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0 Miscellaneous

Some introductory speech
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1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated, P =
{p1, p2, ...}.

Definition. The language or set of propositions L = L(P ) is defined inductively
by:
(1) p ∈ L ∀p ∈ P ;
(2) ⊥∈ L, where ⊥ is read as ’false’;
(3) If p, q ∈ L, then (p =⇒ q) ∈ L. For example, (p1 =⇒ L), ((p1 =⇒
p2) =⇒ (p1 =⇒ p3)).

Note that at this point, each proposition is only a finite string of symbols from
the alphabet (, ), =⇒ ,⊥, p1, p2, ... and do not really mean anything (until we
define so).
By inductively define, we mean more precisely that we set L1 = P ∪ {⊥}, and
Ln+1 = Ln ∪ {(p =⇒ q) : p, q ∈ Ln}, and then put L = L1 ∪ L2 ∪ ....

Each proposition is built up uniquely from 1) and 2) using 3). For example,
((p1 =⇒ p2) =⇒ (p1 =⇒ p3)) came from (p1 =⇒ p2) and (p1 =⇒ p3). We
often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:
• ¬p (not p), as an abbreviation for p =⇒ ⊥;
• p ∨ q (p or q), as an abbreviation for (¬p) =⇒ q;
• p ∧ q (p and q), as an abbreviation for ¬(p =⇒ (¬q)).

These definitions ’make sense’ in the way that we expect them to.

Definition. A valuation is a function v : L→ {0, 1} s.t.
(1) v(⊥) = 0; (2)

v(p =⇒ q) =

{
0 v(p) = 1, v(q) = 0
1 else

∀p, q ∈ L

Remark. On {0, 1}, we could define a constant ⊥ by ⊥= 0, and an operation
=⇒ by a =⇒ b = 0 if a = 1, b = 0 and 1 otherwise. Then a valuation
is a function L → {0, 1} that preserves the structure (⊥ and =⇒ ), i.e. a
homomorphism.

Proposition. (1) If v, v′ are valuations with v(p) = v′(p) ∀p ∈ P , then v = v′

(on L).
(2) For any w : P → {0, 1}, there exists a valuation v with v(p) = w(p) ∀p ∈ P .
In short, a valuation is defined by its value on p, and any values will do.

Proof. (1) We have v(p) = v′(p) ∀p ∈ L1. However, if v(p) = v′(p) and
v(q) = v′(q) then v(p =⇒ q) = v′(p =⇒ q), so v = v′ on L2. Continue
inductively we have v = v′ on Ln∀n.
(2) Set v(p) = w(p) ∀p ∈ P and v(⊥) = 0: this defines v on L1. Having defined
v on Ln, use the rules for valuation to inductively define v on Ln+1 so we can
extend v to L.
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Definition. We say p is a tautology, written � p, if v(p) = 1 ∀ valuations v.
Some examples:
(1) p =⇒ (q =⇒ p): a true statement is implies by anything. We can verify
this by:

v(p) v(q) v(q =⇒ p) v(p =⇒ (q =⇒ p))
1 1 1 1
1 0 1 1
0 1 0 1
0 0 1 1

So we see that this is indeed a tautology;
(2) (¬¬p) =⇒ p, i.e. ((p =⇒ ⊥) =⇒ ⊥) =⇒ p, called the ”law of excluded
middle”;

(3) [p =⇒ (q =⇒ r)] =⇒ [(p =⇒ q) =⇒ (p =⇒ r)].
Indeed, if not then we have some v with v(p =⇒ (q =⇒ r)) = 1, v( =⇒
(p =⇒ q) =⇒ (p =⇒ r)) = 0. So v(p =⇒ q) = 1, v(p =⇒ r) = 0. This
happens when v(p) = 1, v(r) = 0, so also v(q) = 1. But then v(q =⇒ r) = 0,
so v(p =⇒ (q =⇒ r)) = 0.

Definition. For S ⊂ L, t ∈ L, say S entails or semantically implies t, written
S � t if v(s) = 1∀s ∈ S =⇒ v(t) = 1, for each valuation v.
(”Whenever all of S is true, t is true as well.”)

For example, {p =⇒ q, q =⇒ r} � (p =⇒ r). To prove this, suppose not: so
we have v with v(p =⇒ q) = v(q =⇒ r) = 1 but v(p =⇒ r) = 0. So v(p) = 1,
v(r) = 0, so v(q) = 0, but then v(p =⇒ q) = 0.

If v(t) = 1 we say t is true in v or that v is a model of t.

For S ⊂ L, v is a model of S if v(s) = 1 ∀s ∈ S. So S � t says that every model
of S is a model of t. For example, in fact � t is the same as φ � t.
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2 Syntactic implication

For a notion of ’proof’, we will need axioms and deduction rules. As axioms,
we’ll take:
1. p =⇒ (q =⇒ p) ∀p, q ∈ L;
2. [p =⇒ (q =⇒ r)] =⇒ [(p =⇒ q) =⇒ (p =⇒ r)] ∀p, q, r ∈ L;
3. (¬¬p) =⇒ p ∀p ∈ L.

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as
all of these are infinite sets of axioms.

As deduction rules, we’ll take just modus ponens: from p, and p =⇒ q, we can
deduce q.

For S ⊂ L, t ∈ L, a proof of t from S cosists of a finite sequence t1, ..., tn of
propositions, with tn = t, s.t. ∀i the proposition ti is an axiom, or a member of
S, or there exists j, k < i with tj = (tk =⇒ ti).

We say S is the hypotheses or premises and t is the conclusion.

If there exists a proof of t from S, we say S proves or syntactically implies t,
written S ` t.

If φ ` t, we say t is a theorem, written ` t.

Example. {p =⇒ q, q =⇒ r} ` p =⇒ r.
we deduce by the following:
(1) [p =⇒ (q =⇒ r)] =⇒ [(p =⇒ q) =⇒ (p =⇒ r)]; (axiom 2)
(2) q =⇒ r; (hypothesis)
(3) (q =⇒ r) =⇒ (p =⇒ (q =⇒ r)); (axiom 1)
(4) p =⇒ (q =⇒ r); (mp on 2,3)
(5) (p =⇒ q) =⇒ (p =⇒ r) (mp on 1,4);
(6) p =⇒ q; (hypothesis)
(7) p =⇒ r. (mp on 5,6)

Example. Let’s now try to prove ` p =⇒ p. Axiom 1 and 3 probably don’t
help so look at axiom 2; if we make (p =⇒ q) and p =⇒ (q =⇒ r) something
that’s a theorem, and make p =⇒ r to be p =⇒ p then we are done. So we
need to take p = p, q = (p =⇒ p), r = p. Now:
(1) [p =⇒ ((p =⇒ p) =⇒ p)] =⇒ [(p =⇒ (p =⇒ p)) =⇒ (p =⇒ p)];
(axiom 2)
(2) p =⇒ ((p =⇒ p) =⇒ p); (axiom 1)
(3) (p =⇒ (p =⇒ p)) =⇒ (p =⇒ p); (mp on 1,2)
(4) p =⇒ (p =⇒ p); (axiom 1)
(5) p =⇒ p. (mp on 3,4)

Proofs are made easier by:

Proposition. (2, deduction theorem)
Let S ⊂ L, p, q ∈ L. Then S ` (p =⇒ q) if and only if (S ∪ {p}) ` q.
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Proof. Forward: given a proof of p =⇒ q from S, add the lines p (hypothesis),
q (mp) to optaion a proof of q from S ∪ {p}.
Backward: if we have proof t1, ..., tn = q of q from S ∪ {p}. We’ll show that
S ` (p =⇒ ti)∀i, so p =⇒ tn = q.
If ti is an axiom, then we have ` ti =⇒ (p =⇒ ti), so ` p =⇒ ti;
If ti ∈ S, write down ti, ti =⇒ (p =⇒ ti), p =⇒ ti we get a proof of p =⇒ ti
from S;
If ti = p: we know ` (p =⇒ p), so done;
If ti obtained by mp: in that case we have some earlier lines tj and tj =⇒ ti.
By induction, we may assume S ` (p =⇒ tj) and S ` (p =⇒ (tj =⇒ ti)).
Now we can write down [p =⇒ (tj =⇒ ti)] =⇒ [(p =⇒ tj) =⇒ (ti)] by
axiom 2, p =⇒ (tj =⇒ ti), p =⇒ tj) =⇒ (p =⇒ ti) (mp), p =⇒ tj ,
p =⇒ ti (mp) to obtain S ` (p =⇒ ti).

These are all of the cases. So S ` (p =⇒ q).

This is why we chose axiom 2 as we did – to make this proof work.

Example. To show {p =⇒ q, q =⇒ r} ` (p =⇒ r), it’s enough to show that
{p =⇒ q, q =⇒ r, p} ` r, which is trivial by mp.

Now, how are ` and � related? We are going to prove the completeness theorem:
S ` t ⇐⇒ S � t.

This ensures that our proofs are sound, in the sense that everything it can prove
is not absurd (S ` t then S � t), and are adequate, i.e. our axioms are powerful
enough to define every semantic consequence of S, which is not obvious (S � t
then S ` t).

Proposition. (3)
Let S ⊂ L, t ∈ L. Then S ` t =⇒ S � t.

Proof. Given a valuation v with v(s) = 1 ∀s ∈ S, we want v(t) = 1.
We have v(p) = 1 ∀p axiom as our axioms are all tautologies (proven earier);
v(p) = 1 ∀p ∈ S by definition of v; also if v(p) = 1 and v(p =⇒ q) = 1, then
also v(q) = 1 (by definition of =⇒ ). So v(p) = 1 for each line p of our proof of
t from S.

We say S ⊂ L consistent if S 6`⊥. One special case of adequacy is: S �⊥ =⇒
S `⊥, i.e. if S has no model then S inconsistent, i.e. if S is consistent then
S has a model. This implies adequacy: given S � t, we have S ∪ {¬t} �⊥, so
by our special case we have S ∪ {¬t} `⊥, i.e. S ` ((¬t) =⇒ t) by deduction
theorem, so S ` ¬¬t. But S ` ((¬¬t) =⇒ t) by axiom 3, so S ` t (mp).

Theorem. (4)
Let S ⊂ L be consistent, then S has a model.
The idea is that we would like to define valuation v by v(p) = 1 ⇐⇒ p ∈ S, or
more sensibly, v(p) = 1 ⇐⇒ S ` p.
But maybe S 6` p3, S 6` ¬p3, but a valuation maps half of L to 1, so we want to
’grow’ S to contain one of p or ¬p for each p ∈ L, while keeping consistency.
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Proof. Claim: for any consistent S ⊂ L, p ∈ L, S ∪ {p} or S ∪ {¬p} consistent.
Proof of claim. If not, then S ∪ {p} `⊥ and S ∪ {¬p} `⊥, then S ` (p =⇒ ⊥)
(deduction theorem), i.e. S `6 p, so S `⊥ contradiction.

Now L is countable as each Ln is countable, so we can list L as t1, t2, .... Put
S0 = S; set S1 = s0 ∪ {t1} or s0 ∪ (¬t1} so that S1 is consistent. Then set
S2 = S1 ∪ {t2} or S1 ∪ {¬t2} so that S2 is consistent, and continue likewise. Set
S̄ = S0 ∪ S1 ∪ S2 ∪ ... Then S̄ ⊃ S, and S̄ is consistent (as each Sn is, and each
proof is finite). ∀p ∈ L, we have either p ∈ S or (¬p) ∈ S. Also, S̄ is deductively
closed, meaning that is S̄ ` p then p ∈ S̄: if p 6∈ S̄ then (¬p) ∈ S̄, so S̄ ` p,
S̄ ` ( 6 p) so S̄ `⊥ contradiction.
Define v : L → {0, 1} by p → 1 if p ∈ S̄, 0 otherwise. Then v is a valuation:
v(⊥) = 0 as ⊥6∈ S̄; for v(p =⇒ q):
If v(p) = 1, v(q) = 0: We have p ∈ S̄, q 6∈ S̄, and want v(p =⇒ q) = 0, i.e.
(p =⇒ q 6∈ S̄. But if 9p =⇒ q) ∈ S̄ then S̄ ` q contradiction;
If v(q) = 1: have q ∈ S̄, and want v(p =⇒ q) = 1, i.e. (p =⇒ q)

∫
S̄. But

` q =⇒ (p =⇒ q) so S̄ ` (p =⇒ q);
If v(p) = 0: have p 6∈ S̄, i.e. (¬p) ∈ S̄ and want (p =⇒ q) ∈ S̄. So we need
(p =⇒ ⊥) ` (p =⇒ q), i.e. p =⇒ ⊥, p ` q (deduction theorem). Thus it’s
enough to show that ⊥` q. But (¬¬q) =⇒ q, and ` (⊥ =⇒ (¬¬q)) (axiom
3 and 1 – to see the second one, write ¬ explicitly using =⇒ and ⊥), so
` (⊥ =⇒ q), i.e. ⊥` q.

Remark. Sometimes this is called ’completeness theorem’. The proof used P
being countable to get L countable; in fact, result still holds if P is uncountable
(see chapter 3).

By remark before theorem 4, we have

Corollary. (5, adequacy)
Let S ⊂ L, t ∈ L. Then if S � t then S ` t.

And hence,

Theorem. (6, completeness theorem)
Let S ⊂ L, t ∈ L. Then S ` t ⇐⇒ S � t.

Some consequences:

Corollary. (7, compactness theorem)
Let S ⊂ L, t ∈ L with S � t. Then ∃ finite S′ ⊂ S with S′ � t.
This is trivial if we replace � by ` (as proofs are finite).

Special case for t =⊥: If S has no model then some finite S′ ⊂ S has no model.
Equivalently,

Corollary. (7’, compactness theorem, equivalent form)
Let S ⊂ L. If every finite subset of S has a model then S has a model.
This isi equivalent to corollary 7 because S � t ⇐⇒ S ∪ {¬t} has no model
and S′ � t ⇐⇒ S′ ∪ (¬t) has no model.
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Corollary. (8, decidability theorem)
There is an algorithm to determine (in finite time) whether or not, for a given
finite S ⊂ L and t ∈ L, we have S ` t.
This is highly non-obviuos; however it’s trivial to decide if S � t just by drawing
a truth table, and �⇐⇒ `.
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3 Well-Orderings and Ordinals

Definition. A total order or linear order on a set X is a relation < on X, such
that
(1) Irreflexive: Not x < x ∀x ∈ X;
(2) Transitive: x < y, y < z =⇒ x < z ∀x, y, z ∈ X;
(3) Trichotomous: x < y or x = y or y < x ∀x, y ∈ X.
Note: two of (iii) cannot hold: if x < y, y < x then x < x by transitivity.
Write x ≤ y if x < y or x = y, and y > x if x < y.

We can also define total order in terms of ≤:
(1) Reflexive: x ≤ x ∀x ∈ X;
(2) Transitive: x ≤ y, y ≤ z =⇒ x ∈ z ∀x, y, z ∈ X;
(3) Antisymmetric: x ≤ y, y ≤ x =⇒ x = y ∀x, y ∈ X;
(4) ’Tri’chotomous (although it’s only two): x ≤ y or y ≤ x ∀x, y ∈ X.

Example. N,Q,R with the usual orders are all total orders.
N+ the relation ’divides’ is not a total order: for example we don’t have any of
2|3, 3|2 or 2 = 3.
P(S) for some S (with |S| ≥ 2 to be rigorous), with x ≤ y if x ⊆ y is not a total
order for the same reason.

A total order is a well-ordering if every (non-empty) subset has a least element,
i.e. ∀S ⊂ X,S 6= φ =⇒ ∃x ∈ S, x ≤ y∀y ∈ S.

Example. 1.N with the usual < is a well ordering.
2.Z,Q,R with the usual < are not well orderings.
3.Q+ ∪ {0} with the usual < is not a well ordering (e.g. (0,∞) ⊂ Q+ ∪ {0}).
4.The set {1− 1

n : n = 2, 3, ...} as a subset of R with the usual ordering is a well
ordering. 5.The set {1− 1

n : n = 2, 3, ...} ∪ {1} as a subset of R with the usual
ordering is a well ordering. 6.The set {1− 1

n : n = 2, 3, ...}∪{2− 1
n : n = 2, 3, ...}

(same assumption) is a well ordering.

Remark. X is well-ordered iff there is no x1 > x2 > x3 > ... in X.
Clearly if there is such a sequence then S = {x1, x2, ...} has no least element.
Conversely, if S ⊂ X has no least element, then for each element x ∈ S there
exists a x′ ∈ S with x′ < x, so we can just pick x, x′, ... inductively.

Definition. We say total orders X,Y are isomorphic if there exists a bijection
f : X → Y that is order-preserving, i.e. x < y ⇐⇒ f(x) < f(y).
For example, 1 and 4 above are isomorphic; 5 and 6 are isomorphic; 4 and 5 are
not isomorphic (one has a greatest element, and the other doesn’t).

Here comes the first reason why well orderings are useful:

Proposition. (1, Proof by induction)
Let X be well-ordered, and let S ⊂ X be s.t. if y ∈ S ∀y < x then x ∈ S (each
x ∈ X). Then S = X.
Equivalently, if p(x) is a property s.t. ∀x: if p(y)∀y < x then p(x), then p(x)∀x.
(I think we must assert S to be non-empty here, but the lecturer didn’t agree
with me; need to check later.)
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Proof. If S 6= X then let x be the least element of X \ S. Then x 6∈ S. But
y ∈ S ∀y < x, contradiction.

A typical use:

Proposition. Let X,Y be isomorphic well-orderings. Then there is a unique
isomorphism from X to Y .

Proof. Let f, g be isomorphisms. We’ll show f(x) = g(x) ∀x by induction.
Thus we may assume f(y) = g(y) ∀y < x, and want f(x) = g(x). Let a be
the least element of Y \ {f(y) : y < x}. Then we must have f(x) = a: if
f(x) > a, then some x′ > x has f(x′) = a by surjectivity, contradiction. The
same shows g(x) =least element of Y \ {g(y) : y < x}, but this is the same as a.
So f(x) = g(x).

Remark. This is false for total orders in general. One example is, consider from
Z → Z, we could either take identity, or x → x − 5; or from R to R we could
take identity or x→ x− 5 or x→ x3...

Definition. In a total order X, an initial segment I is a subset of X such that
x ∈ I, y < x =⇒ y ∈ I.

Example. For any x ∈ X, set I(x) = {y ∈ X : y < x}. Then this is an initial
segment.
Obviously, not every initial segment is of this form: for example, in R we can
take {x : x ≤ 3}; or in Q, take {x : x2 < 2} ∪ {x < 0} (this cannot be written as
above form as

√
2 6∈ Q.

Note: in a well-ordering, every proper initial segment is of the above form: let x
be the least elemnt of X \ I. Then y < x =⇒ y ∈ I. Conversely, if y ∈ I, then
we must have y < x: otherwise x ∈ I, contradiction.

Our aim is to show that every subset of a well-ordered X is isomorphic to an
initial segment.
Note: this is very false for total orders: e.g. {1, 5, 9} ⊂ Z, or Q ⊂ R. If we have
S ⊂ X, Wwe would like to define f : S → X that sends the smallest of S to
the smallest of X, then remove them from both sets and send the smallest of
the remaining to the smallest of the remaining, etc... But to do this we need a
theorem.

Theorem. (3, definition by recursion)
Let X be well-ordered, Y be a set, and G : P(X × Y )→ Y . Then ∃f : X → Y
s.t. f(x) = G(f |Ix) for all x ∈ X. Moreover, such f is unique.
Here we define the restriction as: for f : A→ B, and C ⊂ A, the restriction of
f to C is f |C = {(x, f(x)) : x ∈ C}. (I think the lecturer is regarding a function
as subset of a cartesian product)
In defining f(x), make use of f |Ix , i.e. the values of f(y), y < x.

Proof. Existence: define ’h is an attempt’ to mean: h : I → Y , some initial
segment I of X, and ∀x ∈ I we have h(x) = G(h|IX ). Note that is h, h′ are
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attempts, both defined at x, then h(x) = h′(x) by induction on x. Since if
h(y) = h′(y)∀y < x then h(x) = h′(x).
Also, ∀x ∈ X there exists an attempt defined at x by induction on x: we want
attempt definde at x, given ∀y < x there exists attempt defined at y. For each
y < x, we have unique attempt hy defined on {z : z ≤ y} (unique by what we
just showed).
Let h = ∪y<xhy: an attempt defined on Ix. This is single-valued by uniqueness,
so is indeed a function.
So h′ = h ∪ {(x,G(h))} is an attempt defined at x.
Now set f(x) = y if ∃ attempt h, defined at x, with h(x) = y (single-valued).
Uniqueness: if f, f ′ suitable then f(x) = f ′(x)∀x ∈ X (induction on X) – since
if f(y) = f ′(y)∀y < x then f(x) = f ′(x).

A typical application:

Proposition. (4, subset collapse)
Let X be well-ordered, Y ⊂ X. Then Y is isomorphic to an initial segment of
X. Moreover, such initial segment is unique.

Proof. To have f an isomorphism from y to an initial segment of X, we need
precisely that ∀x ∈ Y : f(x) = minX \ {f(y) : y < x}. So done (existence and
uniqueness) by theorem 3.
Note that X \ {f(y) : y < x} 6= φ, e.g. because f(y) ≤ y ∀y (induction), so
x 6∈ {f(y) : y < x}.

In particular, a well-ordered X cannot be isomorphic to a proper initial segment
of X – by uniqueness in subset collapse, as X is isomorphic to X.

How do different well-orderings relate to each other?

We say X ≤ Y if X is isomorphic to an initial segment of Y . For example,
N ≤ {1− 1

n : n = 2, 3, ...} ∪ {1}.

Theorem. (5)
Let X,Y be well-orderings. Then X ≤ Y or Y ≤ X.

Proof. Suppose Y 6≤ X. To obtain f : X → Y that is an isomorphism with an
initial segment of Y , need ∀x ∈ X : f(x) = minY \ {f(y) : y < x}. So we are
done by theorem 3.
Note that we cannot have {f(y) : y < x} = X, as then Y is isomorphic to Ix.

Proposition. (6)
Let X,Y be well-orderings with X ≤ Y and Y ≤ X. Then X and Y are
isomorphic.

Proof. We have isomorphism f from X to an isomorphism of Y , and g the other
way round. Then g ◦ f : X → X is an isomorphism from X to an initial segment
of X (i.s. of i.s. is i.s.), but that is impossible unless the initial segment is X
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itself. So g ◦ f is identity (by uniqueness in subset collapse). Similarly, f ◦ g is
identity on Y .

New well-orderings from old:

Write X < Y if X ≤ Y but X not isomorphic to Y . Equivalently, X < Y
iff X is isomorphic to a proper initial segment of Y . For example, if X = N,
Y = {1− 1

n} ∪ {1} then X < Y .

Make a bigger one: given well-ordered X, choose x 6∈ X, and set x > y for all
y ∈ X. This is a well-ordering on X ∪ {x}: written X+. Clearly X < X+.

Put some together:
Let (X,<X) and (Y,<Y ) be well-orderings. Say Y extends X if X ⊂ Y , and
<X , <Y agree on X, and X an initial segment of (Y,<Y ).
Well-orderings (Xi : i ∈ I) are nested if ∀i, j ∈ I : Xi extends Xj or Xj extends
Xi.

Proposition. (7)
Let (Xi : i ∈ I) be a nested family of well-orderings. Then there exist well-
ordering X with X ≥ Xi ∀i.

Proof. Let X = ∪i∈IXi, with x < y if ∃i with x, y ∈ Xi and x <i y, Then < is
a well-defined total order on X. given S ⊂ X, S 6= φ, choose i with S ∩Xi 6= φ.
Then S ∩Xi has a minimal element (as Xi is well-ordered), which must also be
a minimal element of S (as Xi an i.s. of X). Also, X ≥ Xi∀i.
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4 Ordinals

Are the well-orderings themselves well-ordered?

An ordinal is a well-ordered set, with two sell-ordered sets regarded as the same
if they are isomorphic. (Just as a rational is an expression M

N , with M
N , M ′

N ′

regarded as the same if MN ′ = M ′N . But, unlike for Q, we cannot formalise
by equivalence classes – see later).

If X is a well-ordering corresponding to ordinal X, say X has order-type α.

Example. For each k ∈ N, write k for the order-type of the (unique) well-
ordering of a set of size k, and write ω for order-type of N. So, in R, {1, 3, 7}
has order-type 3. {1− 1

n : n = 2, 3, ...} has order-type ω. For X of o-t α and Y
of o-t β, write α ≤ β if X ≤ Y (this is independent of choice of X,Y ).
Similarly for α < β etc.

We know: ∀α, β, α ≤ β or β ≤ α, and if α ≤ β, β ≤ α then α = β.

Theorem. Let α be an ordinal. Then the ordinals < α form a well-ordered set
of order-type α. e.g. the ordinals < ω are 0, 1, 2, 3, ....

Proof. Let X have o-t α. the well-orderings < X are precisely (up to isomor-
phism) the proper initial segments of X, i.e. the Ix, x ∈ X.
But these are isomorphic to X itself, via x→ Ix.

We often write Iα to be the set of ordinals less than α.

Proposition. (9)
Let S be a non-empty set of ordinals. Then S has a least element.

Proof. Choose α ∈ S. If α minimal in S then done. If not, then S ∩ Iα 6= φ, so
have a minimal element of S ∩ Iα, which is therefore minimal in S.

Theorem. (10, Burali-Forti paradox):
The ordinals do not form a set.

Proof. Suppose not, let X be set of all ordinals. Then X is a well-orderings, say
order-type α. So X is isomorphic to Iα. But Iα is a proper i.s. of X.

Given α, we have α+ > α. Also, if {αi : i ∈ I} is a set of ordinals, then there
exists α with α ≥ αi∀i (by applying prop 7 to the nested family of Iαi

; i ∈ I).

In fact, there is therefore a least upper bound for {αi : i ∈ I} by applying prop 9
to the set {β ≤ α : β an upper bound for the αi}. This is written sup{αi : i ∈ I},
e.g. sup{2, 4, 6, 8, ...} = ω.

Some ordinals: 0, 1, 2, ..., ω, ω + 1(officially ω+),ω + 2,...,
ω + ω = ω2 = sup{ω + 1, ω + 2, ..., }, ω2 + 1, ω2 + 2, ...,
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ω3, ..., ω4, ..., ..., ωω = ω2 = sup{ω, ω2, ω3, ...},
ω2+1, ..., ω2+ω, ω2+ω+1, ...ω2+ω2, ..., ω2+ω2 = ω22, ..., ω23, ..., ω24, ..., ω25, ..., ω2ω =
ω3, ...ω32, ..., ω4, ..., ωω = sup{ω, ω2, ω3, ...},
ωω + 1, ..., ωω2, ..., ωωω = ωω+1,
ωω+2, ..., ωω+3, ..., ωω

2

, ..., ωω
3

, ..., ωω
ω

,...

And as expected we have ωω
ωω...

= sup{ω, ω2, ω3, ...} := ε0, and then ε0 + 1, ...,
and then the whole thing again until ε1 = ε

ε...0
0 .

However, although this thing looks quite magnificent, they are all just countable
(as we have just done it). Is there an uncoutnable ordinal? In other words, is
there an uncountable well-ordered set?

Theorem. (11)
There is an uncountable ordinal.

Proof.

IDEA : takesupofallcountableordinals.However, thismightnotbeaset.

Let R = {A ∈ P(N × N)} s.t. A is a well-ordering of a subset of N. Let S be
image of R under ’order-type’, i.e. S is the set of all order-types of well-orderings
of some subset of N. Then S is the set of all countable ordinals. Let ω1 be supS.
Then ω1 is uncountable: otherwise, then ω1 ∈ S, so ω1 would be the greatest
member of S. But then ω1 + 1 is also in S.

Note that, by contradiction, ω1 is the least uncountable ordinal. ω1 has some
strange properties, e.g.
1. ω1 is uncountable, but for any α < ω1, we have {β : β < α} countable.
2. If α1, α2, ... < ω1 is any sequence, then it is bounded in ω1: sup{α1, ..., α2} is
countable, so is less than ω1.

Similarly we have

Theorem. (11’, Hartogs’ lemma)
For any set X, there is an ordinal that does not inject into X.
To see that, just replace P(N× N) by P(X ×X) in the previous proof.

Write γ(X) for the least such ordinal – e.g. γ(ω) = ω1.
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4.1 Successors and limits

Given ordinal α, does α (any set of order-type α, e.g. Iα) have a greatest
element?
If yes: say β is that greatest element. Then γ < β or γ = β =⇒ γ < α, and
γ < α =⇒ γ < β or γ = β (as we can’t have γ > β). In other words, α = β+.
In that case, we call α a successor ;
If not: then ∀β < α, ∃γ < α s.t. γ > β. So α = sup{β : β < α}. (this is false in
general, e.g. ω + 5). We call α a limit.

For example, 5 is a successor, ω + 5 is a successor, ω is a limit, ω + ω is a limit.
(0 is a limit as well).

For ordinals α, β, define α + β by recursion on β (α fixed) by: α + 0 = α,
α+ β+ = (α+ β)+, α+ λ = sup{α+ γ : γ < λ} for λ a non-zero limit.

For example, ω+1 = (ω+0)+ = ω+, ω+2 = ω++, 1+ω = sup{1+γ : γ < ω} = ω
– so addition is not commutative.

Officially, by ’recursion on the ordinals’, we mean: define α+ γ on {γ : γ ≤ β}
(a set) recursively, plus uniqueness. Similarly for induction: if know p(β)∀β <
α =⇒ p(α) (for each α), then must have p(α)∀α. If not, say p(α) false: then
look at {β ≤ α : p(β) false }.

Note that β ≤ γ =⇒ α+β ≤ α+γ (induction on γ). Also, β < γ =⇒ α+β <
α+ γ. Indeed, γ ≥ β+, so α+ γ ≥ α+ β+ = (α+ β)+ > α+ β. However, 1 < 2,
but 1 + ω = 2 + ω.

Proposition. (12)
α+ (β + γ) = (α+ β) + γ∀α, β, γ ordinals.

Proof. Induction on γ:
0: α+ (β + 0) = α+ β = (α+ β) + 0.
Successors: (α+ β) + γ+ = ((α+ β) + γ)+ = (α+ (β + γ))+ = α+ (β + γ)+ =
α+ (β + γ+).
λ a non-zero limit: (α+ β) + λ = sup{(α+ β) + γ : γ < λ} = sup{α+ (β + γ) :
γ < λ}.

Claim: β + λ is a limit.
Proof of claim: We have β + γ = sup{β + γ : γ < λ}. But γ < λ =⇒ ∃γ′ < λ
with γ < γ′ =⇒ β + γ < β + γ′. So {β + γ : γ < λ} does not have a greatest
element.

Back to the main proof, now α + (β + γ) = sup{α + δ : δ < β + λ}. So want
sup{α+ (β + γ) : γ < λ{= sup{α+ δ : δ < β + λ}.
≤: γ < λ =⇒ β + γ < β + λ, so LHS ⊂ RHS;
≥: δ < β + λ =⇒ δ < β + γ, some γ < λ (definition of β + λ). So
α+ δ ≤ α+ (β + γ).

Alternative viewpoint:
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Above is the ’inductive’ definition of +. Thereis also a synthetic definition: α+β
is the order-type of α t β (α disjoint union β), with all of α coming before all of
β.

Clearly we have α+ (β+ γ) = (α+ β) + γ with this definition (same order-type).
We need:

Proposition. (13)
The synthetic and inductive definition of + coincide.

Proof. Write α + β for inductive, α +′ β for synthetic. Do induction on β (α
fixed).
0: α+ 0 = α = α+′ 0:
Successors: α+′ β+ = (α+′ β)+ = (α+ β)+ = α+ β+;
λ a non-zero limit: α+′ γ = order-type of α t λ = sup of order-type of α t γ,
γ < λ (nest union, so order-type of union = sup – this was proved before) =
sup(α+′ γ : γ < λ) = sup(α+ γ : γ < λ) = α+ λ.

Normally we prefer to use synthetic than inductive, if we do have a synthetic
definition available.

Ordinal multiplication:
Define αβ recursively by:
α0 = 0, α(β+) = αβ + α, αλ = sup{αγ : γ < λ} for λ a non-zero limit. e.g:
ω1 = ω0 + ω = 0 + ω = ω;
ω2 = ω1 + ω = ω + ω;
ωω = sup{0, ω, ω + ω, ω + ω + ω, ...} (as in our big picture)
2ω = sup{2γ : γ < ω} = ω, so multiplication is not commutative.

Similarly, this also has a synthetic definition: αβ is the order-type of α × β,
with (x, y) < (z, t) if either y < t or y = t and x < z. We can check that these
coincide on the previous examples. Also we can see α(βγ) = (αβ)γ etc.

We can define ordinal exponentiation, powers, etc. Similarly. For example, let’s
define exponentiation:
α0 = 1, αβ

+

= αβ · α, αλ = sup{αγ : γ < λ} for λ a non-zero limit.

Note that ω1 = ω, ω2 = ω · ω, and 2ω = sup{2γ : γ < ω} = ω (and is
countable). This is different to what we expect from cardinality, but the notation
in cardinality and here is different.
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5 Posets and Zorn’s lemma

A Partially ordered set or poset is a pair (X,≤) where X is a set and ≤ is a
relation on X that is reflexive,transitive and antisymmetric. Write x < y if
x ≤ y, x 6= y. In terms of <, a poset is irreflexive and transitive.

For example, any total order is a partial order; N+ with divides; for any set S,
P(S), wiith x ≤ y if x ⊂ y; for any X ⊂ P(S), with same relation of x ≤ y if
x ⊂ y (e.g. all subspaces of a given vector space).

In general, a hasse diagram for a poset X consists of a drawing of the posets
of X, with an upward line from x to y if y covers x, i.e. y > x, but no z that
y > z > x.

Hasse diagrams can be useful to visualize a poset (e.g. N, usual order), or useless
(e.g. Q, usual order).

In a poset X, a chain is a set S ⊂ X that is totally ordered (∀x, y ∈ S : x ≤ y
or y ≤ x).

Note: chains can be uncountable, e.g. in (R,≤) take R.

We say S ⊂ X is an antichain if no two elmeent are related.

For S ⊂ X, an upper bound for S is an x ∈ X s.t. x ≥ y ∀y ∈ S.

Say X is a least upper bound, or supremum for S, if x is an upper bound for S,
and x ≤ y for every upper bound y of S.

Write x = supS or x = ∨S.

e.g. In R, {x : x2 < 2} has 7 as least upper bound, and sup =
√

2 (so supS need
not be in S). In R, Z has no upper bound. In Q, {x : x2 < 2} has 7 as an upper
bound, but no least upper bound.

We say a poset is complete if every subset has a sup.

e.g. (R,≤) is not complete: Z has no sup (so different to notion of ’completeness’
from analysis);
[0, 1] is complete; (0, 1) is not complete: itself has no sup;
P(S) is always complete: {Ai : i ∈ I} has sup ∪i∈IAi.

A function f : X → X, where X is any poset, is order-preserving if f(x) ≤ f(y)
∀x ≤ y.

e.g. on N : f(x) = x + 1; on [0, 1] : f(x) = 1+x
2 (halve the distance to 1); on

P(S): f(A) = A ∪ {i} for some fixed i ∈ S.

not every order-preserving f has a fixed point (f(x) = x), e.g. f(x) = x+ 1 on
N.

Theorem. (1, Knaster-Tarski fixed point theorem):
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Let X be a complete poset. Then every order-preserving function f : X → X
has a fixed point.

Proof. Let E = {x ∈ X : x ≤ f(x)}, and put s = supE. To show f(s) = s, we’ll
show that s ≤ f(s) and s ≥ f(s).
s ≤ f(S): Enough to show f(s) is an upper bound for E (as s the least upper
bound). But x ∈ E =⇒ x ≤ s =⇒ f(x) ≤ f(s) =⇒ x ≤ f(x) ≤ f(s).
s ≥ f(s): Enough to show f(s) ∈ E (as s an upper bound). We know s ≤ f(s),
and want f(s) ≤ f(f(s)). But that’s true because f is order preserving.

Note: in any complete poset X, we have a greatest element (xs.t.x ≥ y∀y),
namely supX. A typical application of knaster-tarski:

Theorem. (2, schröder-bernstein theorem)
Let a,B be sets s.t. there exists injection f : A→ B and an injection g : B → A.
Then there exists an bijection from A to B.

Proof. Seek partition A = P tQ,B = RtS s.t. f(P ) = R and g(S) = Q. Then
we are done: set h to be f on P , y−1 on Q, then h : A→ B is a bijection.
i.e. we seek P ⊂ A s.t. A \ g(B \ f(P )) = P . Define θ : P(A) → P(A) via
P → A \ g(B \ f(P )). Then since P(A) is complete, θ order-preserving, there is
a fixed point by K-T theorem.

5.1 Zorn’s Lemma

An element x in poset X is Maximal if no y ∈ X has y > x.

Posets need not have a maximal element, for example Z,Q,R.

Theorem. (3, Zorn’s lemma)
Let X be a non-empty poset in which every chain has an u.b.. Then X has a
maximal element.

Proof. Suppose not. Then for each x ∈ X there is some x′ ∈ X with x′ > x.
Also, for any chain C we have an upper bound u(C). Pick x ∈ X. Define
xα ∈ X, each α < γ(x) (γ(x) is the u.b.?) recursively by: x0 = x, xα+1 = x′α,
xλ = u({xα : α < λ}) for λ a non-zero limit (this is a chain by induction). Then
α→ xα is an injection from γ(X)toX.

A typical application of Zorn: does every vecotr space have a basis? Recall that
a basis is a LI spanning set.

e.g. V = space of all real polynomials. We can take 1, x, x2, ...
Let V now be all real sequences. But l1 = (1, 0, 0, 0, ...), l2 = (0, 1, 0, 0, ...), then
l1, l2 LI but not spanning! (recall span must be a finite linear combination!) It’s
easy to check that there is no countable basis. Also, it turns out that there is no
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explicit basis.
R as a vector space over Q. Basis is called a Hamel basis.

Theorem. (4) Every vector space V has a basis.

Proof. Let X = {A ⊂ V : A is LI}, ordered by ⊂. We seek a maximal element
M of X (then we are done: if M does not span then choose x 6∈ 〈M〉, and now
M ∪ {x} is LI, contradiction.
We have X 6= φ, as φ ∈ X.
Given a chain {Ai : i ∈ I} in X, put A = ∪i∈IAi, then A > Ai ∀i, so just
need A ∈ X, i.e. A LI. Suppose A is not LI, hten

∑n
i=1 λixi = 0 for some

x1, ..., xn ∈ A, and λi scalars not all zero. We have xi ∈ Ai1 , ..., xn ∈ Ain
for some i1, ..., in ∈ I. But Ai1 , ..., Ain ∈ Aik , some k (as they are nested),
contradicting Aik being LI.

Note: the only actualy maths (i.e. linear alebra) in the proof was the ’then done’
part.

Another application: completeness theorem when proposition language uncount-
able.

Theorem. (5)
Let S ⊂ L(P ), where P is any set. Then S consistent implies that S has a
model.

Proof. We seek a maximal consistent S̄ ⊃ S. Then done: for each t ∈ L(p) we
have S̄ ∪ {t} or S̄ ∪ {¬t} consistent (see chapter 1), hence t ∈ S̄ or ¬t ∈ S̄ by
maximality of S̄. Now define v(t) = 1 if t ∈ S̄, 0 otherwise (as in chapter 1).
Let X be the set of all consistent subsets of L(P ), ordered by ⊂. Then X 6= φ,
as S ∈ X. Given a non-empty chain (Ti : i ∈ I) in X, put T = ∪i∈ITi. Then
T ⊃ Ti for each i, so we just need T ∈ X. We have S ⊂ T as T 6= φ. Also
T is consistent: if T `⊥, then {t1, ..., tn} `⊥ for some t1, ..., tn ∈ T . We have
t1 ∈ Ti1 , ..., tn ∈ Tin for some i1, ..., in ∈ I. But Ti1 , ..., Tin ⊂ Tik for some k
(nested), contradicting Tik being consistent.

One more:

Theorem. (6, well-ordering principle)
Every set S can be well-ordered.
Note that this is very surprising for e.g S = R.

Proof. Let X = {(A,R) : A ⊂ S and R is a well-ordering of A}. We order this
by: (A,R) ≤ (A′, R′) if (A′, R′) extends (A,R). Then X 6= φ, as (φ, φ) ∈ X.
Given a chain ((Ai, Ri) : i ∈ I), we have (∪i∈IAi,∪i∈IRi) ∈ X, and extends each
(Ai, Ri) from chapter 2. So by Zorn’s lemma, X has a maximal element (A,R).
We must have A = S: otherwise choose x ∈ S \A and take ’successor’: well-order
A ∪ {x} by putting x > a ∀a ∈ A, contradicting maximality of (A,R).

Remark. Proof of zorn was easy, but we used a lot of machinery there (ordinals,
recursion, hartog’s lemma).
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5.2 Zorn’s lemma and the axiom of choice

In proof of Zorn’s kemma, we chose, for each x ∈ X, and x′ ⊃ x, i.e. we made
infinitely many arbitrary choices, even by time we get to xω. We did the same
in part IA, to prove that a countable union of countable sets is countable. This
is appealing to the axiom of choice, saying that we may choose an element of
each set in a family of non-empty sets.

More precisely, the axiom of choice states that, if (Ai : i ∈ I) is a family of sets,
we have a choice function, meaning a function f : I → ∪i∈IAi s.t. f(i) ∈ Ai ∀i.
This is of a different characterto the other set-building rules in that the object
whose existence is asserted is not uniquely specified by its properties (unlike
,e.g., A ∪B).
So often one points out when one has used axiom of choice.

Note that AC is trivial |I| = 1 (A 6= φ means ∃x ∈ A). Similarly for I finite by
induction. However, there is no derivation of AC from the other set-building
rules for general I.

Also, we cannot prove ZL without AC because we can deduce AC from ZL:
Given family (Ai : i ∈ I) of non-empty sets, a partial choice function is an
f : J → ∪i∈IAi for some J ⊂ I, s.t. f(j) ∈ Aj∀j ∈ J . Put (J, f) ≤ (J ′, f ′) if
J ⊂ J ′ and f ′|J = f . This poset is not empty. Also, given a chain we have an
upper bound being the union of them. So by ZL, there is a maximal of such.
We must have J = I in that case, as if not we can choose (???) i ∈ I \ J , x ∈ Ai
and put J ′ = J ∪ {i}, f ′ = f ∪ {(i, x)}. Contradiction.

Conclusion: ZL ⇐⇒ AC (in presence of the other set-building rules).

Also, we had ZL =⇒ WO, and WO =⇒ AC trivially (well order ∪i ∈ IAi
and let f(i) be the least element of Ai). So we get ZL ⇐⇒ AC ⇐⇒ WO.

5.3 The Bourbaki-Witt theorem

Poset X is chain-complete if X 6= φ and every non-empty chain has a sup.
For example, any complete poset is chain-complete; any finite poset is chain-
complete; and {A ⊂ V : A is LI}, for a vector space V is also.

We say f : X → X is inflationary if f(x) ≥ x ∀x.

Theorem. (Bourbaki-Witt)
X chain-complete, f : X → X inflationary. Then f has a fixed point.
Note that BW follows instantly from ZL: take maximal x, and now f(x) ≥ x
=⇒ f(x) = x.
However, we can prove BW without AC: we pick some x0 ∈ X, then let
x1 = f(x0), x2 = f(x1), ..., and let xω be the sup of them.

In chapter 2, we did not use AC, except in remark that well-ordering ⇐⇒ no
decreasing sequence, and that ω1 is not a countable sup.
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In fact, it’s easy to deduce ZL from BW (using AC). So we can view BW as the
choice-free version of ZL.
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6 Predicate Logic

Recall that a group is a set equipped with functions:
M : A2 → A (’arity’ (slots) 2) and inverse iA → A (’arity’ 1), and a constant
e ∈ A (kind of ’arity’ 0), s.t.

(∀x, y, z ∈ A)(M(x,M(y, z)) = M(M(x, y), z)),

(∀x ∈ A)(M(x, e) = x ∧M(e, x) = x),

(∀x ∈ A)(M(x, i(x)) = e ∧M(i(x), x) = e)

And a poset is a set A equipped with a predicate (relation) ≤ (arity 2) ⊂ A2 s.t

(∀x ∈ A)(x ≤ x),

(∀x, y, z ∈ A)((x ≤ y) ∧ (y ≤ z) =⇒ x ≤ z),
(∀x, y ∈ A)((x ≤ y ∧ y ≤ x) =⇒ x = y)

We try to establish these correspondence between propositional logic and pred-
icate logic: Language → e.g. language of groups (thinks like the definitions
above);
Valuation → structure (set equipped with functions and relations of given ari-
ties);
Model of S (valuation making each s ∈ S true) → model of S (structure in
which each s ∈ S holds);
S � t → same (e.g. In language of groups, should have the above 3 definitions
�M(e, e) = e etc);
S ` t → same (but a bit more complicated).

Let Ω (function symbols) and Π(relation symbols) be disjoint sets, and α (arity)
: Ω ∪Π→ N. The language L = L(Ω,Π, α) is the set of formulae, defined by:
• variables: x1, x2, x3, ... (can use x, y, etc);
• terms: defined inductively by:
(i) each variable is a term;
(ii) If f ∈ Ω, α(f) = n, and t1, ..., tn are terms, then ft1...tn is a term
(and as always, we can add brackets, commas, etc). For example, in the
language of groups: Ω = {m, i, e} of arities 2, 1, 0, Π = φ. Some terms:
x1,m(x1, x2), e,m(e, e),m(x1, i(x1)), etc.
• Atomic formulae, consists of:
(i) ⊥;
(ii) (s = t), any terms s, t;
(iii) φ(t1, ..., tn), any φ ∈ Π, α(φ) = n, and terms t1, ..., tn.
Again use the language of groups as example: m(x, y) = m(y, x), m(x, i(x)) = e;
In language of posets: Ω = φ, Π = {≤} of arity 2. We could take x = y, x ≤
y, x ≤ x.
• Formulae: defined inductively by:
(i) Each atomic formula is a formula;
(ii) If p, q are formulae, then so is (p =⇒ q);
(iii) If p is a formulae, x is a variable, then (∀x)p is a formula.
e.g. in language of groupsL (∀x)(m(x, x) = e), (∀x)((m(x, x) = e) =⇒
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(∃y)(m(y, y) = x)) (note that we have not talked about ∃ yet; we’ll do that
later).
In language of posets: (∀x)(x ≤ x).

Notes:
1. A formula is just a string of symbols.
2. We can now write ¬p for p =⇒ ⊥, and similarly for p ∧ q, p ∨ q etc, and
(∃x)p for ¬(∀x)(¬p).

A term is closed if it contains no variables. For example, e,m(e, e),m(e,m(e, e)).
However, m(x, i(x)) is not closed.
An occurrence of variable x in formular p is bound if it is inside the brackets of
’∀x’ quantifier. Otherwise, it is free.
For example, in m(x, x) = e =⇒ (∃y)(m(y, y) = x), each x is free and each y is
bound.
Note that in some cases we can make a variable both free and bound: (m(x, x) =
e) =⇒ (∀x)(∀y)(m(x, y) = m(y, x)). We see that x in LHS is free, but in RHS
is bound (although it’s not a very helpful expression).

A sentence is a formula without free variables: e.g., (∀x)(m(x, e) = x). For
formula p, variable x, term t, the substitution p[t/x] is obtained by replacing
each free occurence of x with t.
For example, if p is (∃y)(m(y, y) = x), then p[e/x] is (∃y)(m(y, y) = e).

Semantic entailment : An L-structure consists of a non-empty (see later wfor why)
set A equipped with, for each f ∈ Ω with α(f) = m, a function fA : Am → A,
and for each φ ∈ Π, with α(φ) = n, a relation φA ⊂ An.

For example, let L be the language of groups: an L-structure is a set A with
functions mA : A2 → A, iA : A→ A, eA an element of A (need not be a group!
These have no ’meaning’ yet).
Another example: L be the language of posets: an L-structure is a set A with a
relation ≤A⊂ A2.

We want to define the interpretation pA ∈ {0, 1} of a sentence p in structure A,
e.g. (∀x)(m(x, x) = e) shold be ’true in A’ if ∀a ∈ A : mA(a, a) = eA.
So: ’insert ∈ A subsubscript A and say it aloud’.

Formal bit : For L-structure A, define interpretation of a closed term t to be
tA ∈ A, defined inductively by:
(ft1...tn)A = fA(t1A, ..., tnA) for any f ∈ Ω, α(f) = n, closed terms t1, ..., tn.
e.g. m(e, i(e))A = mA(eA, iA(eA)) (and eA already defined).

Atomic formulae: define pA ∈ {9, 1} for p atomic by:
(i) ⊥A= 0;
(ii)

(s = t)A =

{
1 sA = tA
0 else

for s, t closed terms;
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(iii)

φ(t1...tn)A =

{
1 (t1A, ..., tnA) ∈ φA
0 else

for φ ∈ Π, α(φ) = n, closed terms t1, ..., tn.

Sentences: pA defined inductively by:
(i)

(p =⇒ q)A =

{
0 pA = 1, qA = 0
1 else

(ii)

((∀i)p)A =

{
1 p[ā/x]A = 1 for all a ∈ A
0 else

where, for any a ∈ A, add constant symbol ā to L, obtaining L′, and make A an
L′-structure by setting āA = a.

If p has free variables, we can define pA ⊂ Anumber of free variables of p.
e.g. if p is (∃y)(m(y, y) = x), then pA = {a ∈ A : ∃b ∈ A with mA(b, b) = a}.

If pA = 1, say p true in A, or p holds in A, or A is a model of p. For T a theoy
(set of sentences), say T semantically entails p, written T � p, if every model of
T is a model of p.

p is a tautology if φ � p (or just � p), i.e. p holds in every L-structure. For
example, � (∀x)(x = x).

Examples: theory of groups: Ω = (m, i, e), Π = φ. Let

T = {(∀x)(∀y)(∀z)(m(x,m(y, z)) = m(m(x, y), z), (∀x)(m(x, e) = x ∧m(e, x) = x), (∀x)(m(x, i(x)) = e ∧m(i(x), x) = e)}

Then an L-structure is a model of T ⇐⇒ it is a group.

Say T ’axiomatises’ the class of groups or ’axiomatises the theory of groups’.

Sometimes call the elements of T the ’axioms’ of T .

Theory of fields: Ω = {+,×,−, 0, 1}. T is: abelian group under (+,−, 0); X
is commutative, associative, distributive under +; (∀x)(1x = x), ¬(1 = 0),
(∀x)((¬(x = 0)) =⇒ (∃y)(xy = 1)). Then T axiomatises the class of fields.
E.g., T � inverses are unique: (∀x)((¬(x 6= 0)) =⇒ ((∀y)(∀x)((yx = 1 ∧ zx =
1) =⇒ y = z)).

Theory of posets: Ω = φ,Π = {≤}.

T is: (∀x)(x ≤ x), (∀x)(∀y)(∀z)((x ≤ y ∧ y ≤ z) =⇒ x ≤ z), (∀x)(∀y)((x ≤
y ∧ y ≤ x) =⇒ x = y).

Theory of graphs: Ω = φ, Π = {a} (’is adjacent to’).

T is (∀x)(¬a(x, x)), (∀x)(∀y)(a(x, y) =⇒ a(y, x)).

Proofs:
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Logical axioms:
(1) p =⇒ (q =⇒ p) (any formulae p, q);
(2) p =⇒ (q =⇒ r)) =⇒ ((p =⇒ q) =⇒ (p =⇒ r)) (any formulae p, q, r);
(3) (¬¬p) =⇒ p (any formula p);
(4) (∀x)(x = x); (any variable x);
(5) (∀x)(∀y)(x = y) =⇒ (p =⇒ p[y/x])) (any variables x, y, formula p where
y is a bound);
(6) ((∀x)p) =⇒ p[t/x] (any variable x, term t, formula p with no variable in t
occuring bound in p)
(7) ((∀x)(p =⇒ q)) =⇒ (p =⇒ (∀x)q) (any variable x, formulae p, q with x
not occurring free in p).

As rules of deduction, we take:
Modus Ponens: From p, p =⇒ q can deduce q;
Generalisation: From p can deduce (∀x)p, if x does not occur free in any premise
used to prove p.

For S ⊂ L, p ∈ L, a proof of p from S is a finite sequence of formulae, ending
with p, s.t. each line is a logical axiom, or a member of S, or follows from earlier
lines by MP or GEN. Write S ` p (’S proves P ’) if there exists a proof of p from
S.

Example: {x = y, x = z} ` {y = z} (use axiom 5, with p being ′x = z′).

1. (∀x)(∀y)(x = y =⇒ (x = z =⇒ y = z)) (axiom 5);
2. (∀x)(∀y)(x = y =⇒ (x = z =⇒ y = z)) =⇒ (∀y)(x = y =⇒ (x = z =⇒
y = z)) (axiom 6, t =′ x′);
3. (∀y)(x = y =⇒ (x = z =⇒ y = z)) (MP on 1,2);
4. (∀y)(x = y =⇒ (x = z =⇒ y = z)) =⇒ (x = y =⇒ (x = z =⇒ y = z))
(axiom 6);
5. x = y =⇒ (x = z =⇒ y = z) (MP on 3,4);
6. x = y (hypothesis)
7. x = y =⇒ y = z (mp on 5,6)
8. x =⇒ z (hypothesis)
9. y = z (mp on 7,8).

Aim: T ` p ⇐⇒ T � p.

e.g. if p holds in every group then p can be proved from the three group axioms
(completely obvious).

Proposition. (1, deduction theorem)
Let S ⊂ L, p, q ∈ L. Then S ` (p =⇒ q) ⇐⇒ S ∪ {p} ` q.

Proof. Forward: as for propositional logic, from p =⇒ q write down p and
apply MP to obtain S ∪ {p} ` q;
Backward: as for propositional logic: the only new case is ’generalisation’. So in
proof of q from S ∪ {p} we have something like r then (∀x)r (Gen), and have a
proof of p =⇒ r from S (induction), and we want S ` p =⇒ (∀x)r. In proof
of r from S ∪ {p}, no premise had x free. So in proof of p =⇒ r from S, no
premise had x free. Hence S ` (∀x)(p =⇒ r (gen).
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• If x does not occur free in p: we have S ` p =⇒ (∀x)r by axiom 6 and MP;
• If x does occur free in p: proof of r from S ∪ {p} cannot have used p. So in
fact S ` (∀x)r whence S ` (p =⇒ (∀x)r) by axiom 1.

Proposition. (2, soundness)
Let S be a set of sentences, p a sentence. Then if S ` p then S � p.

Proof. We have proof of p from S, and a model A of S, and we want px = 1.
This is an induction down the lines of the proof.

For adequacy, we want if S � p, i.e. that if S ∪ {¬p} �⊥, then S ∪ {¬p} `⊥.

Theorem. (3, model existence lemma, or completeness theorem)
Let S ⊂ L be a set of setences. Then S consistent implies that S have a model.
Ideas:
• 1. Build model out of language: let A be the set of closed terms of L, with
operation line (1 + 1) +A (1 + 1) = (1 + 1) + (1 + 1);
• 2. Say for S be the theory of fields: (1 + 1) + 1 6= 1 + (1 + 1), but S `
(1 + 1) + 1 = 1 + (1 + 1). So quotient out by s ∼ t if S ` s = t;
• 3. Suppose s is the fields of characteristic 2 or 3, i.e. field axioms, and the
statement 1 + 1 = 0 ∨ 1 + 1 + 1 = 0. Then S 6` 1 + 1 = 0. So [1 + 1] 6= [0],
where [·] denotes the equivalent class unrder ∼. Also, S 6` 1 + 1 + 1 = 0, so
[1 + 1 + 1] 6= [0].

So our structure does not satisfy 1 + 1 = 0 ∨ 1 + 1 + 1 = 0. Then we need to
extend S to maximal consistent.

• 4. If S is ’fields with a sqaure root of 2’: field axioms + (∃x)(xx = 1 + 1).
Maybe no closed term t has [tt] = [1 + 1]. So s lacks ’witnesses’.
Solution: for each (∃x|p in S, add new constant c to language, and add p[c/x]
to S. (e.g. cc = 1 + 1).
Now no longer maximal consistent, so go back to step 3.
Problem: this might not terminate.

Proof. We have consistent S in language L0 = L(Ω,Π). Extend to maximal
consistent S1 (zorn), so for each sentence p ∈ L, we have p ∈ S1, or (¬p) ∈ S1.
Thus S1 is complete (for every p, S1 ` p or S1 ` (¬p)). Add witnesses: for
each (∃x)p in S1, add new constant c and axiom p[c/x]. We obtain T1 in
language L1 = L(Ω ∪ C1,Π) that has witnesses for S1 (if (∃x)p ∈ S, then some
closed term t has p[t/x] ∈ T1). It’s easy to check T1 consistent. Now extend
T1 to maximal consistent S2 (in L). Add witnesses, obtaining T2 in language
L2 = L(Ω ∪ C1 ∪ C2,Π).
Continue inductively.
Put S̄ = S1 ∪ S2 ∪ .... In language L̄ = L(Ω ∪ C1 ∪ C2 ∪ ...).
• S̄ is consistent: If S̄ `⊥, then some Sn `⊥ (as proofs are finite), contradiction;
• S̄ is complete: given sentence p ∈ L̄, we have p ∈ Ln for some n (as p mentions
only finitely many constants), so Sn+1 ` p or Sn+1 ` (¬p) (choice of Sn+1).
• S̄ has witnesses (for itself): given (∃x)p ∈ S̄, we have (∃x)p ∈ Sn for some n.
So p[t/x] ∈ Tn for some closed term t (choice of Tn), whence p[t/x] ∈ S̄.
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On set of closed terms of L̄, define s ∼ t if S̄ ` (s = t).

This is clearly an equivalent relationship. let A be the set of equivalent clases.
Make A into an L̄-structure by setting fA([t1], ..., [t2]) = [ft1...tn] (each f ∈
Ω̄, α(f) = n, closed terms t1...tn), ϕA = {([t1], ..., [tn]) : S̄ ` φ(t1, ..., tn)} (each
φ ∈ Π, α(φ) = n, closed terms t1...tn).

Claim: φA = 1 ⇐⇒ S̄ ` p for each setnence p ∈ L̄. (Then done: A is a model
of S̄, so A is a model of S.

Proof. An easy induction:
Atomic sentences:
⊥: ⊥A= 0 and S̄ 6`⊥.
s = t:

S̄ ` (s = t) ⇐⇒ [s] = [t]

⇐⇒ sA = tA

⇐⇒ (s = t)A = 1

φ(t1...tn): same.

Induction step:
p =⇒ q:

S̄ ` (p =⇒ q) ⇐⇒ S̄ ` (¬p) or S̄ ` q
⇐⇒ pA = 0 or qA = 1(induction)

⇐⇒ (p =⇒ q)A = 1

where the second step is because, say if the forward direction doesn’t hold, then
S̄ ` p, S̄ ` (¬q) (since S̄ is complete), but then S̄ ` ¬(p =⇒ q), contradiction).

(∃x)p:
S̄ ` (∃x)p ⇐⇒ S̄ ` p[t/x]

⇐⇒ p[t/x]A = 1

⇐⇒ ((∃x)p)A = 1

for some closed term t. The last line is because A is the set of equivalent classes
of closed terms.

By remark before theorem 3 we have

Corollary. (4,adequacy)
If S � p, then S ` o.

Hence:

Theorem. (5, Gödel’s completeness theorem for first-order logic)
Let S be a set of sentences and p a sentence (in language L). Then S � p ⇐⇒
S ` p.
The proof is just soundness + adequacy.
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Note:
• If L is countable (i.e .Ω,Π countable), then we don’t need Zorn’s lemma;
• ’First-order’ means variables range over elements of our structure (not, e.g.,
subsets).

Theorem. (6, compactness)
Let S ⊂ L be a set of sentences. Then if every finite subset of S has a model,
then S has a model.

Proof. This is trivial if we replace � with ` (as proofs are finite).

Note: we have no decidability theorem – how to check if S � t?

Some consequences of completeness/compactness:
Can we axiomatise the class of finite groups? In other words, we want some
sentences S (in language of groups) s.t. a structure is a model for S ⇐⇒ it is
a finite group.

However, this is not possible.

Corollary. (7)
the class of finite groups cannot be axiomatised (in language of groups).

Proof. Suppose S axiomatises finite groups. We add to S the sentences:

(∃x1)(∃x2)(¬(x1 = x2))

(∃x1)(∃x2)(∃x3)(¬(x1 = x2) ∧ ¬(x1 = x3) ∧ ¬(x2 = x3))

...

which stands for |G| ≥ 2, |G| ≥ 3, etc.
Then ever finite subset has a model (e.g. Zn, n large). However, the set itself
has no model – contradicting compactness.

Similarly,

Corollary. (7’)
Let S be a theory in a language L. Then if S has arbitrarily large finite models,
then it has an infinite model.

Proof. Add sentences as in corollary 7, and apply compactness theorem.

So we know finiteness is not a first-order property.

Corollary. (8, upward Löwenheim-Skolem theorem)
If a theory S has an infinite model, then it has an uncoutnable model.

Proof. Add uncoutnably many consttants {ci : i ∈ I} to the language, and add
to S the set of sentences ci 6= cj (for each distinct i, j ∈ I). Then any finite
subset has a model. So the whole set has a model by compactness.
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Similarly, we could find a model into which P (P (R)) injects (choose I =
P (P (R))). E.g., there exists an infinite field (Q), so there exists field as big as
P (P (R)).

Corollary. (9, downward Löwenheim-Skolem theorem):
Let S be a theory in countable language L. If S has a model, then it has a
countable model.

Proof. The model constructed in theorem 3 is countable.

6.1 Peano Arithmetic

We try to make the usual axioms for N into a first-order theory.
L : Ω = {0, s,+,×}, Π = φ, axioms:
1. (∀x)(¬s(x) = 0);
2. (∀x)(∀y)(s(x) = s(y) =⇒ x = y);
3. (∀y1)...(∀yn)[(p[0/x] ∩ (∀x)(p =⇒ p[s(x)/x])) =⇒ (∀x)p].
(yi in 3 are parameters).
4. (∀x)(x+ 0 = x);
5. (∀x)(∀y)(x+ s(y) = s(x+ y));
6. (∀x)(x+ 0 = 0);
7. (∀x)(∀y)(x× (y) = (x+ y) + x).

These axioms are called Peano Arithmetic or Formal Number Theory.

Note on axiom 3: first guess shold have been

(p[0/x] ∩ (∀x|(p =⇒ p[s(x)/x])) =⇒ (∀x)p

But then missing properties like x ≥ y (y chosen earlier).

Then PA has an infinite model, so by upward L-S, PA has an uncountable model
that is not isomorphic to N trivially. Doesn’t this contradict the fact that the
usual axioms characterise N uniquely?

Answer: axiom 3 is only ’first-order induction’ – even in N itself, it refers to only
countably many subsets (as opposed to true induction).

A subset S ⊂ N is called definable if there exists p ∈ L, free variable x, s.t.
∀m ∈ N we have: m ∈ S ⇐⇒ p[m/x] holds in N (where by m we mean
1 + 1 + ...+ 1 (m times)).

e.g. set of squares: p(x) is (∃y)(yy = x);
set of primes: p(x) is: ¬(x = 0) ∩ ¬(x = 1)¬(∀y)(y|x) =⇒ ((y = 1) ∨ (y = x)),
where y|x is a short hand for (∃z)(yz = x), and by 1 we mean s(0).
Powers of 2: p(x) is (∀y)((y|x ∧ y prime) =⇒ (y = 2)).

Exercise: powers of 4; challenge: powers of 6.

Is PA complete? in other words, for each sentence p, PA ` p or PA ` ¬p?
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Theorem. (Gödel’s incompleteness theorem)
PA is not complete.
Take p with PA 6` p, PA 6` ¬p. We have p holding in N or (¬p) holding in N.
Conclution: ∃ sentence p s.t. p is true in N, but PA 6` p.

This does not contradict completeness; it shows that if p true in all models of
PA, then PA ` p.
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7 Set Theory

Aim: what does ’the universe of sets’ look like?

Key starting point: view set theory as ’just another finite-order theory’.

7.1 Zermelo-Fraenkel set theory

We have L: Ω = φ, Π = {ε}, α(ε) = 2.

We’ll have the ZF axioms: 2 to get started, 4 to build things, and 3 you might
not think of at first.

Then a ’universe of sets’ will mean a model (V, ε) of the ZF axioms.

1. Axiom of extension:
If two sets have the same mebmers, then they are equal:
(∀x)(∀y)((∀z)(z ∈ x ⇐⇒ z ∈ y) =⇒ (x = y)).

Note: converse is an instance of a logical axiom.

2. Axiom of separtion:
We can form a subset of a set, or precisely, given set x and property p(z), we
can form the set of all z ∈ x such that p(z) holds:
(∀t1)...(∀tn)(∀x)(∃y)(∀z)(z ∈ y ⇐⇒ (z ∈ x ∧ p))
This is actually an axiom scheme: for each formula p and free variables ti.

Note: we do want parameters, e.g. to have {z ∈ x : t ∈ z}, t chosen earlier.

3. Axiom of empty-set :
There is a set with no members.
(∃x)(∀y)(¬y ∈ x).

We write φ for the unique (by extension axiom) such set x. This is just an
abbreviation: so p(φ) means (∃x)((∀y)(¬y ∈ x) ∧ p(x)).

Similarly, write {z ∈ x : p(z)} for the set guaranteed by separation.

4. Axiom of pair-set :
We can form {x, y}.
(∀x)(∀y)(∃z)(∀t)(t ∈ z ⇐⇒ t = x ∨ t = y).

We write {x, y} for this set, and {x} for {x, x}.
We can now define the ’ordered pair’ (x, y) to be {{x}, {x, y}}.
It’s easy to check that (x, y) = (t, u) =⇒ x = t ∧ y = u (follows from axiom so
far).
Say x is an ordered pair if (∃y)(∃z)(x = (y, z)), and we say f is a function to
mean (∀x)(x ∈ f =⇒ x is an ordered pair) ∧(∀x)(∀y)(∀z)((x, y) ∈ f ∧ (x, z) ∈
f =⇒ y = z).
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Can now define the domain of a function as follows: write x = Domf if (f is a
function) ∧(∀z)(z ∈ x ⇐⇒ (∃t)((z, t) ∈ f))).

And write f : x → y for (f is a function) ∧(x = Domf | ∧ (∀z)((∃t)((t, z) ∈
f) =⇒ z ∈ y)).

5. Axiom of union:
We can form unions.
(∀x)(∃y)(∀z)(z ∈ y ⇐⇒ (∃t)(z ∈ t ∧ t ∈ x)).

6. Axiom of power-set :
We can form power-sets.
(∀x)(∃y)(∀z)(z ∈ y ⇐⇒ z ⊂ x).
Here by z ⊂ x we mean (∀t)(t ∈ z =⇒ t ∈ x).

Notes:
1. write ∪x and P(x) for these two sets. We can write x ∪ y, etc.
2. No extra axiom needed for interseionts: we can form ∩x (x 6= φ) as a subset
of y any y ∈ x. So ok by separation.
3. We can now form x×y as a suitable subset of PP(x∪y) – since if t ∈ x, u ∈ y,
then (t, u) = {{t}, {t, u}} ∈ PP(x ∪ y). And then we can form the set of all
functions from x to y, as a subset of P(x× y).

The next three are more subtle:

7. Axiom of infinity :
So far, V (the branch symbol) must be inifinite. For example, write x+ = x∪{x},
then easy to check that φ, φ+, φ++, ... are all distinct. We often write 0 for φ,
1 for φ+,2 for φ++, etc. So 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2},etc. But does the
structure (V, ε) have an infinite set – e.g. x with φ ∈ x, φ+ ∈ x, ...?

We say x is a successor set if (φ ∈ x) ∧ (∀y)(y ∈ x =⇒ y+ ∈ x).

Now let’s state the axiom:
There is an infintie set/there is a successor set.
(∃x)(x is a successor set).

Note that any intersection of successor sets is a successor set, so there exists a
least one, called ω. This will be our version, in V , of the natural numbers.

Thus (∀x)(x ∈ ω ⇐⇒ (∀y)(y a successor set =⇒ x ∈ y)).

Note that if x ⊂ ω is a successor set then x = ω by definition:
(∀x)(x ⊂ ω ∧ φ ∈ x ∧ (∀y)(y ∈ x =⇒ y+ ∈ x)) =⇒ x = ω). This is induction:
genuine induction, over all x ⊂ ω (as opposed to in PA).

Also, it’s easy to check (∀x ∈ ω)(¬x+ = φ), and (∀x ∈ ω)(∀y ∈ ω)(x+ = y+ =⇒
x = y).

Thus: ω satisfies (in V ) all the usual axioms for the natural numbers.

Say x is finite if (∃y)(y ∈ ω ∧ x bijects with y).
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And then x is countable if x is finite or x bijects with y.

8. Axiom of Foundation:
”Sets are build up from simpler sets”. We want to disallow x ∈ x: note that
{x} has no ε-minimal member; and also disallow x ∈ y ∈ x: note {x, y} has
no ε-minimal element, etc. And we also want to disallow the infinite sequence
x1 ∈ x0, x2 ∈ x1, x3 ∈ x2,..., in which case {x0, x1, ...} has no ε-minimal element.

The axiom: every (non-empty) set has an ε-minimal element.
(∀x)(x 6= φ =⇒ (∃y)(y ∈ x ∧ (∀z)(z ∈ x =⇒ z 6∈ y)).

Bonus lecture on next Wednesday 1pm (proof of incompleteness theorem, consis-
tency of ZF)

9. Axiom of Replacement :
We often say ”for each i ∈ I have Ai – take {Ai : i ∈ I}. However, how do we
know they form a set? Alternatively, how do we know that i→ Ai is a function?
We want to say ”the image of a set under something that looks like a function is
a set”.

A digression on classes:
Idea: x → {x} (for all x). This looks like a function, but it isn’t: e.g. every
function has a domain as functions are sets of ordered pairs, and the domain is
just the left element of all those pairs. However, the ’domain’ of x→ {x} is not
a set (the universal ’set’).

For an L-structure V , a collection C of elements of V is called a class if there is
a formula p, free variables x (and maybe more) s.t. x ∈ C ⇐⇒ p(x) holds in
V . E.g. V is a class: take p(x) to be x = x.

For any t, {x : t ∈ x} is a class: take p(x) to be t ∈ x.
Note that every set y is a class: take p(x) to be x ∈ y.

If C is not a set (in V ), i.e. 6 (∃y)(∀x)(x ∈ y ⇐⇒ p(x)), say C is a proper class.
E.g., V is a proper class, as is {x : x infinite}, where by infinite we mean not
finite.

Similarly, a function-class is a collection F of ordered pairs from V , s.t. for some
formula p, free variables x, y (and maybe more), have (x, y) ∈ F ⇐⇒ p(x, y),
and if (x, y) ∈ F, (x, z) ∈ F , then y = z.
For example, x→ {X} is a function class: take p(x, y) to be y = {x}.

—End of digression—

Let’s now state the axiom of replacement: ”the image of a set under a function-
class is a set.
(∀t1)...(∀tn)([(∀x)(∀y)(∀z)((p ∧ p[z/y]) =⇒ y = z)] =⇒ [(∀x)(∃y)(∀z)(z ∈
y ⇐⇒ (∃t)(t ∈ x ∧ p[t/x, z/y])])
For each formula p, free variables x, y, t1, ..., tn, i.e., the image of x under p is a
set.



7 SET THEORY 35

Eg. for any set x, we can form {{t} : t ∈ x} using function class t→ {t}.

This is a ’bad’ example, as it didn’t need replacement – see later for ’good’
examples.

Those are the ZF axioms.

Note:
1: Sometimes separation is called ’comprehension’, and sometimes fundation is
called ’regularity’.
2. ZF axioms do not include AC: ZF + AC is called ZFC, where axiom of
choice is: ”every family of (non-empty) sets has a choice function” – (∀f)(f
is a function ∧(∀x)(x ∈ Domf =⇒ f(x) 6= φ)) =⇒ (∃y)(y is a function
∧Domy = Domf ∧ (∀x)(x ∈ Domf =⇒ g(x) ∈ f(x)))).

Goal: what does a model (V, ε) of ZF look like?

Remark: we haven’t proved ZF consistent (i.e. ∃ model of ZF). Sadly, ZF 6` ”ZF
has a model”, i.e. it cannot be proved in ordinary maths (ZF or ZFC).

Say x is transitive if every member of x is itself a member of x: (∀y)((∃z)(y ∈
z ∧ z ∈ x) =⇒ (y ∈ x), i.e. ∪x ⊂ x.

E.g. 2 = {φ, {φ}} is transitive; ω is transitive as n = {0, 1, ..., n− 1} ∀n ∈ ω.

Lemma 1: every set x is contained in a transitive set.

Remarks: 1. Officially, let (V, ε) be a model of ZF. Then in V , ... holds, or
equivalently, ZF ` ....
2. Any ∩ of transitive sets is transitive, so we’ll then know that there exists
a least transitive set containing x, called the transitive closure of x, written
TC(x).

Proof. We’ll take x∪ (∪x)∪ (∪∪x)∪)∪∪∪x)∪ ... which is a set by union axiom,
which is a set by replacement (a good example of replacement): 0→ x, 1→ ∪x,
etc. But why is this a function class?
To show that, define f is a an attempt to mean (recall we’ve done similar
things before in chapter 2) (f is a function ) ∩ (Domf ∈ ω) ∩ (Domf 6=
φ) ∩ (f(0) = x) ∩ (∀n)(n ∈ Domf ∩ n 6= 0 =⇒ f(n) = ∪f(n − 1)). Then
(∀n ∈ ω)(∀f)(∀f ′)((f, f ′ attempts ∧n ∈ Domf ′) =⇒ f(n) = f ′(n)) (by
ω-induction). And (∀n ∈ ω)(∃f)(f an attempt ∩n ∈ Domf) (again, by ω-
induction). So take p(y, z) to be (∃f)(f an attempt ∩ y ∈ Domf∩f(y) = z).

We want foundation to be saying ’sets are built out of simpler sets’. If so, we
would want: suppose p(y)∀y ∈ x implies p(x), then p(x)∀x.

Theorem. (2, principle of ε-induction): let p be a formula with free variables
t1, ..., tn, x. Then (∀t1)...(∀tn)((∀x)((∀y)(y ∈ x =⇒ p(y) =⇒ p(x)) =⇒
(∀x)p(x)). Note that formally, p(y) should be p[y/x], and p(x) should just be p.
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Proof. Given t1, ..., tn, have p(y)∀y ∈ x =⇒ p(x), and suppose (∀x)p(x) not
true. So (∃x)(¬p(x)). We want ot say ’choose ε-minimal member of {x : ¬p(x)),
then contradiction’; however, this might not be a set – e.g. if p(x) is x 6= x.

Let t = TC({x}). So x ∈ t, and ¬p(x). Let u = {y ∈ t : ¬p(y)), and let
y be an epsilon-minimal element of u. Then ¬p(y). But (∀z ∈ y)p(z) (as
z ∈ y =⇒ z ∈ t and y is ε-minimal in u).

Remarks: 1. we used existence of transitive closures (i.e. lemma 1).
2. In fact, ε-induction equivalent to foundatoin: as can deduce foundation
from ε-induction (in the presence of the other ZF axioms): say x is regular if
(∀y)(x ∈ y =⇒ y has an ε-minimal element). Foundation says every set is
regular. To prove this by ε induction, given y regular ∀y ∈ x, we want to prove x
is regular. For x ∈ z, if x minimal then done. Otherwise, some y ∈ x has y ∈ z.
But y is regular. So z has a minimal element.

How about recursion? we want ’f(x) defined in terms of the f(y), y ∈ x’.

Theorem. (3, ε-recursion theorem)
Let G be a function-class ((x, y) ∈ G ⇐⇒ p(x, y) for some formula p), every-
where defined. Then there is a function-class F ((x, y) ∈ F ⇐⇒ q(x, y), for
some formula q) s.t. (∀x)(F (x) = G(F |x)). Moreover, F is unique.
Note: F |x = {(z, f(z)) : z ∈ x} is a set, by replacement.

Proof. Say f is an attempt if: (f is a function )∧ (Domf transitive )∧ (∀x)(x ∈
Domf =⇒ f(x) = G(f |x)) (f |x is defined, as Domf is transitive).
Then (∀x)(f, f ′ attempts defined at x =⇒ f(x) = f ′(x)) by ε-induction.
Since, if f, f ′ agree at all y ∈ x, then they agree at x.
Also, (∀x)(∃ attempt f defined at x) by ε-induction.
Indeed, suppose |forally ∈ x ∃ attempt defined at y. So ∀y ∈ x ∃ unique attempt
fy defined on TC({y}). Put f = ∪y∈xfy, and now put f ′ = f ∪ {(x,G(f |x)}.
So done: take q(x, y) to be (∃f)(f an attempt ∧x ∈ Domf ∧ f(x) = y).

Note: ε-induction and ε-recursion proofs look very similar to induction and
recursion from chapter 2.

What properties of the ’relation-class’ ε (i.e. the formula p(x, y) = xεy) have we
used?

1. p is well-founded: every non-empty set has a p-minimal element;
2. p is local: (y : p(y, x)) is a set, for each x.

So in fact we have p-induction and p-recursion for any p(x, y) that is well-founde
and local.

For a relation r on a set a, trivially r is local (as a is a set). So to have r-induction
and r-recursion, just need r to be well-founded.

Thus induction and recursion from chapter 2 are special cases of this.
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Can we ’model’ a relation by ε?

E.g. let a = {a1, a2, a3} and r = {(a1, a2), (a2, a3)}.

Put b = {b1, b2, b3}, where b1 = φ, b2 = {φ}, b3 = {{φ}}. Then airaj ⇐⇒
birbj∀i, j. Moreover, b transitive.

Say relation r on set a is extensional if (∀x, y ∈ a)((∀z ∈ a)(zrx ⇐⇒ zry) =⇒
x = y), e.g. above relation on above a, or relation ε on any transitive set.

Analogue of subset collapse is:

Theorem. (4, Mostowski’s collapse theorem):
Let r be a relation on a set a that is well-founded and extensional. Then ∃
transitive b and bijection f : a → b s.t. (∀x, y ∈ a)(x ∨ y ⇐⇒ f(x) ∈ f(y)).
Moreover, b and f are unique.

Proof. Define f(x) = {f(y) : yrx} a definition by r-recursion on the set a. (f is
a function, not just a function-class, as it is an image of the set a).

Let b = {f(x) : x ∈ a} (a set, by replacement).

Then b transitive (definition of f), and f surjective (definition of b). We need f
injective, then also have xry ⇐⇒ f(x) ∈ f(y).

We’ll show that (∀y)(f(y) = f(x) =⇒ y = x) holds ∀x ∈ a, by r-induction on
x.

So given y with f(y) = f(x), we want y = x, and may assume that (∀t)(∀n)((t, n ∈
a ∧ trx ∧ f(y) = f(t)) =⇒ n = t).

From f(y) = f(x), we have {f(n) : nry} = {f(t) : trx}, whence {n : nry} = {t :
trx}.

Thus x = y as r extensional.

Existence: if f, f ′ suitable then (∀x ∈ a)(f(x) = f ′′(x)) by r-induction.

An ordimal or Von Neumann ordinal is a transitive set that is well-orderd by ε.
(or ’totally ordered, thanks to foundation)

e.g. φ, {φ}, any n ∈ ω (as n = {0, 1, 2, ..., {n− 1}), ω itself.

So mostowski tells us: any well-ordered X is order-isomorphic to a unique ordinal
α. Say X has order-type α. (this was owed from chapter 2).

Remark (irrelevant): we know that for any ordinal α, have {β : β < α} is a
well-ordered set of order-type α.

Hence, by definition of f in theorem 4, we have: α < β ⇐⇒ α ∈ β.

So α = {β : β < α}.
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So e.g. α+ = α ∪ {α}, and sup{αi : i ∈ I} = ∪{αi : i ∈ I}.

Picture of the universe:

”start with φ, and take P (power sets) many times. Define sets Vα for each
ordinal α be recursion: V0 = φ, Vα+1 = P(Vα), Vλ = ∪α<λVα for λ a non-zero
limit. We want every set x to belong to some Vα.

Lemma. (5)
Each Vα is transitive.

Proof. Induction on α: 0 is trivial.
Successors: given x ∈ y ∈ Vα+1, we have y ∈ P(Vα), so x ∈ Vα. So x ⊂ Vα (as
Vα transitive), i.e. x ∈ P(Vα) = Vα+1.
Limits: any union of transitive sets is transitive.

Lemma. (6)
We have Vα ⊂ Vβ whenever α ≤ β.

Proof. Induction on β (α fixed):
β = α is trivial.
Successors (β): given Vα ⊂ Vβ , we want Vα ⊂ P(Vβ). But Vβ ⊂ P(Vβ), x ∈
Vβ =⇒ x ⊂ Vβ as that is transitive.
Limits are trivial as well as it is the union of all Vα below.

Theorem. (7)
(∀x)(∃α)(x ∈ Vα).
Slogan: V = ∪α∈ONVα, where ON is the class of ordinals. However that’s not
allowed, as we cannot take union over a class.
Notes: 1. x ⊂ Vα ⇐⇒ x ∈ Vα+1.
2. If x ⊂ Vα, then there exists least such α – called the rank of x. For example,
rank(φ) = 0, rank({φ}) = 1, rank(ω) = ω, and rank(α) = α for all ordinals α
(by induction).

Proof. We’ll show (∀x)(∃α)(x ⊂ Vα) by ε-induction. Given x, have y ⊂ Vα for
some α (for each y ∈ x), so y ⊂ Vrank(y), i.e. y ∈ Vrank(y)+1 for each y ∈ x.
Let α = sup{rank(y) + 1 : y ∈ x}. Then x ⊂ Vα.

Remark. 1. The Vα are called the Von-Neumann Hierarchy.
2. Proof gives: rank(x) = sup{rank(y) + 1 : y ∈ x} (this is the right way to
think about rank). For example, what’s the rank of {6}? For each ordinal the
rank is itself, so rank(6) = 6. So rank{6} = sup{rank(6) + 1} = 7.
3. (useless comment) Most of maths takes place in Vω+10, apart from order-types,
etc. i.e. in this course.

8 Cardinals

Let’s look at ’sizes’ of sets. Work in ZFC.



8 CARDINALS 39

We want to define Card(x) so that Card(x) = Card(y) ⇐⇒ x↔ y, which is a
short hand for ’there is a bijection from x to y’.

(Note: We cannot take Card(x) = {y : y ↔ x}, as this may not be a set.)

We do know x ↔ α for some ordinal α, so can define Card(x) to be the least
such α. Thus Card(x) = Card(y) ⇐⇒ x↔ y.

(In just ZF, use Scott trick: define the essential rank of x to be essrank(x) =least
rank of any y ↔ x, and then define Card(x) = {y ⊂ Vessrank(x) : y ↔ x})

Say m is a cardinal or a cardinality if m = Card(x) for some x.

For cardinals m,n, say m ≤ n if M injects into N for some M,N with
Card(M) = m, Card(N) = n (does not depend on choice of M and N).

Write m < n if m ≤ n and m 6= n. For example, Card(ω) ≤ Card(P(ω)).

Note that if m ≤ n, n ≤ m, then m = n (Schröder-Bernstein). So ≤ is a partial
order, and even a total order (by well-ordering). However, in just ZF, this need
not be a total ordering.
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