that d > 5. Then the sequence $b_1 < b_2 < b_3 < \dots$ is strictly increasing. The fundamental unit u can therefore be found as following: let $b \in \mathbb{N}$ be the least positive integer such that $db^2 + 4 = a^2$ or $db^2 - 4 = a^2$, where $a \in \mathbb{N}$. Then $\frac{1}{2}(a + b\sqrt{d})$ is the fundamental unit.

Now suppose d = 5. Then at least $b_1 \leq b_2 \leq ...$ is non-decreasing, and each value b_i can appear at most twice: this is because occurrences correspond to solutions to $b_i^2 d \pm 4 = a_i^2$. We can therefore characterize the fundamental unit u as follows: let $b \ in\mathbb{N}$ be the least positive integer for which $db^2 + 4 = a^2$ or $db^2 - 4 = a^2$ for $a, a' \in \mathbb{N}$ (units $\frac{1}{2}(a + b\sqrt{d})and\frac{1}{2}(a' + b\sqrt{d})$). Recall that the fundamental unit is the least unit with u > 1. Of these two possibilities, choose the unit with the smaller value of a or a'. In this case, b = 1 gives $d + 4 = 3^2$, d - 4 = 1. So $\frac{1}{2}(1 + \sqrt{5})$ is the fundamental unit in this case.