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1 Introduction

Many of the most important equations in mathematical physics are linear. For
example the Laplace’s equation,

∇2φ (x) = 0

where

∇2 =

n∑
i=1

∂2

∂x2
i

the wave equation,
1

c2
∂2φ

∂t2
= ∇2φ

the heat equation,
∂φ

∂t
= κ∇2φ

and the Schrodinger’s equation:

i~
∂φ

∂t
= − ~2

2m
∇2φ+ V (x)φ

Here linearity means, if φ1 and φ2 are each solutions of one of these, then

λ1φ1 + λ2φ2

is also a solution for any constants λ1,λ2.

Now we look at the d’Almbert’s solution of the wave equation:
In 1+1 dimensions, the wave equation is

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
= 0

Let
u = x− ct, v = x+ ct

Then
∂

∂x
|t =

∂u

∂x
|t
∂v

∂x
|t
∂

∂v
|u =

∂

∂u
|v +

∂

∂v
|u

1

c

∂

∂t
|x =

∂

∂v
|u −

∂

∂u
|v

So in the (u, v) coordinates, the wave equation becomes

∂2φ

∂u∂v
= 0

Integrating with respect to v, we get

∂φ

∂u
= F (u)
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Integrating again with respect to u, we get

φ (u, v) = G (v) +

∫ u

F (u′) du′

= G (x+ ct) +H (x− ct)

To fix these arbitrary functions, we need some initial data. Suppose we set

φ (x, 0) = f (x)

and
∂tφ (x, 0) = g (x)

Then

φ (x, 0) = G (x) +H (x) = f (x) =⇒ cG′ + cH ′ = cf ′

∂tφ (x, 0) = cG′ (x)− cH ′ (x) = g (x)

G′ (x) =
1

2

(
f ′ +

g

c

)
=⇒ G (x) =

1

2
[f (x)− f (0)] +

1

2c

∫ x

0

g (y) dy

H (x) =
1

2
[f (x) + f (0)]− 1

2c

∫ x

0

g (y) dy

Therefore our solution obeying both initial conditions is

φ (x, t) =
1

2
[f (x− ct) + f (x+ ct)] +

1

2c

∫ x+ct

x−ct
g (y) dy
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2 Vector Spaces

2.1 Vector Spaces

Definition. A vector space V is a space with an operation + that obeys the
following properties:
commutativity: u + v = v + u;
associativity: u + (v + w) = (u + v) + w;
and has an identity 0 that satisfies u + 0 = u ∀u ∈ V .

We can also multiply vectors by scalars λ ∈ R,C, with that being distributive
on both the vectors and the field, i.e.

λ (u + v) = λu + λv

and
(λ+ µ) u = λu + µu

We often give vector spaces an inner product (, ) : V × v → C, obeying:
additivity: (u,v + w) = (u,v) + (u,w);
linearity (in 2nd argument): (u, λv) = λ (u,v);
conjugate symmetry: (u,v) = (v,u)

∗
;

positive definite:(u,u) ≥ 0 ∀u ∈ V , with equality holding iff u = 0.

Note that
(λu,v) = (v, λu)

∗
= [λ (v,u)]

∗
= λ∗ (u,v)

A set {v1, ...,vn} of vectors form a basis of V if every u ∈ V can be uniquely
expressed as a linear combination

u =

n∑
i=1

λivi

Note that we can use the inner product to explicitly find the coefficients λi:

(vj ,u) =

(
vj ,

n∑
i=1

λivi

)

=

n∑
i=1

(vj , λi,vi)

=

n∑
i=1

λi (vj ,vi)

The basis is orthonormal if
(vj ,vi) = δij

and in this case we have
(vj ,u) = λi

So we’ve found the expression for λi explicitly using the inner product.
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2.2 Functions as infinite dimensional vectors

A complex valued function f on a domain Ω is a map f : Ω→ C. The set of all
these functions is naturally a vector space with the usual addition

(f + g) (x) = f (x) + g (x)

and the usual multiplication

(λf) (x) = λf (x)

Now we want an inner product on this vector space. One possibility is to take

(f, g) =

∫
Ω

f∗ (x) g (x) dµ

where µ is some measure.

An example:
Ω = [a, b] ,

(f, g) =

∫ b

a

f∗ (x) g (x) dx

Another example:
Ω =

{
(r, θ) ∈ R2 r ≤ 1

}
(f, g) =

∫
Ω

f∗ (r, θ) g (r, θ) rdrdθ

For functions on a circle f : S′ → C, we can think of these as periodic functions
f (θ + 2π) = f (θ), with θ ∈ [−π, π). Fourier found a nice basis.
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3 Fourier Series

3.1 Fourier Series

Consider the complex-valued functions einθ, where n ∈ Z. We have

(
einθ, eimθ

)
=

∫ π

−π
e−inθe+imθdθ =

{
2π if n = m
0 if n 6= m[∫ π

−π
[cos (m− n) θ + i sin (m− n) θ] dθ =

[
sin (m− n) θ − i cos (m− n) θ

m− n

]π
−π

= 0

]

So the set
{
einθ√

2π

}
is an orthonormal set of functions on S1.

The nth Fourier component of a general f : S1 → C is

f̂n =
1

2π

(
einθ, f

)
=

1

2π

∫ π

−π
e−inθf (θ) dθ

The Fourier series for f is then∑
n∈Z

f̂ne
inθ = f (θ)

However it’s not clear if this infinite series converges.

For example, let
f (θ) = |θ|

for θ ∈ [−π, π). Then

f̂n =
1

2π

∫ π

−π
e−inθ|θ|dθ

=
1

2π

∫ π

−π
|θ| cosnθdθ

=
1

π

∫ π

0

θ cosnθdθ

=

{
− 2
πn2 if n is odd

0 if n is even

Another example: let
f ((θ) = θ
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Then

f̂n =
1

2π

∫ π

−π
e−inθθdθ

= − 1

2πin

[
e−inθθ

]π
−π +

1

2πin

∫ π

−π
e−inθdθ

= − 1

2in

[
e−inπ + e+inπ

]
= − 1

in
(−1)

n

=
(−1)

n+1

in

if n 6= 0, and is 0 if n = 0.

Thus |θ| has Fourier series π
2 +

∑
n∈Z

−2
π(2n+1)2

ei(2n+1)θ,

while θ has Fourier series
∑
n 6=0

(−1)n+1

in einθ.
The first one is ok, but the second one diverges. θ is discontinuous as a periodic
function (different values at π and −π).

3.2 Convergence in the norm

One thing we should mean by ’converge’ is

lim
N→∞

(SNf − f, SNf − f) = 0

where

SNf =

N∑
n=−N

f̂ne
inθ

If we have convergence in the norm, i.e. if

lim
n→∞

∫ π

−π
(SNf − f)

∗
(SNf − f) dθ =

∫ π

−π
|SNf (θ)− f (θ) |2dθ = 0

The integrand in the second integral is non-negative, so it has to be 0 almost
everywhere. So

lim
N→∞

SNf (θ) = f (θ)

at almost all θ ∈ S1. In this case we have∫ π

−π
|SNf (θ)− f (θ) |2dθ =

∫ π

−π

(
N∑

n=−N
einθf̂n − f (θ)

)∗( N∑
m=−N

eimθf̂m − f (θ)

)
dθ

∫ π

−π

 N∑
n,m=−N

e−i(n−m)θf̂n
∗
f̂m

 dθ =

N∑
n,m=−N

f̂n
∗
f̂m

∫ π

−π
ei(m−n)θdθ = 2π

N∑
n=−N

|f̂n|2
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Since we’ve shown that the last integral is 0 unless m = n. Also

−
∫ π

−π

N∑
n=−N

e−inθf̂n
∗
f (θ) dθ = −

N∑
n=−N

f̂n
∗
∫ π

−π
e−inθf (θ) dθ

= −2π

N∑
n=−N

|f̂n|2

we thus have

lim
N→∞

[
−2π

N∑
n=−N

|fn|2 +

∫ π

−π
f (θ)

∗
f (θ) dθ

]
= 0

i.e.
(f, f) = 2π

∑
n∈Z
|f̂n|2

which is known as Parseval’s theorem. Note that this is an infinite dimensional
analogue of Pythagoras theorem.

3.3 Pointwise Convergence

A stronger notion of convergence is to ask

lim
N→∞

SNf (θ)− f (θ) = 0

for all θ ∈ S1. More precisely, given any ε > 0, there exists some N (ε, θ) s.t.
|Snf (θ)− f (θ) | < ε for all n > N (ε, θ).

If N (ε, θ) = N (ε), i.e. N doesn’t depend on θ, then we have uniform conver-
gence.

For example, let f (θ) = θ for θ = [−π, π). Then

SNf =

N∑
n=−N,n6=0

(−1)
n+1

in
einθ = 2

N∑
n=1

(−1)
n+1

n
sin (nθ)

If θ = (2k + 1)π for some k ∈ Z, we have

SNf ((2k + 1)π) = 0

which is the average value of the original function at that point.

3.4 Convergence of Fourier Series

We can establish a simple condition that ensures convergence of a Fourier series.
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Suppose for some numbers {an}, the partial sums

N∑
n=−N

|an|

converge as n→∞. Then
N∑

n=−N
ane

inθ

converges uniformly to a function f : S1 → C, and that f (θ) is everywhere
continuous.

Proof. Since
∑N
n=−N |an| converges, given any ε > 0, ∃ N0 (ε) s.t.∑

M≤|n|≤N

|an| < ε

for all N ≥M ≥ N0 (ε) (Cauchy). Therefore∣∣∣∣∣∣
∑

M≤|n|≤N

ane
inθ

∣∣∣∣∣∣ ≤
∑

M≤|n|≤N

|einθan|

=
∑

M≤|n|≤N

|an|

< ε

for all θ ∈ S1. So
N∑

n=−N
ane

inθ

converges uniformly to some f (θ) as N →∞.

The partial sums
∑N
n=−N ane

inθ are all continuous functions, and the uniform
limit of a sequence of continuous functions is itself continuous (see Analysis).

Also (since the integral is 0 unless n = m, in which case it equals 2π),

am =

N∑
n=−N

[
1

2π
an

∫ π

−π
ei(n−m)θdθ

]

=
1

2π

∫ π

−π

[
N∑

n=−N
ane

inθ

]
e−imθdθ

→ 1

2π

∫ π

−π
e−imθf (θ) dθ

= f̂m

as N →∞, so the am’s are indeed the Fourier coefficients, and

f (θ) =
∑
n∈Z

f̂ne
inθ
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(Compare with Taylor series where the continuous function f (x) = |x| has no

Taylor expansion around x = 0, neither does e−1/x2

).

3.5 Integration and Differentiation of Fourier Series

Integration is a ’smoothing’ operation. Suppose we have a function f (θ) whose

Fourier series converges, i.e. (SNf) (θ) =
∑N
n=−N f̂ne

inθ → f (θ) as N →∞.

Integrating term-by-term, we get∫ θ

−π
(SNf) (φ) dφ = f̂0 (θ − π) +

N∑
n=−N,n6=0

f̂n
in

[
einθ − (−1)

n]
This new sequence certainly converges, since the original one did by assumption,
and each coefficient is suppressed by a further power of n (n 6= 0).

On the other hand, consider the square wave function

f (θ) =

{
−1 −π ≤ θ < 0
+1 0 < θ < π

We have

f̂n =
1

2π

∫ π

−π
e−inθf (θ) ∼ 1

n

for odd n, and is zero for even n. So (as exercise)

f (θ) ∼ 4

π

∞∑
n=1

sin (2n− 1) θ

2n− 1

Now try differentiating term-by-term,

4

π

∞∑
n=1

cos (2n− 1) θ

which diverges at θ = 0.

Lemma. Let f : S1 → C be continuous. If∑
n∈Z
|nf̂n|

converges, then f is actually continuously differentiable, and

N∑
n=−N

inf̂ne
inθ

converges uniformly to f ′ (θ) as N →∞.
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Proof. For n 6= 0, |f̂n| ≤ |nf̂n|, so the comparison test tells us
∑
n∈Z |f̂n|

converges. So from before,

(SNf) =

N∑
n=−N

f̂ne
inθ → f (θ)

uniformly as N →∞. So

(SNf)
′
(θ) =

N∑
n=−N

inf̂ne
inθ → g (θ)

uniformly for some continuous g (θ). But since SNf → f , (SNf)
′ → g uniformly

implies that g (θ) = f ′ (θ), and hence f ′ (θ) is continuous. So f is continuously
differentiable.

Lemma. Let f : S1 → C be (m− 1) times continuously differentiable, and let
f (m−1) itself be differentiable with continuous derivative everywhere except for
some finite set of points {θ1, ...θr} ∈ S1.
(For example, let

f (θ) =
|θ|3

3

Then
f ′′ (θ) = |θ|θ

which is not continuous at θ = 0.)
If also |f (m) (θ) | ≤M for all θ ∈ S1\ {θ1, ..., θr}, then∣∣∣f̂n∣∣∣ ≤ M

nm

for all n 6= 0.

Proof.

f̂n =
1

2π

∫ π

−π
e−inθf (θ) dθ

= − 1

2πin

[
einθf (θ)

]π
−π +

1

2πin

∫ π

−π
e−inθf ′ (θ) dθ

= ...

=
1

2π (in)
m

∫ π

−π
e−inθf (m) (θ) dθ

So ∣∣∣f̂n∣∣∣ ≤ 1

2π|n|m

∫ π

−π

∣∣∣e−inθf (m) (θ)
∣∣∣ dθ

≤ M

|n|m
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This is a very intuitive result: the smoother a function is, the better its Fourier
series will converge.

For example, for f (θ) = θ, f̂n ∼ 1
n , while for f (θ) = |θ|, f̂n ∼ 1

n2 .
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4 Sturm-Liouville Theory

There could be many different sets of ’basis’ functions in which we could expand
any given function. To decide which basis is most appropriate, we’ll need to
know more about what problem we’re trying to solve.

4.1 Matrices and their adjoints

Given two vector spaces V,W with dim (V ) = n, dim (W ) = m, we can consider a
linear map M : V →W . If we are given a basis {v1, ...,vn} of V and {w1, ...wn},
then by linearity, the action of M is determined by its action of the {vi}. We
have

Mvi =

m∑
j=1

Mijwj

for some coefficients Mij ∈ C.

If {wj} is an orthonormal basis, then

(wk,Mvi) =

m∑
j=1

Mij (wk,wj) = Mik

here (, ) is an inner product on W . If m = n, then W ∼= V and we treat M as a
map from V to itself.

In this case, we define the eigenvalues of this map to be the roots {λi} of the
characteristics polynomial

|M − λI| = 0

The adjoint of a map A : V → V is a map B : V → V defined by

(Bu,v) = (u, Av)

for all u,v ∈ V .

In components, that says
Bij = A∗ji

(or B =
(
AT
)∗

= A+).

A map M is self-adjoint if and only if (Mu,v) = (u,Mv) for all u,v ∈ V .

Proposition. Self adjoint matrices have only real eigenvalues.

Proof. Suppose Mvi = λivi so that vi is the eigenvector of M with eigenvalue
λi. Then

λi (vi,vi) = (vi,Mvi) = (Mvi,vi) = λ∗i (vi,vi)

Since that is true for all eigenvectors, λi = λ∗i . So M is self adjooint.
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Proposition. Eigenvectors of a self-adjiont M with distinct eigenvalues are
orthogonal.

Proof.
λi (vj ,vi) = (vj ,Mvi) = (Mvj ,vi) = λj (vj ,vi)

Since λj ∈ R. So
(λi − λj) (vj ,vi) = 0

We can use this orthogonality to solve linear equations. For example, suppose
Ma = f and we wish to find a (= M−1f).
We let {v1, ...,vn} be a basis of eigenvectors for M . Then

M

(
n∑
i=1

aivi

)
=

n∑
i=1

aiMvi

=

n∑
i=1

aiλivi

=

n∑
i=1

fivi

Taking the inner product with vj ,

n∑
i=1

aiλi (vj ,vi) =

n∑
i=1

fi (vj ,vi)

=⇒ ajλj = fj or aj =
fj
λj

For functions, the analogue of our linear map M is a linear differential operator

L = Ap (x)
dp

dxp
+Ap−1 (x)

dp−1

dxp−1
+ ...+A1 (x)

d

dx
+A0 (x)

We call p the order of L. We’ll typically be interested in second order differential
operators:

L = R (x)
d2

dx2
+ P (x)

d

dx
+Q (x)

We begin by putting this operator in Sturm-Liouville form. Suppose R (x) 6= 0
for all x ∈ [a, b]. Then we equivalently have

d2

dx2
+
P (x)

R (x)

d

dx
+
Q (x)

R (x)
= e−

∫ x
0
P
R dt

d

dx

(
e
∫ x
0
P (t)
R(t)

dt d

dx

)
+
Q

R

By using integrating factor. So equivalently, we consider operators of the Sturm-
Liouville form

L =
d

dx

(
p (x)

d

dx

)
+ q (x)
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where

p (x) = exp

∫ x

0

P (t)

R (t)
,

q (x) =
Q (x) p (x)

R (x)

SL operators are self-adjoint with respect to the inner product

(f, g) =

∫ b

a

f∗ (x) g (x) dx

provided f, g obey appropriate boundary conditions:

(Lf, g) =

∫ b

a

[
d

dx

(
p
df

dx

)
+ qf

]∗
g (x)

=

∫ b

a

[
d

dx

(
p
df∗

dx

)
g + qf∗g

]
dx

=

[
p
df∗

dx
g

]b
a

−
∫ b

a

(
p
df∗

dx

dg

dx
− qf∗gdx

)
=
[
p
(
f∗ ′ g − f∗g′

)]b
a

+

∫ b

a

f∗
[
d

dx

(
p
dg

dx

)
+ qg

]
dx+ (f,Lg)

Let the first term be the boundary term. The boundary term vanishes provided
we impose some conditions:

b1f
′ (a) + b2f (a) = 0

c1f
′ (b) + c2f (b) = 0

for some b1,2, c1,2 ∈ C.
If p (a) = p (b), then the boundary terms cancel if f (a) = f (b), f ′ (a) = f ′ (b)
and similarly for g.

For functions obeying these boundary conditions,

(Lf, g) = (f,Lg)

It follows that:
• eigenvalues of a SL operator are real;
• eigenfunctions with distinct eigenvalues are orthogonal.

It’s often convenient to generalise the eigenfunctions to allow for weight functions.
A function W : [a, b]→ R is a weight function if W (x) ≥ 0 for all x ∈ [a, b] with
at most finitely many zeros.

We say f is an eigenfunction of L with weight W if

(Lf) (x) = λW (x) f (x)

We define an inner product of weight W to be:

(f, g)W =

∫ b

a

f∗ (x) g (x)W (x) dx

= (f,Wg) = (Wf, g)
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So
λ (f, f)W = (f,Lf) = (Lf, f) = λ∗ (f, f)W

Let fi be an eigenfunction of a S-L operator L, with weight W (x) and eigenvalue
λi. Then

λi (fi, fk)W = (fi,Lfi)
= (Lfi, fi) = λ∗i (fi, fi)W

Since L is self-adjoint (needs boundary conditions). So λi ∈ R for a self-adjoint
operator.

λi (fj , fi)W = (fi,Lfi)
= (Lfi, fi)
= λj (fj , fi)W
=⇒ (λj − λi) (fj , fi)W = 0

So the eigenfunctions with distinct eigenvalues are orthogonal with respect to
(, )W .

Notice that since the coefficient functions p (x) , q (x) in the S-L operator L are
real, if Lf = λWf , then

L (f∗) = (Lf)
∗

= (λWf)
∗

= λWf∗

So f∗ (x) is also an eigenfunction with the same eigenvalue. By choosing
Ref (x) , Imf (x), we can always choose our eigenfunctions to be real.

Given any f (x) on our domain Ω, we can expand it in a basis of eigenfunctions
{yi (x)} for some SL operator on (the interior) of Ω:

f (x) =

∞∑
i=1

f̂iyi (x)

with
f̂i = (yi, f)W

just as for Fourier series.

4.2 Examples of solving equations with SL operators

Example. Choose Ω = [−L,L], p (x) = −1, q (x) = 0. So

L =
d

dx

(
p (x)

d

dx

)
+ q (x) = − d2

dx2

We’ll also choose weight function to be W (x) = 1, and ask that all our functions
obey boundary conditions f (L) = f (−L) , f ′ (L) = −f ′ (−L).

An eigenfunction obeys

−d
2f

dx2
= λf
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if λ < 0, the unique solution obeying the boundary conditions is f = 0;

if λ =
(
nπ
L

)2
for n ∈ Z, then we have eigenfunctions f (x) = e±iπnx/2 and we’ve

recovered Fourier series.

Example. Choose Ω = [−1, 1], q (x) = 0, p (x) = −
(
1− x2

)
, W (x) = 1. Then

Lf =
d

dx

[
−
(
1− x2

) df
dx

]
= −λf

and

(f,Lg) = (Lf, g) +
[
p (x)

(
f∗ ′ g − f∗g′

)]1
−1

For p = −
(
1− x2

)
, we have p (±1) = 0. So all we need to ask of f, g is that it

remains regular on ∂Ω.

We look for a solution of the form

Θ (x) =

∞∑
n=0

anx
n

that remains regular throughout Ω. Differentiating (applying SL operator?), we
have (

1− x2
) ∞∑
n=0

ann (n− 1)xn−2 − 2

∞∑
n=0

annx
n + λ

∞∑
n=0

anx
n = 0

This must hold for all x ∈ Ω, it must hold for each power of x separately. Collect
the coefficient for xn, we have

an+2 (n+ 2) (n+ 1)− ann (n− 1)− 2ann+ λan = 0

=⇒ an+2 =
n (n+ 1)− λ

(n+ 2) (n+ 1)
an

as a recurrence relation.

We are free to choose a0 and a1 independently, so we get two linearly independent
solutions

Θ0 (x) = a0

[
1− λ

2
x2 +

(−λ) (6− λ)

4!
x4 + ...

]
,

Θ1 (x) = a1

[
x+

(2− λ)

3!
x3 +

(2− λ) (12− λ)

5!
x5 + ...

]
Note the Θ0 is an even function while Θ1 is an odd function.

Now examine the behaviour of the Θi (x) near the boundary. As n→∞,

an+2

an
∼ 1− 2

n
+

4− λ
n2

so the series always converges when |x| < 1.

However, at x = ±1, Gauss’s test tells us that the series in fact diverges (???
see Gauss’s Test).

http://mathworld.wolfram.com/GausssTest.html
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The only way out is to restrict the allowed values of λ. If λ = l (l + 1) for some
l ∈ N, then the series actually terminates and we have a polynomial solution
Pl (x), known as the lth Legendre polynomial. e.g.,

P0 (x) = 1,

P1 (x) = x,

P2 (x) =
1

2

(
3x2 − 1

)
,

P3 (x) =
1

2

(
5x3 − 3x

)
In fact, the general formula is

Pl (x) =
1

2ll!

dl

dxl
(
x2 − 1

)l
(check!) where the normalisation ensures Pl (1) = 1.

Proof.

Pl (1) =
1

2ll!

dl

dxl

[
(x− 1)

l
(x+ 1)

l
]
|x=1

=
1

2ll!

[
l! (x+ 1)

l
+ terms involving (x− 1)

]
x=1

= 1

From general SL theory, we know that (Pl, Pm) = 0 when l 6= m, but let’s see
this directly. WLOG assume m < l. Then

(Pm, Pl) =
1

2ll!

∫ 1

−1

Pm (x)
dl

dxl
(
x2 − 1

)l
=

1

2ll!

[
Pm (x)

dl−1

dxl−1

(
x2 − 1

)l]1

−1

− 1

2ll!

∫ 1

−1

dPm
dx

dl−1
(
x2 − 1

)l
dxl−1

dx

=
1

2ll!

∫ 1

−1

dPm
dx

dl−1

dxl−1

(
x2 − 1

)l
dx

=
(−1)

l

2ll!

∫ 1

−1

dlPm
dxl

(
x2 − 1

)l
dx

But Pm (x) = 1
2mm!

dm

dxm

(
x2 − 1

)m
is a polynomial of degree m, so differentiating

l > m times gives 0.

When l = m, we have ∫ 1

−1

Pl (x)Pm (x) dx =
2

2 + l

The Legendre polynomials are the basic orthogonal polynomials on [−1, 1]. Any
lth order polynomial has l roots (generically ∈ C), but all the roots of all the
Pl (x)’s ∈ R and lie in (−1, 1).
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Proof. Suppose otherwise, that Pl (x) has only m < l roots in x ∈ (−1, 1). We
consider the degree m polynomial

Q (x) =

m∏
i=1

(x− xi)

where xi are roots of Pl (x) in (−1, 1).
On one hand, ∫ 1

−1

Q (x)Pl (x) dx 6= 0

since Pl (x) and Q (x) change sign at the same places.
On the other hand, we can expand

Q (x) =

n∑
r=1

q̂rPr (x)

in terms of the Legendre polynomials. So∫ 1

−1

QPl (x) dx =

m∑
r=1

q̂r

∫
Pr (x)Pl (x) dx = 0

by orthogonality of the Pi’s. Contradiction.
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5 Laplace’s Equation

5.1 Laplace’s Equation and Uniqueness Theorem

Laplace’s equation in a domain Ω ⊂ Rd is

∇2ψ = 0

where

∇2 =

d∑
i=1

∂2

∂x2
i

There exists a unique solution ψ to Laplace’s equation inside Ω that obeys

ψ (x) = f (x) ∀x = ∂Ω

this boundary condition is called the Dirichlet boundary conditions (see Vector
Calculus in Part IA). We’ll prove the uniqueness theorem again:

Proof. Suppose ψ1, ψ2 both solve the Laplace’s equation inside Ω and ψ1 = ψ2

on ∂Ω.
Let δψ = ψ1 − ψ2. Then

0 =

∫
Ω

δψ∇2 (δψ)

= −
∫

Ω

(∇δψ) · (∇δψ) +

∫
∂Ω

δψn · ∇δψ

Where n is the outward pointing unit normal vector to ∂Ω. But δψ on the
boundary is 0. So

0 = −
∫

Ω

(∇δψ) · (∇δψ) = −
∫

Ω

||∇δψ||2

So provided that δψ is continuous, we must have ∇δψ = 0 everywhere in Ω.
Thus δψ is a constant throughout Ω. Since δψ = 0 on the boundary, δψ = 0
throughout Ω. Therefore ψ1 = ψ2 everywhere in Ω.

5.2 Separation of Variables

Let Ω be the infinite cuboid

Ω =
{

(x, y, z) ∈ R3|0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ ∞
}

Suppose we want to solve
∇2ψ = 0
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inside Ω, subject to the conditions

ψ (0, y, z) = ψ (a, y, z) = 0

ψ (x, 0, z) = ψ (x, b, z) = 0

ψ (x, y, 0) = f (x, y)

lim
z→∞

ψ = 0

To get started, we look for a special solution to Laplace’s equation of the form

ψ (x, y, z) = X (x)Y (y)Z (z)

Then

0 = ∇2ψ

= Y (y)Z (z)X ′′ (x) +X (x)Z (z)Y ′′ (y) +X (x) + Y (y)Z ′′ (z)

If ψ 6≡ 0, we can equivalently write

0 =
1

ψ
∇2ψ

=
X ′′

X
+
Y ′′

Y
+
Z ′′

Z

Each term on the RHS depends on a different variable. Since we want a solution
for all (x, y, z) ∈ Ω, each term must be constant. That is,

X ′′

X
= −λ, Y

′′

Y
= −µ, Z

′′

Z
= λ+ µ

for some λ, µ. That implies

X (x) = A sin
(√

λx
)

+B cos
(√

λx
)

Y (y) = C sin (
√
µy) +D cos (

√
µy)

Z (z) = E exp
(√

λ+ µz
)

+ F exp
(
−
√
λ+ µz

)
We now impose the homogeneous boundary conditions. We find B = 0, D = 0,

λ =
(
nπ
a

)2
for n = 1, 2, ..., µ =

(
mπ
b

)2
for m = 1, 2, ...; E = 0.

So

ψ (x, y, z) = An,m sin
(nπx

a

)
sin
(mπy

b

)
exp

(
−
√
n2π2

a2
+
m2π2

b2
z

)

solves ∇2ψ = 0 and all the homogeneous boundary conditions for any choices of
n,m ∈ {1, 2, ...}.

Thus the linear combination

ψ (x, y, z) =

∞∑
n,m=1

Anm sin
(nπx

a

)
sin
(mπy

b

)
exp

(
−
√
n2π2

a2
+
m2π2

b2
z

)
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does too.

To fix the coefficients Anm, we must use the inhomogenous boundary conditions
that ψ (x, y, 0) = f (x, y). We expand f (x, y) as a double Fourier series

f (x, y) =
∑
n,m

f̂nm sin
(nπx

a

)
sin
(mπy

b

)
where

f̂nm =
4

ab

∫ a

0

dx

∫ b

0

dy
[
sin
(nπx

a

)
sin
(mπy

b

)
f (x, y)

]
and choose Anm = f̂nm.

Example. Suppose f (x, y) = 1. Then

f̂nm =
4

ab

∫ a

0

∫ b

0

sin
(nπx

a

)
sin
(mπy

b

)
dxdy

=

{
16

nmπ2 n,m odd
0 else

So

ψ (x, y, z) =
16

π2

∞∑
k,l=1

sin (2k−1)πx
a sin (2l−1)πy

b

(2k − 1) (2l − 1)
exp (−S2k−1,2l−1z)

5.3 Laplace’s equation in spherical polar coordinates

Let
Ω =

{
(r, θ, φ) ∈ R3|r ≤ a

}
and suppose ψ : R3 → R solves ∇2ψ = 0 inside Ω, with ψ (r = a, θ, φ) = f (θ, φ).

In spherical polar coordinates, we have

∇2ψ =
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2

1

sin2 θ

∂2ψ

∂φ2

For simplicity, we’ll just consider the case ψ (r, θ, φ) = ψ (r, θ), f = f (θ).

We seek a solution to ∇2ψ = 0 of the form ψ (r, θ) = R (r) Θ (θ). Then

Θ

r2

d

dr

(
r2 dR

dr

)
+

R

r2 sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= 0

=⇒ 1

R

d

dr

(
r2 dR

dr

)
= − 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= λ

Since in the second equation, LHS only depends on R, r while RHS only depends
on Θ, θ. So they must both be constants.

The angular equation
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
= λΘ
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we’ve met before: let x = cos θ. Then

∂

∂θ
=
∂x

∂θ

∂

∂x
= − sin θ

∂

∂x

So the angular equation becomes

+
d

dx

((
1− x2

) dΘ

dx

)
= −λΘ

this is exactly Legendre’s equation, so its regular solutions are Pl (cos θ) where
λ = l (l + 1), l = 0, 1, .... (See section 4.1)

With these values of the eigenvalue λ, the radial equation becomes(
r2R′

)′
= l (l + 1)R

We try a solution of the form R = rα:

α (α+ 1) rα = −l (l + 1) rα

=⇒ α = l, (−l − 1)

So our solution R (r) Θ (θ) is now

ψ (r, θ) =

∞∑
l=0

(
alr

l +
bl
rl+1

)
Pl (cos θ)

We want a solution that remains regular at r = 0. So bl = 0 for all l. To fix the
al, use the inhomogeneous boundary condition that

ψ (a, θ) = f (θ)

we get

f (θ) =

∞∑
l=0

f̂lPl (cos θ)

where

f̂l =
2l + 1

2

∫ π

0

f (θ)Pl (cos θ) sin θdθ

So our final answer obeying all the boundary condition is

ψ (r, θ) =
∑
l

f̂l

( r
a

)l
Pl (cos θ)

This is the unique solution by uniqueness theorem.

5.4 Multiple expansions

Let k be a unit vector. Then 1
|r−k| solves

∇2 1

|r− k|
= 0
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For all r 6= k ∈ R, and is regular at r = 0. So

1

|r− k|
=

∞∑
l=0

Alr
lPl (cos θ) (1)

Suppose r point in the k-direction. Then

1

|r− k|
=

1√
1 + r2 − 2r

=
1

1− r
=

∞∑
l=0

rl

(Taylor expansion, converges for |r| < 1).

Since Pl (cos 0) = Pl (1) = 1, the multiple expansion (1) becomes

1

|r− k|
=

∞∑
l=0

Alr
l

So Al = 1.

1

|r− r′|
=

1

r′

∞∑
l=0

( r
r′

)l
Pl (r̂ · r̂′)

=
1

r′
+

r

r′2
r̂ · r̂′ + ...

=
1

r′
+

r · r′

(r′)
3 + ...

The first term is the potential experienced at r′ from a (unit) charge at the
origin. It’s called the monopole term. The second, dipole term, is the potential
at r′ due to two unit charges of opposite sign placed at ±r.

5.5 Laplace’s equation in cylindrical coordinates

Let Ω =
{

(r, θ, z) ∈ R3, r ≤ a, z ≥ 0
}

, and suppose ψ : R3 → R obeys ∇2ψ = 0
inside Ω.

In cylindrical coordinates,

∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+
∂2ψ

∂z2
= 0

so once again, look for a solution of the form

ψ (r, θ, z) = R (r) Θ (θ)Z (z)

=⇒
(
R′′

R
+

1

r

R′

R

)
+

1

r2

Θ′′

Θ
+
Z ′′

Z
= 0
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This implies

Z ′′

Z
= µ,

Θ′′

Θ
= −λ, R

′′

R
+

1

r

R′

R
+

(
µ− λ

r2

)
= 0

For our solution to be periodic in θ, we must have λ = n2 for n ∈ N, which
implies

Θ (θ) = an sin (nθ) + bn cos (nθ)

If we want our solution to decay as z →∞, we need to choose µ > 0 and pick
the solution Z (z) = exp

(
−√µz

)
.

The radial equation is Bassel’s equation. To put it in SL form, multiply through
by 1/r to find

d

dr

(
r
dR

dr

)
− n2

r
R = −µrR

We can rescale by introducing x =
√
µr to obtain

x2 d
2R

dx2
+ x

dR

dx
+
(
x2 − n2

)
R = 0

which is independent of the eigenvalue µ. This second order ODE has 2 inde-
pendent solutions for each n = 0, 1, 2, ..., written Jn (x) and Yn (x) and called
Bassel functions of the first(Jn)/second(Yn) kind.

The first kind:

The second kind:

all Jn are regular at origin (J0 (0) = 1, Jn (0) = 0 for other n), while all Yn are
singular at x = 0.
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We want ∇2ψ = 0 inside Ω, decaying to 0 as z → +∞, regular at r = 0 and
vanishing at r = a. Our product ansaty(?) gives

ψnµ (r, θ, z) = (an sinnθ + bn cosnθ) e−
√
µz (Jn (

√
µr) + cnYn (

√
µr))

Regularity at r = 0 =⇒ cn = 0;
ψ|r=a = 0 =⇒ √

µa = kin, where kin is the ith root of Jn (x). Then

ψ (r, θ, z) =

∞∑
n=0

∞∑
i=1

(ani sin (nθ) + bni cos (nθ)) e−
kinz

a Jn

(
kin

r

a

)
is our general solution.

If we also impose the inhomogeneous boundary condition

ψ|z=0 = f (r, θ)

we can fix the constants ani, bni. The Bessel functions obey the orthogonality
condition ∫ a

0

Jn

(
kin

r

a

)
Jn

(
kjn

r

a

)
rdr = δij [J ′n (kin)]

2

e.g. At z = 0, our solution is

ψ (r, θ, 0) =
∑
n,i

(ani sinnθ + bni cosnθ) Jn

(
kni

r

a

)
= f (r, θ)

This implies

1

π

∫ π

−π
cos (mθ) f (r, θ)︸ ︷︷ ︸ =

∑
n,i

bni
π

∫ π

−pi
cos (mθ) cos (nθ) dθ︸ ︷︷ ︸Jn

(
kni

r

a

)
f̂m (r) δij

So

f̂m (r) =
∑
i

bmiJm

(
kmir

a

)
=⇒

∫ a

0

Jm

(
kmj

r

a

)
f̂m (r) rdr =

a2

2

∑
i

bmiδij [J ′m (kmj)]
2

=
a2

2
bmj [J ′m (kmj)]

2

=⇒ bmj =
2

a2 [J ′m (kmi)]
2

∫ a

0

Jm

(
kmj

r

a

)
f̂m (r) rdr.
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6 The Heat Equation

6.1 Heat equation

Let Ω ≤ Rn be a domain in Rn, thought of as ”space”. The heat equation is

∂ψ

∂t
= κ∇2ψ

for a function ψ : Ω× [0,∞)→ R and positive constant κ, called the diffusion
constant.

The two most important properties of evolution under heat flows are:
• Total heat

∫
Ω
ψdV is conserved ;

Proof.

d

dt

∫
Ω

ψdV =

∫
Ω

∂ψ

∂t
dV = κ

∫
Ω

(
∇2ψ

)
dV = κ

∫
∂Ω

n · (∇ψ) dS

So provided n·∇ψ = 0, which says heat doesn’t flow out of Ω, d
dt

∫
Ω
ψdV = 0.

• Heat flow is a strongly smoothing operation;
Suppose ψ is an eigenfunction of the Laplacian on Ω with eigenvalue λ (i.e.
∇2ψ = −λψ), and ψ = 0 or n · ∇ψ = 0 on ∂Ω. These eigenvalues are necessarily
non-negative.

Proof.

− λ
∫

Ω

ψ∗ψdV =

∫
Ω

ψ∗∇2ψdV = −
∫

Ω

∇ψ∗ · ∇ψdV = −||∇ψ||2 ≤ 0

=⇒ λ =

∫
Ω
∇ψ∗ · ∇ψdV∫
Ω
|ψ|2 dV

≥ 0

we’ve used our boundary condition above.
Formally, we have that our solution to the heat equation can be written as

ψ (x, t) =
(
et∇

2
)
ψ (x, 0)

(set κ = 1). Here we think et∇
2

as the Taylor expansion:

et∇
2

= 1 + t∇2 +
t2

2
∇2∇2 + ...

Expanding our initial data ψ (x, 0) in terms of a complete set {ψI (x)} of eigen-
functions of ∇2 as

ψ (x, 0) =
∑
I

cIψI (x)
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Then we get

ψ (x, t) = et∇
2

(∑
I

cIψI (x)

)
=
∑
I

cI

(
et∇

2

ψI

)
=
∑
I

cIe
−λItψI (x)

We’ve seen (for Fourier series - true for any expansion in eigenfunctions) that the
smoothness of the original function is reflected in the decay of the coefficients in
the expansion as |I| → ∞. Heat flow exponentially suppresses eigenfunction with
large λI . Heat flow exponentially suppresses eigenfunction with large λI .

The heat equation also has some symmetries:
If φ (x, t) obeys

∂φ

∂t
= k∇2φ

then so too does:
• ξ (x, t) = φ (x− x0, t− t0) – translation in space/time;

• ψ (x, t) = λpφ
(√

λx, λt
)

rescaling by λ ∈ R+.

In particular, we can look for a similarity solution, which is one that is indepen-
dent of this scaling (up to an overall factor). i.e.

ψ (x, t) = φ (x, t) = λpφ
(√

λx, λt
)

If this is so, then since φ (x, t) is independent of λ, we can set λ to be anything
convenient, e.g. λ = 1

t . Then

φ (x, t) = t−pφ

(
x√
t
, 1

)
= t−pu (η)

where η = x√
t

is the similarity variable. Then

∂tφ = −ptp−1u+ t−p
∂η

∂t
u′ = t−p−1 (−pu+ ηu′)

=⇒ κ∂2
xφ = κt−p

∂

∂x

(
∂η

∂x
u′
)

= κt−p−1u′′

so the heat equation becomes an ODE for u (η):

0 = t−p−1

(
−pu− ηu′

2
− κu′′

)

For example, choosing p = 1
2 , we get

0 = ku′′ +
1

2
(ηu′ + u) =

(
κu′ +

ηu

2

)′
If we impose the initial condition

u′ (0) = 0



6 THE HEAT EQUATION 31

then
u′

u
= − η

2κ

and so

u (η) = Ae−η
2/4κ

therefore

φ (x, t) =
1√
4πt

e−
x2

4κt

where we fixed A by
∫
R
φ (x, t) dx = 1.

This is a Gaussian with variance proportional to t, and is the fundamental
solution to the heat equation.

For heat flow on Rn × [0,∞), we’d instead get the fundamental solution

φ (x, t) =
1

(4πκt)
n/2

e−
|x|2
4κt

The fact that heat always flows from hot to cold is apparently in conflict with
the time reversibility of Newton’s laws.

Einstein realised that this could be explained statistically: suppose a particle is
being jostled at random s.t. the probability it moves through distance y in time
∆t is p (y). Assume:
• p (y) independent of t;
• p (y) is strongly peaked near 0,
• p (−y) = p (y) no preferred direction. Let P (x, t) be the probability our
particle is found at x at time t. Then

P (x, t+ ∆t) =

∫ ∞
−∞

p (y)P (x− y, t) dy

≈
∫ ∞
−∞

∞∑
n=0

p (y)

n!

∂nP

∂yn
(x, t) (−y)

n
dy

=

∞∑
n=0

∂nP

∂yn
1

n!
〈yn〉

where 〈yn〉 =
∫∞
−∞ p (y) yn. The above is then approximately

P (x, t) +

〈
y2
〉

2

∂2P

∂x2
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with some small corrections. Then

P (x, t+ ∆t)− P (x, t)

∆t
= κ

∂2P

∂x2

where

κ =

〈
y2
〉

2∆t

As ∆t becomes small (but still large compared to collision times) we have the
heat equation.

−4 −2 2 4

−4

−2

2

4

6.2 Heat flow in a semi-infinite region

Suppose φ (x, t) obeys the heat equation inside Ω × [0,∞) with Ω = {x ≥ 0}
subject to the boundary conditions φ (x, t)→ c as x→ +∞ and

φ (0, t) = φ0 +A cos

(
2πt

t0

)
+B cos

(
2πt

t0

)

To solve, we look for a simple solution to the heat equation of the form

φ (x, t) = X (x)T (t)

T ′

T
= κ

X ′′

X
= λ

we want oscillatory solutions in time, so set λ = iω, we get

φω (x, t) = eiωt
(
aωe
−x
√

iω
κ + bωe

+x
√

iω
κ

)
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√
iω =

{
1+i√

2

√
|ω| ω > 0

i−1√
2

√
|ω| ω < 0

So

φ (0, t) = φ0 +
A

2

(
eiωDt + e−iωDt

)
+
B

2

(
eiωY t + e−iωY t

)
where

ωD,Y =
1

2πtD,Y

So we have non-zero contributions when the separation constant, ω = ±ωD,±ωY , 0,

φ (x, t) = φ0 +Ae−
√

ωD
2κ x cos

(
ωDt−

√
ωD
2κ

x

)
+Be−

√
ωY
2κ x cos

(
ωY t−

√
ωY
2κ

x

)

Let Ω =
{

(r, θ, φ) ∈ R3 | r ≤ a
}

and suppose ψ : Ω × [0,∞) → R obeys ∂ψ
∂t =

κ∇2ψ. For simplicity, we’ll take ψ (r, θ, φ) = ψ (r). We impose
• boundary condition ψ|∂Ω×(0,∞) = ψ (a) = 0;
• initial condition ψ|Ω×{0} = ψ0 constant.

Look for a solution of the form ψ (r, t) = R (r)T (t). Then

1

κT

dT

dt
=

1

Rr2

d

dr

(
r2 dR

dr

)
= −λ2

for some constant λ.

The radial equation is
d

dr

(
r2 dR

dr

)
= −λ2r2R

and has solutions

R (r) = Aλ
sin (λr)

r
+Bλ

cos (λr)

r

Regularity at r = 0 forces us to set Bλ = 0, while the boundary condition
ψr=a = 0 fixes λ = nπ

a for some n = 1, 2, ....

So our separates solution is

ψn (r, t) =
An
r

sin
(nπr
a

)
exp

(
−n

2π2κt

a2

)
which implies that the general solution obeying homogeneous boundary condition
is ∑

n∈Z+

An
r

sin
(nπr
a

)
exp

(
−n

2π2κt

a2

)
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we fix the An by imposing ψ (r, 0) = ψ0. So

rψ0 =
∑
n∈Z+

An sin
(nπr
a

)
=⇒ Am =

ψ0

2a

∫ a

0

r sin
(mπr

a

)
dr =

(−1)
m+1

ψ0

2πn

Therefore

ψ (r, t) =
ψ0

2πr

∑
n∈Z+

(−1)
n+1

n
sin
(nπr
a

)
exp

(
−n

2π2κt

a2

)

Consider
∂ψ

∂r
|r=a = −ψ0

a

∑
n∈Z+

exp

(
−n

2π2κt

a2

)

≈ −ψ0

2a

∫ ∞
−∞

exp

(
−−x

2π2κt

a2

)
dx

≈ −ψ0

2

√
a2

πκt

So

tnow =
ψ2

0a
2(

∂ψ
∂r

)2

now
4κπ

We have ψ0 ∼ 1000◦C, ∂ψ∂r |now ∼ 20◦C/100m, κ is the thermal diffusivity of rock.
Then we get tnow ≈ 100 million years. However we didn’t take heat generated
by radioactivity into account.
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7 The Wave Equation

7.1 The Wave Equation

ψ : Ω× R→ R

solves the wave equation if
1

c2
∂2φ

∂t2
= ∇2φ

There’s a unique solution subject to
• initial conditions:

ψ (x, 0) = f (x)

∂tφ (x, 0) = g (x)

• boundary conditions:
ψ (x, t) |∂Ω = h (x, t)

which is a Dirichlet boundary condition.

Proof. We consider the energy

Eφ =
1

2

∫
Ω

(
∂φ

∂t

)2

+ c2 (∇φ) · (∇φ) dV

Differentiating under the integral, we have

dEφ
dt

=

∫
Ω

∂φ

∂t

∂2φ

∂t2
+ c2 (∇φ) · ∇

(
∂φ

∂t

)
dV

=

∫
Ω

∂φ

∂t

(
∂2φ

∂t2
− c2∇2φ

)
dV + c2

∫
∂Ω

∂φ

∂t
(∇φ) · n̂dS

where n̂ is the outward-pointing normal. Then

dEφ
dt

= c2
∫
∂Ω

∂φ

∂t
(∇φ) · n̂dS

So Eφ is constant in time if no energy flows out of the region Ω (i.e. if this
boundary term vanished).

So let φ1, φ2 each solve the wave equation with the same boundary conditions
and initial conditions. Then δφ = φ2 − φ1 obeys the wave equation with

δφ|∂Ω×R = 0,

δφ|Ω×{0} = 0,

∂t (δφ) |Ω×{0} = 0

That implies
dEδφ
dt

=

∫
Ω

∂t (δφ) n̂ · ∇δφdS = 0
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since ∂t (δφ) |∂Ω = 0. So
Eδφ (t) = Eδφ (0) = 0

since δφ|Ω×{0} = ∂tδφ|Ω×{0} = 0.
However, Eδφ is the integral of non-negative quantities, so Eδφ = 0 if and only

if ∂δφ
∂t = 0 and ∇ (δφ) = 0 ∀ (x, t) ∈ Ω× R (at best if δφ continuous).

So δφ = 0 always, so φ1 = φ2.

Example. Consider a string of undisturbed length L:

(see figure 1)

And let TA, TB be tensions pulling tangentially. The string makes no lateral
displacement. That means

TA cos θA = TB cos θB = T

Newton’s 2nd law gives

µδx
∂2φ

∂t2
= TB sin θB − TA sin θA

=⇒ µδx

T

∂2φ

∂t2
=
TB sin θB
TB cos θB

− TA sin θA
TA cos θA

= tan θB − tan θA

=
∂φ

∂x
|B −

∂φ

∂x
|A

≈ ∂2φ

∂x2
δx

So φ obeys
1

c2
∂2φ

∂t2
=
∂2φ

∂x2

with

c2 =
T

µ

as well as initial conditions

φ (x, 0) = f (x) ,

∂tφ (x, 0) = g (x)

and boundary conditions

φ (0, t) = φ (L, t) = 0

We look for a solution of the form φ (x, t) = X (x)T (t). Then

X ′′ = −λ2X,

T ′′ = −c2λ2T
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For X we have
A sin (λx) +B cos (λx)

By boundary condition, B = 0. So the solutions are

φn (x, t) = sin (nπx/L) [An sin (nπct/L) +Bn cos (nπct/L)]

The general solution obeying homogeneous boundary conditions is

φ (x, t) =

∞∑
n=1

sin (nπx/L) [An sin (nπct/L) +Bn cos (nπct/L)]

The coefficients An, Bn are fixed by the initial conditions on φ, ∂tφ respectively.
We find

Bn =
2

L

∫ L

0

f (x) sin (nπx/L) dx,

An =
2

nπc

∫ L

0

g (x) sin (nπx/L) dx

Example. Suppose we pluck the string so that at t = 0,

f (x) =

{ 2hx
L 0 ≤ x ≤ L

2
2h(L−x)

L
L
2 ≤ x ≤ L

release from rest: g (x) = 0.

Then the Fourier coefficients are

f̂n

{
(−1)

(n+1)/2 8h
n2π2 n odd

0 n even

So

φ (x, t) =
8h

π2

∞∑
m=1

(−1)
m+1

(2m− 1)
2 sin

(2m− 1)πx

L
cos

(2m− 1)πct

L

Note that all the frequencies of the different normal modes φn (x, t) are integer
multiples of the fundamental frequency πc/L.

The kinetic energy of the string (mass/unit length µ) is

KE =
1

2
µ

∫ L

0

(
∂φ

∂t

)2

dx

Because the string is under tension, it also has potential energy. For a small
piece of the string, the extension is δs − δx, where δx is the original length
(difference in the x direction) and δs is the strength under tension. We have

δs ≈
√
δφ2 + δx2
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so the PE of this piece is

T

√(∂φ
∂x

)2

+ 1− 1

 δx ≈ 1

2
T

(
∂φ

∂x

)2

Integrating over the length of the string,

PE =
T

2

∫ L

0

(
∂φ

∂x

)2

dx

so the total energy at time t is

E = KE + PE

=
µ

2

∫ L

0

(
∂φ

∂t

)2

+ c2
(
∂φ

∂x

)2

dx

as before (µ = 1).

Plug in our general solution, we obtain

KE (t) =
µπ2c2

4L

∞∑
n=1

n2

[
An sin

(
nπct

L

)
−Bn cos

(
nπct

L

)]2

and

PE (t) =
µπ2c2

4L

∞∑
n=1

n2

[
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

)]2

So

E (t) =
µc2π2

4L

∞∑
n=1

n2
(
A2
n +B2

n

)
which is independent of time.

The string looks just like an infinite collection of harmonic oscillators with
frequencies nπc/L. They behave independently - the solution is a sum of terms
for each n separately.

7.2 Vibration of a Circular Membrane

Let
Ω =

{
(r, θ) ∈ R2, r ≤ 1

}
and suppose

φ : Ω× [0,∞)→ R

solves
1

c2
∂2φ

∂t2
= ∇2φ

inside Ω, with initial conditions φ (r, θ, 0) = f (r, θ), ∂tφ (r, 0, 0) = f (r, θ) and
boundary condition φ (1, θ, t) = 0.



7 THE WAVE EQUATION 39

Let φ (r, θ, t) = R (r) Θ (θ)T (t). Then

T ′′ = −c2λT,Θ′′ = −µΘ, r (rR′)
′
+
(
r2λ− µ

)
R = 0

We want the solution to be periodic in θ, so choose µ = m2 for some n ∈ N. The
radial equation is then

r (rR′) +
(
r2λ−m2

)
R = 0

which is the Bessel’s equation of order m. So

R (r) = amJm

(√
λr
)

+ bmYm

(√
λr
)

To obey boundary conditions at r = 1, we must choose
√
λ to be a root kmi of

the mth order Bessel function. So

T (t) = Ami sin (kmict) + Cmi cos (kmict)

Combining all the terms, we have a horrible solution:

φ (r, θ, t) =

∞∑
i=1

[A0i sin (k0ict) + C0i cos (k0ict)] J0 (k0ir)

+

∞∑
m=1

∞∑
i=1

[Ami cos (mθ) +Bmi sin (mθ)] sin (kmict) Jm (kmir)

+

∞∑
m=1

∞∑
i=1

[Cmi cos (mθ) +Dmi sin (mθ)] cos (kmict) Jm (kmir)

The coefficients {A,B,C,D}mi are fixed by the inhomogeneous conditions.

Example. If a drum is initially flat (φ|t=0 = 0), but struck in the centre so
that ∂tφ|t=0 g (r), then there is no angular dependence, so only the m = 0 terms
survive, and C0i = 0. So

φ (r, θ, t) =

∞∑
i=1

A0i sin (k0ict) J0 (k0ir)

where (as an exercise)

A0i =
2

ck0i

1

[J ′0 (k0i)]
2

∫ 1

0

J0 (k0ir) g (r) rdr
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Ω

In general there can be strange frequencies depending on Ω. There is an
interesting question – if we can ’hear’ the shape of a drum. The answer is no
(the first example with dim (Ω) = 16 and now a lot of examples)!

But if Ω is convex then the answer is yes.

Also, let N (λ0) be the number of eigenvalues of ∇2|Ω that is less than λ0. Then

Area (Ω) = lim
λ0→∞

N (λ0)

λ0
4π2

(by Weyl). We can also get limits on Perimeter(Ω) (c.f. Spectral geometry in
Part III).
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