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0 Introduction

Some not very useful examples.
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1 Ramsey Theory

Definition. A graph is an ordered pair (V,E) = G where V is a finite set and
E is a set of unordered pairs of distinct elements of V . We call elements of V
vertices of G and elements of E edges.

We often write v ∈ G to mean v ∈ V and similarly for edges as well. Often we
denote {u, v} ∈ E by uv.

Example. G = ({1, 2, 3, 4, 5, 6, 7}, {12, 23, 13, 14, 67}) is a graph. We can repre-
sent a graph by a drawing: take a point for each vertex, join two vertices if they
are in an edge.

1

2

3

4 5 6 7

Definition. Let G = (V,E) and G′ = (V ′, E′) be graphs. An isomorphism
from G to G′ is a bijection ϕ : V → V ′ such that for all u, v ∈ V , we have
φ(u)φ(v) ∈ E′ ⇐⇒ uv ∈ E.

If such an isomorphism exists, we say G is isomorphic to G′.

Suppose also H = (W,F ) is a graph. We say H is a subgraph of G and write
H ⊂ G if W ⊂ V and F ⊂ E.

Often we say H is a subgraph of G to mean H is isomorphic to a subgraph of G.

Example. (Complete graph)
The complete graph of order n, Kn, has n vertices with every pair forming an
edge.

K1:
1

K3:
1 2

3

K5:

1

2

34
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Note that if m ≤ n then Km ⊂ Kn.

Recall Schur’s Theorem: Let k be a positive integer. Then there is a positive
integer n s.t. if the set [n] = {1, 2, ..., n} is coloured with k colours, we can
find a, b, c with a+ b = c and a, b, c the same colour. An idea to prove this in
graph theory is to consider vertices as numbers, edges as difference between two
vertices, and we try to colour the edges.

For example, suppose the edges of complete graph K6 are coloured blue/yellow.
Then we can find a monochromatic triangle. Note that Schur’s Theorem for k = 2
follows immediately. In this graph form of the problem statement, statement for
more colours is amenable to an induction proof.

Proposition. Let k be a positive integer. Then there is a positive integer
n s.t. whenever the edges of Kn are coloured with k colours, we can find a
monochromatic triangle.

Proof. We use induction on k. k = 1 is trivial with n = 3. For k > 1, by
induction hypothesis we can find a m s.t. for any Km coloured with (k − 1)
colours, there exist a monochromatic triangle.
Let n = k(m−1) + 2. Now k-colour the edges of Kn. Pick vertex v. The number
of edges containing v is n− 1 = k(m− 1) + 1, so some m of them are the same
colour, wlog blue. Now let H be a Km joined to v by blue edges. If H contains
a blue edge then we have a blue triangle. Otherwise H is only coloured with at
most k − 1 colours, and from the induction hypothesis we know that there is a
monochromatic triangle in that Km.

Remark. We can also try to get an explicit upper bound from what we proved
above. Let f(k) be the smallest n that works with k colours. Clearly f(1) = 3.
The proof says for k > 1, f(k) ≤ k(f(k−1)−1)+2 ≤ kf(k−1). So by induction
we have f(k) ≤ 3k! for all k.

Remark. Schur’s Theorem follows immediately if we consider the graph ap-
proach of the problem.

Another problem that arises naturally is that, can we find larger monochromatic
subgraphs, e.g. a K4? We can think about the two colours case first for simplicity
– the answer is yes, but it requires some intermediate step.

Example. Let K10 have edges coloured blue/yellow. Then there is a blue
triangle or yellow K4.

Proof. Take a vertex v. It’s degree 9, so either v has 4 blue edges, in which case
there is a blue triangle or yellow K4; otherwise v has 6 yellow edges, in which
case there is a blue or yellow triangle within it, together with v we have either a
blue triangle or yellow K4.

Proposition. Let K20 be coloured blue/yellow. Then there exists a monochro-
matic K4.
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Proof. Pick a vertex v. It’s degree 19 so 10 of them are the same colour, wlog
blue. Then by the previous example we get the desired result immediately.

Now we are interested in a more general problem.

Definition. Let s, t ≥ 2. The Ramsey number R(s, t) is the least n s.t. whenever
Kn has edges coloured blue or yellow, ther must be a blue Ks or a yellow Kt,
provided if such an n exists. Also we write R(s) = R(s, s) for simplicity.

Earlier we’ve seen R(3) = 6, R(3, 4) ≤ 10, R(4) ≤ 20.

Theorem. (Ramsey’s theorem)
R(s, t) exists for all s, t ≥ 2. Moreover, is s, t > 2, then R(s, t) ≤ R(s− 1, t) +
R(s, t− 1).

Proof. We’ll prove by induction on s+ t.

First consider the case s = 2: Obviously R(2, t) = t. The case t = 2 is symmetric.

Now if s, t > 2, Let a = R(s−1, t) and b = R(s, t−1) (and we know by induction
hypothesis that these exist).

Now let n = a+ b, and we colour edges of Kn by blue and yellow. Pick v ∈ Kn,
it has either a blue or b yellow edges. Then we can just apply the induction
hypothesis.

And we have an immediate corollary:

Corollary. For all s, t ≥ 2, R(s, t) ≤ 2s+t. So R(s) ≤ 4s.

Proof. We induct on s+ t. The case s = 2 or t = 2 is obvious. For s, t > 2 we
have

R(s, t) ≤ R(s− 1, t) +R(s, t− 1)

≤ 2s−1+t + 2s+t−1

= 2s+t.

We can prove that R(s) = O
(

4s
√
s

)
by the same proof but more carefully – this

was first proved in 1935. After 50 years we proved that R(s) = O
(

4s

s

)
by being

very clever and working hard. After another 20 years (2009), by being even more
careful and working harder, we can prove R(s) = O

(
4s

sk

)
for any k. It is still

unknown that if the base in the expression can be reduced by any tiny amount.

Theorem. (Multi-colour Ramsey Theorem)
Let k ≥ 1 and s ≥ 2. Then there exists some n s.t. whenever the edges of Kn

coloured with k colours, we can find a monochromatic Ks.
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Proof. Use induction on k. For k = 1 we just take n = s.

Now let k > 1. By induction hypothesis, we can find M s.t. Km coloured with
(k − 1) colours contain a monochromatic Ks. Now let n = R(s,m) and colour
Kn with k colours, including blue but not yellow. Now we re-colour by turning
all the non-blue edges yellow. Now by definition of n we have either a blue Ks,
in which case we’re done, or we have a yellow Km. But that means we have a
Km coloured with k − 1 colours, which by induction hypothesis we can also find
a monochromatic Ks.

Remark. We write Rk(s) for the smallest n that works. In particular, R1(s) = s,

R2(s) = R(s). Proof of the above theorem will give Rk(s) ≤ 4s
k−1

(see example
sheet 1).

Remark. What we really mean by colouring is that we have a function c : E →
[k] = {1, 2, ..., k}. ’Blue’ and ’yellow’ are just arbitrary names of the colours.

We say H = (W,F ) is monochromatic if c|F is a constant.

With any number of colours, we can find arbitrarily large monochromatic sub-
graphs. What about infinite ones?

Definition. An infinite graph is an ordered pair G = (V,E) where V is an
infinite set and E is a set of unordered pairs of distinct elements of V . Note that
in our terminology, an infinite graph is not a graph.

We should also let a possibly infinite graph mean a graph or an infinite graph.

The infinite complete graph, K∞, will mean the infinite graph with a countably
infinite vertex set and every pair of vertices forming an edge.

Where it makes sense to do so, we carry terminology over from graphs to infinite
graphs.

Suppose edges of K∞ are coloured blue or yellow. What can we find? By
Ramsey, we can find a monochromatic Ks for every finite s = 1, 2, 3, .... This
doesn’t imply we find an infinite monochromatic subgraph.

Theorem. (5, Infinite Ramsey Theorem)
Let k ≥ 1. Whenever the edges of K∞ are k-coloured, we have a monochromatic
K∞ as a subgraph.

Proof. Take v1 ∈ K∞. The vertex v1 is infinitely many edges, so infinitely of
them are the same colour. Let A1 ⊂ V be the infinite subset of vertices of K∞
s.t. for all u ∈ A1, v1u has colour c1.

Now pick v2 ∈ A1. Similarly, we can find an infinite A2 ⊂ A1 s.t. all edges
v2, u(u ∈ A2) have colour (WLOG) c2. Keep going and we get infinite sequences
v1, v2, v3, ... of vertices, c1, c2, c3, ... of colours and A1 ⊃ A2 ⊃ A3 ⊃ ... of infinite
sets s.t.
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• for i ≥ 2, vi ∈ Ai−1;
• for i ≥ 1, for all u ∈ Ai, viu is an edge of colour ci.

In particular, if i < j then vivj has colour ci. However there are only finitely many
colours. So infinitely many of the ci are the same, say we have ci1 = ci2 = ....
Then vi1 , vi2 , ... form a monochromatic K∞.

An application of the above theorem is

Corollary. (6, Bolzano-Weierstrass Theorem)
Any bounded sequence has a convergent subsequence (apparently, in a sequen-
tially compact space).

Proof. Any bounded monotonic sequence converges, so it’s enough to show that
any real sequence (xn)n≥1 has a monotonic subsequence. Let G be a K∞ with
vertex set {1, 2, 3, ...}. Colour ij (i < j) blue if xi < xj , and yellow otherwise.
By theorem 5 there is a monochromatic subgraph isomorphic to K∞, so there is
a monotonic subsequence.
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2 Basic Terminology

Let G = (V,E) be a graph. Sometimes we write V (G) = V and E(G) = E.

The order of G is |G| = |V (G)|. We denote the number of edges of G by
e(G) = |E(G)|, sometimes this is called the ’size’ of G.

Now let v ∈ G. The neighbourhood of v is the set Γ(v) = {w ∈ G : vw ∈ E(G)}.

If w ∈ Γ(v) then w is a neighbour of v, or w is adjacent to v, written as w ∼ v.

The degree of v is d(v) = |Γ(v)|, i.e. the number of vertices adjacent to v. From
this it should be obvious what the maximum degree, minimum degree, and
average degree mean. We denote the maximum and minimum degree by ∆(G),
δ(G) respectively.

Clearly δ(G) ≤average degree ≤ ∆(G). If every vertex in G has the same degree,
we say G is regular. If this degree is r, we say G is r−regular.

Example. Each edge contributes 2 to the sum of degrees, so we know 2e(G) is
equal to

∑
v∈G d(v).

Let G be a graph. A path in G is a finite sequence v0, ..., vl of distinct vertices of
G with vi−1 ∼ v for 1 ≤ i ≤ l. We say this path has length l and goes from v0

to vl. We write v → w to mean there is a path from v to w. The relation → is
an equivalence relation. The equivalence classes of → are called the components
of G. If G has only one component, we say G is connected.

A cycle is a sequence v0, ..., vl of vertices of G with v0, ..., vl−1 distinct, vl = v0,
vi−1 ∼ vi for 1 ≤ i ≤ l, and l ≥ 3. We say the length of the cycle is l.

1

2

3

45

A graph with no cycles is called a forest. A tree is a connected forest. Each
component of a forest is a tree.

Suppose G,H are graphs with V (G) ∩ V (H) = φ. The disjoint union of G,H is
the graph G∪H, with V (G∪H) = V (G)∪V (H) and E(G∪H) = E(G)∪E(H).

Often we write G ∪ H even if V (G) ∩ V (H) 6= φ. This means that we take
graphs G′, H ′ that are isomorphic to G and H, s.t. V (G′) ∩ V (H ′) = φ, then
take G′ ∪H ′.

Example. (i) K3 ∪K5:
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1

2 3 4

5

6

7 8

(ii) Any graph is the disjoint union of its components. For example, a forest is a
disjoint union of trees.

Let G = (V,E) be a graph and let W ⊂ V . The induced subgraph on W is the
graph G[W ] with V (G[W ]) = W and, for x, y ∈ W , xy ∈ E(G[W ]) ⇐⇒ xy ∈
G.

Let G = (V,E) be a graph. The complement of G is the graph Ḡ with V (Ḡ) = V
and for distinct x, y ∈ V , xy ∈ E(Ḡ) ⇐⇒ xy 6∈ E.

Example. • Suppose edges of Kn are coloured blue/yellow. We can just think
about the ’blue subgraph’ with n vertices and blue edges only. The complement
is then the yellow subgraph.
• For example, consider graph G

1

2

3

45

Then we have Ḡ is

1

2

3

45

and by relabelling the vertices we can see that G is actually isomorphic to its
complement.

Reminder of O notation: Let f, g : N→ (0,∞). We say f = O(g) if f < Ag for
some constant, say f = Ω(g) if g = O(f), say f = Θ(g) if f = O(g) and f = Ω(g).
Also, f = o(g) means f/g → 0 (as n → ∞), f = ω(g) means f/g → ∞, and
f ∼ g means f/g → 1.
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3 Extremal Graph Theory

Problem 1 (from chapter 1): How large must n be so that if edges of Kn coloured
blue/yellow then we always get a monochromatic Ks? We can actually let G be
the blue subgraph of Kn, then Kn has a blue Ks is equivalent to Ks ⊂ G, and
Kn has a yellow Ks is equivalent to G has an induced K̄s subgraph. Then we
can rephrase the problem as: How large must n be to force every subgraph of
order n to have Ks or K̄s as an induced subgraph?

Typical example of an extremal problem: how large must some parameter of
G be to force G to have a certain property? Alternatively, how big can the
parameter be with G not having the property?

3.1 The Forbidden Subgraph Problem

Fix a graph H with at least one edge. Let n ≥ |H|. Clearly H ⊂ Kn but
H 6⊂ K̄n. How many edges must a graph G of order n have to force H ⊂ G?
Alternatively, if |G| = n and H ⊆ G, how large can e(g) be?

Definition. Define

ex(n,H) = max{e(G) : |G| = n,H 6⊂ G}

Problem: can we determine ex(n,H)?

3.1.1 Triangles

We want G with |G| = n, e(G) large, and 4 6⊂ G. The idea is to have a bipartite
graph, where we can partition the graph G into two parts X and Y such that
there is no edge within X or Y themselves, i.e. with all the edges going from X
to Y . We define this more properly:

Definition. (Bipartite graph)
A graph G is bipartite (with bipartition (X,Y )) if V (G) can be partitioned as
X ∪ Y in such a way that if e ∈ E(G), then e = xy for some x ∈ X, y ∈ Y .

Bipartite graphs have no triangles (and indeed no cycles of odd length). In fact,
the converse is true.

Theorem. (7)
A graph is bipartite iff it contains no odd cycles. The proof is an exercise for
now.

However, which bipartite graph is the best? Clearly we want to include all
possible edges from X to Y .

Definition. Let s, t ≥ 1. The complete bipartite graph Ks,t has bipartition
(X,Y ) with |X| = s, |Y | = t and xy ∈ E(Ks,t) ∀x ∈ X, y ∈ Y .
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We have |Ks,t| = s+ t and e(Ks,t) = st. So we just have to maximize s(n− s).
Now we’ll prove that no other graphs can beat bipartite graphs.

Theorem. (Mantel’s theorem)

Let n ≥ 3. Suppose |G| = n, e(G) ≥ [n
2

4 ] and G does not contain a triangle.
Then G ∼= Kdn2 e,b

n
2 c.

Proof. By induction. For n = 3 it’s trivial.

For n > 3, let |G| = n, e(G) ≥ dn
2

4 e, and G does not contain a triangle. First,

remove edges from G if necessary to get H with |H| = n, e(H) = bn
2

4 c. Clearly
H does not contain a triangle. Let v ∈ H with d(v) = δ(H) and let K = H − v,
i.e. H with vertex v and all edges including v removed. (recall that δ(H) is
the minimum degree). Now |K| = n-1, K does not contain a triangle, and

e(K) = bn
2

4 c − δ(H).

Suppose n is even. Then δ(H) <average degree of H = 2e(H)/|H| = n2/2/n =
n2, hence

e(K) ≥ n2

4
− n

2
=

(n− 1)2

4
= b (n− 1)2

4
c

Similarly if n is odd we also get e(K) ≥ b (n−1)2

4 c. Hence by induction hypothesis,
K ∼= Kdn−1

2 e,b
n−1
2 c

.

Also, d(v) = e(H)− e(K). If n is even then d(v) = n/2. H is formed by adding
a vertex v to K ∼= Kn

2 ,
n−2
2

, and joining v to n/2 vertices of K without creating

a triangle. If K has bipartition (X,Y ), v cannot be joined both to a vertex in X
and a vertex in Y . So v must be joined to all vertices in the larger of X,Y . Thus
H ∼= Kdn/2e,bn/2c, and similar if n is odd. We recover G by adding edges to H
without making a triangle. But any new edge creates a triangle, so G ∼= H.

Hence if |G| = n, e(G) > bn
2

4 c, then G contains a triangle. Therefore ex(n,4) =

bn
2

4 c.

3.1.2 Complete graphs

Last time we considered K3, the triangle. What about K4? We can try something
like a ’tripartite graph’. Formally,

Definition. A graph G is $r-partite if we can partition V (G) = X1 ∪ ... ∪Xr

in such a way that if xy ∈ E(G), then x ∈ Xi, y ∈ Xj for some i, j with i 6= j.
We say G is complete r-partite graph if whenever x ∈ Xi, y ∈ Xj with i 6= j, we
have xy ∈ E(G).
The Turan graph Tr(n) is the complete r-paritte graph with n vertices and
vertex-classes as equal as possible. We write tr(n) = e(Tr(n)).

Properties of the Turan graph:

• Kr+1 6⊂ Tr(n). If we add an edge to Tr(n), we create a Kr+1.
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3.1.3 Bipartite graphs

Example. What is ex(n,C4)? Note that C4
∼= K2,2.

C4 is made from two copies of P2. Suppose G is a graph, |G| = n, e(G) = m,
C4 6⊂ G. How many P2 subgraphs does G have? Given v ∈ G, v is middle
vertex of

(
d(v)

2

)
P2 s, so total number of P2 is

(∑
v∈G d(v)

2

)
. Instead, observe if

{x, y} ⊂ V (G) with x 6= y then at most one P2 with x, y as end-vertices (since

C4 6⊆ G). So number of P2 is at most
(
n
2

)
. Hence

∑
v∈G

(
d(r)

2

)
≤
(
n
2

)
.

Recall Jensen’s inequality: for a convex function f , we have

1

n

n∑
i=1

f(xi) ≥ f

(
1

n

n∑
i=1

xi

)

Applying Jensen’s inequality to the previous upper bound we have, we get(
n

2

)
≥
∑
v∈G

(
d(v)

2

)
≥ n

( 1
n

∑
v∈G d(v)

2

)
= n

(
2m/n

2

)

(recall m = e(G)). Hence n(n − 1) ≥ n · (2m/n) · (2m/n − 1), so n2(n − 1) ≥
2m(2m− n), i.e.

4m2 − 2mn− n2(n− 1) ≤ 0

This is a quadratic equation in m, the root are

m =
2n±

√
4n2 + 16n2(n− 1)

8

=
n

4

(
1±

√
1 + 4(n− 1)

)
=
n

4

(
1±
√

4n− 3
)

Hence m ≤ n
4 (1 +

√
4n− 3), i.e. ex(n,C4) ≤ n

4 (1 +
√

4n− 3), which means

ex(n,C4) = O(n3/2).

The same approach turns out to give a bound on ex(n,Kt,t) in general. For
example, if we consider K3,3, we consider a vertex as the end-vertex for 3 edges.
(not very obvious)

Definition. A t−fan in a graph G is an ordered pair (v,W ), where v ∈ V (G),
W ⊂ V (G), |W | = t and ∀w ∈W , v ∼ w (there is an edge between them).

For example, a 2-fan is just a P2 subgraph.

Theorem. (11)
Let t ≥ 2. Then ex(n,Kt,t) = O(n2−1/t).

Proof. Let |G| = n, e(G) = m = ex(n,Kt,t and Kt,t 6⊆ G. How many t-fans are

there in G? Each v ∈ G is in
(
d(v)
t

)
t-fans. Thus total number if

∑
v∈G

(
d(v)
t

)
.
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Given W ⊂ V (G) with |W | = t, W is in at most t− 1 t-fans (as Kt,t 6⊂ G). So
total number of t-fans is at most

(
n
t

)
(t− 1). Hence(

n

t

)
(t− 1) ≥

∑
v∈G

(
d(v)

t

)

≥ n
( 1
n

∑
v∈G d(v)

t

)
= n

(
2m/n

t

)
Note that

(
n
t

)
≥ nt/t!. So

nt

t!
(t− 1) ≥ n

t!

(
2m

n
− t
)t

get rid of the t!,

nt(t− 1) ≥ n
(

2m

n
− t
)t

If n is sufficiently large (as we may assume), then m ≥ nt (check by construction),
so m

n ≥ t and so 2m
n − t ≥

m
n . Thus nt(t − 1) ≥ n(m/n)t. Rearrange this we

get mt ≤ n2t−1(t− 1). So m ≤ (t− 1)1/tn2−1/t. t is just a constant, so we get
m = O(n2−1/t).

So we’ve got an upper bound. We’ll discuss about lower bounds later.

Closely related is the problem of Zarankiewicz : let z(n, t) be the largest possible
number of edges in a bipartite graph G with n vertices in each class and Kt,t 6⊂ G
(and obviously the problem is to find z(n, t)).

Theorem. Let t ≥ 2. Then z(n, t) = O(n2−1/t).

Proof. This proof is similar with the previous, so we will not go into the details
here.
Let G be bipartite with classes X,Y with |X| = |Y | = n, e(G) = m = z(n, t)
and Kt,t 6⊂ G. We count t-fans with vertex in X and set in Y . Similarly,(

n

t

)
(t− 1) ≥

∑
v∈X

(
d(v)

t

)
Now

∑
v∈X d(v) = m. So similar calculation to theorem 11 gives m = O(n2−1/t).

3.1.4 General graphs

What is ex(n,H) for general H? The exact answer is apparently too hard. What
about some asymptotic estimations?
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Usually ex(n,H)→∞ as n→∞. How about proportion of edges? E.g. could

we find limn→∞
ex(n,H)

(n
2)

? Does it even exist?

Proposition. (13)

Let H be a graph with at least 1 edge, and for n ≥ |H|, let xn = ex(n;H)

(n
2)

. Then

(xn) converges.

Proof. Let n ≥ |H|, let |G| = n, e(G) = ex(n,H) = xn
(
n
2

)
and H 6⊂ G. For any

v ∈ G, |G−v| = n−1, and H 6⊂ G−v, so e(G−v) ≤ ex(n−1, H) = xn−1

(
n−1

2

)
.

Each edge xy ∈ E(G) in G− v for all v 6= x, y. Hence

(n− 2)xn

(
n

2

)
= (n− 2)e(G) =

∑
v∈G

e(G− v) ≤ nxn−1

(
n− 1

2

)
So xn is decreasing. So it converges.

We write ex(H) = limn→∞
ex(n;H)

(n
2)

, which exists because of the proposition

above.

For Turan graph we have ex(Kr+1) = 1− 1
r .

From example sheet T11, we have ex(n,Kt,t) = O(n2−1/t) = o(n2) So ex(Kt,t) =
0. Hence ex(H) = 0 for all bipartite graph H.

Can we determine ex(H) in general?

The key fact is that, Turan says if we have proportion 1 − 1/r of edges, it’s
enough to guarantee a Kr+1. Increasing this proportion by a tiny amount gives
much more.

Definition. Write Kr(t) for complete r-partite graph with t vertices in each
class. (So Kr(t) = Tr(rt)).

Theorem. (14, Erdös-Stone Theorem)
Let r, t ≥ 1 be integers, and let ε > 0 be real. Then there exists n0 s.t. for all
n ≥ n0,

|G| = n, e(G) ≥ (1− 1

r
+ ε)

(
n

2

)
=⇒ Kr+1(t) ⊂ G

This is enough to determine ex(H) for all H.

Definition. If H is a graph, the chromatic number of H, denoted χ(H) is the
least r such that H is r-partite. For exampl,e χ(Kr(t)) = r.

Corollary. (15)
Let H be a graph with at least one edge. Then ex(H) = 1− 1

χ(H)−1 .

Proof. Let r = χ(H)− 1. Then H is (r + 1)-partite, so we can find t such that
H ⊂ Kr+1(t). (for example, t = |H| suffices) Let ε > 0. Take n0 as in theorem
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14. Then for all n ≥ n0,

|G| = n, e(G) ≥ (1− 1

r
+ ε)(

(
n

2

)
) =⇒ Kr+1(t) ⊂ G

=⇒ H ⊂ G

So for all n ≥ n0, ex(n,H) < (1− 1
r + ε)

(
n
2

)
. Hence ex(H) = limn→∞

ex(n;H)

(n
2)

≤

1− 1
r + ε. So ex(H) ≤ 1− 1

r .

On the other hand, for all n, H 6⊂ Tr(n) as H not r-partite. So ex(n;H) ≥ tr(n).

As n→∞, tr(n)

(n
2)
→ 1− 1

r . So ex(H) ≥ 1− 1
r .

So if H is not bipartiet, ex(H) = 1
1−χ(H)−1 6= 0, so ex(n,H) ∼ (1− 1

χ(H)−1

(
n
2

)
).

So essentially we solved the forbidden subgraph problem for non-bipartite graph
H.

For H bipartite, we only know ex(n,H) = o(n2). So it doesn’t tell us if ex(n,H)
grows like a certain power of n.

We do, however, have upper bounds from T11: ex(n,Kt,t) = O(n2−1/t).

Another application: we could define the density of a graph G to be D(G) =

e(G)/
(|G|

2

)
. So D(G) ∈ [0, 1]. For example, D(Tr(n))→ 1− 1

r as n→∞.

If α > ex(H), then if |G| sufficiently large and D(G) = α, we have H ⊂ G.

We can also define something similar for infinite graphs.

Definition. The upper density of an infinite graph G is

ud(G) = lim
n→∞

sup{D(H) : H ⊂ G, |H| = n}

again, ud(G) ∈ [0, 1]. If α < ud(G), then for sufficiently large n, G has subgraphs
of order n and density ≥ a. If α > ud(G), then for large n, G has no subgraphs
of order n and density ≥ α.

A priori, it seems that ud(G) could talke any value in [0, 1]. But a very surprising
result is that

Corollary. (16)
For any infinite graph G,

ud(G) = {0, 1, 1

2
,

2

3
,

3

4
,

4

5
, ...}

are the only possible values.

Proof. We will show that for r = 1, 2, 3, ..., ud(G) > 1− 1
r gives ud(G) ≥ 1− 1

r+1 .
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Suppose ud(G) > 1− 1
r . Pick α s.t. ud(G) > α > 1− 1

r . Fix n. For sufficiently
large N , G has subgraphs of order N and density ≥ α > 1− 1

r = ex(Tr+1(n)).
So Tr+1(n) ⊂ G. But d(Tr+1(n))→ 1− 1

r+1 as n→∞.

We can do this for every n. So ud(G) ≥ 1− 1
r+1 .

3.1.5 Proof of Erdös-Stone Theorem

Theorem 14 (E-S) says if a graph G has enough edges then Kr+1(t) ⊂ G.
Condition on e(G) ↔ condition on average degree.

However, given d and δ > 0, it tutrns out that any large graph of average degree
≥ d has a large subgraph of min degree ≥ d − δ. If G has average degree d
and |G| = n large, we can find H ⊆ G with |H| = Ω(n) and δ(H) ≥ d− δ (not
proved here. Delete vertices of min degree and it works.)

So we have an equivalent version of Erdös-Stone with minimum degree condition:

Theorem. (14a)
Let r, t ≥ 1 be integers and ε > 0 be real. Then ∃n0∀n ≥ n0, |G| = n,
δ(G) ≥ (1− 1

r + ε)n =⇒ Kr+1(t) ⊂ G.

Proof. We do induction on r. Fix T such that T > ( 2
rε )t(t− 1). then choose n0

s.t. for all n ≥ n0, |G| = n, δ(G) ≥ (1− 1
r + ε)n =⇒ Kr(T ) ⊂ G (How? when

r = 1, K1(T ) ⊂ G ⇐⇒ |G| ≥ T , and when r > 1, 1− 1
r > 1− 1

r−1 , so follows
from induction hypothesis)

Suppose the result is not true. Then we can find arbitrarily large n and graphs
G with |G| = n, δ(G) ≥ (1 − 1

r + ε)n, Kr+1(t) 6⊂ G. Pick such an n, G with
n ≥ n0 and also n ≥ 2t

rε . Then we can find Kr(T ) ⊂ G, say with vertex classes
X1, ..., Xr.

Let A = {(w, v1, ..., vr) : |w| = t, w ⊂ V (G)∀ivi ∈ Xi,∀i,∀w ∈ W, vi ∼ w}.
What can we say about |A|?

First, given v1 ∈ X1, ..., vr ∈ Xr, then we can check from minimum degree
condition that |Γ(v1)∩ ...∩Γ(vr)| ≥ rεn. So at least

(
rεn
t

)
choices for W . Hence

|A| ≥ T r
(
rεn
t

)
.

On the other hand, given the set W , as Kr+1(t) we know there is some Xi

containing at most t− 1 vertices joined to all of W .

Hence |A| ≤
(
n
t

)
(t− 1)T r−1. Thus

T r
(
rεn

t

)
≤
(
n

t

)
(t− 1)T r−1

Now RHS≤ nt

t! (t− 1)T r−1, and LHS≥ T r 1
t! (rεn− t)

t.
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Thus T r( rεn2 )t ≤ nt(t− 1)T r−1, hence

T ≤ (
2

rε
)t(t− 1)

Contradiction.

3.2 Hamiltonian Graphs

Definition. A Hamilton cycle in a graph G is a cycle of length |G|, i.e. going
through all vertices of G.

If G has a Hamilton cycle we say G is Hamiltonian.

It’s obvious that we can construct a graph that is not Hamiltonian as large as
we want. Even more, the graph can have almost

(
n
2

)
edges. A more interesting

problem is, what if we condition on δ(G)?

Theorem. (17, Dirac’s theorem) Let |G| = n ≥ 3 and δ(G) ≥ n
2 . Then G is

Hamiltonian.

Remark. This result is best possible: when n even we pick the disjoint union
of two Kn/2, and for n odd we have two K(n+1)/2 meeting only at one point.

Of course, there are Hamiltonian graphs of much smaller minimum degree, so
this is not a necessary condition.

Proof. First, observe that G is connected: If, say x 6∼ y, then |Γ(x)∪Γ(y)| ≤ n−2
but that sum is at least n, so they are not disjoint, i.e. there is a path from x to
y.

Let v0, v1, ..., vk be a path of maximal length in G (length k ≤ n − 1). By
maximality, Gamma(v0) ⊂ {v1, ..., vk}, and the similar inclusion holds for Γ(vk).
Let A = {i ∈ [k] : v0 ∼ vi} and B = {i ∈ [k] : vk ∼ vi−1}. Then |A∪B| ≤ k < n
but |A| + |B| ≥ n

2 + n
2 = n, hence ∃i ∈ A ∩ B. So we have a cycle C =

v0v1...vi−1vkvk−1...viv0 of length k + 1. If k = n− 1 then we’ve got a Hamilton
cycle. If k < n − 1, relabel the cycle as C = u0u1...uku0. By connectivity we
have some ui ∈ C and w 6∈ C with w ∼ ui. Then wui...uku0...ui−1 is a path of
length k + 1. Contradiction.

Remark. The same proof gives the following: let n > k ≥ 3 and let G be a
connected graph with δ(G) ≥ k

2 . Then G contains a path of length k, and a

cycle of length at least k+2
2 .

Konigsberg bridge problem seems superficially similar, but in fact much less
interesting.

Definition. A circuit in a graph G is a sequence v0...vk of vertices of G, not
necessarily distinct, with vk = v0, if 1 ≤ i ≤ k then vi−1 ∼ vi and each edges
vi−1vi and vj−1vj are distinct. It is an Euler circuit if for every e ∈ E(G) there
is some i with e = vi−1vi.
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If G has an Euler circuit, we say G is Eulerian. Apparently we are only interested
in connected graphs (although we could have G not connected but Eulerian,
with some degree zero vertices).

Proposition. (18)
Let G be a connected graph. Then G Eulerian ⇐⇒ ∀v ∈ G, d(v) is even.

Proof. =⇒ is obvious. For the other way, we do induction on G. The case
e(G) = 0 is trivial. For e(G) > 0, let v0, ..., vk = C be a circuit in G of maximal
length. If C uses all edges of G then done. If not, delete all edges used in C
to form H. In H, every vertex still has even degree, let H1 be a component of
H with at least one edge. By induction hypothesis H1 has an Euler circuit D.
Certainly C and D must meet at some vertex v, otherwise G is not connected.
Join them at v to produce a longer circuit in G.
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4 Graph Coloring

Recall map-colouring problem: how many colours do we need to colour the
vertices of a graph that can be drawn with no crossings s.t. adjacent vertices get
different colours?

Definition. A k-colouring of a graph G is a function c : V (G)→ [k]. In proofs,
we often say ’blue’, ’yellow’ etc for 1,2,...

Note G has a k-colouring iff G is k-partite. So χ(G) is least number of colours
needed to colour G.

4.1 Planar Graphs

Definition. Let G = (V,E) be a graph. A drawing of G is an ordered pair
(f, γ) where f : V → R2 is an injection and γi : E → C([0, 1],R2) s.t.
(i) if uv ∈ E, then {γ(uv)(0), γ(uv)(1)} = {f(u), f(v)};
(ii) if e, e′ ∈ E with e 6= e′, then γ(e)((0, 1)) ∩ (γ(e′)((0, 1)) = φ;
(iii) if e ∈ E then γ(e) is injective; and
(iv) if e ∈ E and v ∈ V , then f(v) 6∈ γ(e)((0, 1)).

However the above definition is not important at all. Intuitively vertices cor-
respond to points, and edges corresponds to continuous curves between end
vertices, with no unnecessary intersections. If G has a drawing, we say is planar.

We don’t have to worry about topological problems (like space-filling curves)
because it is known that any planar graph can be drawn with piecewise-linear
edges (i.e. finitely many line segments).

Definition. Let G be a graph. A subdivision of G is a graph formed by repeated
selecting vw ∈ E(G), removing vw and adding vertex u and edges uv, uw.

Theorem. (19, Kuratowski’s theorem)
Let G be a graph. Then G is planar iff G contains no subdivision of K5 or K3,3.

Definition. A leaf of a tree is a vertex of order 1.

Proposition. Every tree of order at least 2 has a leaf.

Proof. Let T be a tree, |T | ≥ 2, and let v0...vk be a path of max length in T .
Now vk ∼ vk−1. But vk has no other neighbours in path (as T acyclic) and
vk has no other neighbours outside the path (by maximality). Hence vk is a
leaf.

Proposition. (21)
Let T be a tree, |T | = n ≥ 1. Then e(T ) = n− 1.

Proof. Do induction on n. Let N = 1. Then e(T ) = 0. Now if n > 1, let v be a
leaf. Then T − v is also a tree with |T − v| = n− 1, so by induction hypothesis
e(T − v) = n− 2. So e(T ) = n− 1.
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Proposition. (22)
Every tree is planar.

Proof. Let T be a tree, and |T | = n. Do induction on n. The case n = 0, 1 are
obvious. Now if n > 1, Let v ∈ T be a leaf. Now T − v is planar. Let u ∈ T
be the neighbour of v. Now pick a small circle such that it only contains the
centre u and some radii in drawing, without any other edges (this is always
possible because the number of edges in T − v is finite). Then we just place v at
anywhere in the circle and we’re done.

If we have a drawing of graph, it divides plane into connected regions called
faces. Precisely one of these regions is unbounded, called the infinite face.

Theorem. (23, Euler’s Formula)
Let G be a connected planar graph with |G| = n ≥ 1, e(G) = m. Suppose G is
drawn with l faces. Then n−m+ l = 2.

Proof. Induction on m. If G is a tree: m = n− 1, l = 1 so we are ok. Otherwise,
G has a cycle. Pick an edge e in the cycle and consider G− e. Then |G− e| =
n, e(G − e) = m − 1. Moreover, in our drawing, removing e combines two
faces, so we’ve drawn G − e with l − 1 faces. So by induction hypothesis,
n− (m− 1) + (l − 1) = 2. So n−m+ l = 2.

Corollary. (24)
Let G be planar, |G| = n ≥ 3. Then e(g) ≤ 3n− 6.

Proof. Let e(G) = m. Draw G with l faces. WLOG suppose it is connected
(else we add edges to it until it’s connected). A special case is G has 3 vertices
and 2 edges, but we’re ok with that as well. Otherwise, we know n−m+ l = 2.
Each face has at least 3 edges in boundary of at most 2 faces. So l ≤ 2m

3 . Thus
n−m+ 2

3m ≥ 2 so m ≤ 3n− 6.

We can use this to get a result on chromatic number of planar graphs:

Proposition. (25)
Any planar graph is 6-colourable.

Proof. Let G be planar, |G| = n. We do an induction on n. For n ≥ 6 it’s trivial.
For n > 6, by Corollary 24, e(G) ≤ 3n− 6. Hence δ(G) ≤ 5. Now pick v ∈ G
with d(v) ≤ 5. By induction hypothesis, G− v can be 6-coloured. Therefore so
can G.

A bit more work gives

Theorem. (26)
Any planar graph is 5-colourable.
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Proof. Let G be planar, |G| = n. Do induction on n, and n ≤ 5 is trivial. For
n > 5, as in prop 25 we can find v ∈ G with δ(v) ≤ 5 and 5−colour G − v. If
there is a colour missing in Γ(v) then we can 5-colour G. Otherwise, draw G;
wlog v has neighbours x1, ..., x5 in clockwise order around v with colours 1,...,5
respectively. Call a path in G− v an ij-path if all its vertices have colour i or j.
Given x ∈ G− v, the ij-component of x consists of those vertices reachable from
x along ij-paths. If x1, x3 are in different 13-components then swap colours 1,3
on the 13-component of x1 and give v colour 1. If not, then x2, x4 are in different
24-components (since the graph is planar) so swap colours 2,4 on 24-component
of x2 and give v colour 2. Then we can colour v accordingly.

Theorem. (27)
Any planra graph is 4-colourable.

Proof. Let G be planar, |G| = n. Induction on n. n ≤ 4 is trivial. If n > 4, pick
v ∈ G with d(v) ≤ 5, draw G, 4-colour G − v. If some colour missing on Γ(v)
then done. Otherwise there are 3 cases:
(1) d(v) = 4. Then similar argument would allow us to change the colour of
some vertex in Γ(v) and 4-colour G;
(2) d(v) = 5, say its neighbours are x1, ..., x5 clockwise, with colours 1, 2, 3, 4, 1
respectively. If there’s no 24-path from x2 to x4 then we are done. Otherwise,
there can’t be a 13-path from x3 to x1 or x5, so we swap colour of the 13-
component of x3 and colour v with 3.
(3) d(v) = 5, with neighbours x1, ..., x5 of colours 1,2,3,1,4 clockwise respectively.
If no 24-path from x2 to x5 then done; similarly, if no 34-path from x3 to x5

then we are done as well. Otherwise, swap colour 1,3 on 13-component of x1,
and swap colour 2,4 on 24-component of x4. Then x1 has turned colour 3 and
x4 has turned colour 2. Now we use colour 1 at v. So G is 4-colourable.

Remark. This proof is not examinable because it’s rubbish.

4.2 General graphs

We know G is planar =⇒ χ(G) ≤ 4. What can we say about χ(G) is not given
G planar?

Clearly χ(G) can be as large as we like, e.g. χ(Xk) = k.

Lower bounds:
(a) If Kk ⊂ G then χ(G) ≥ k.
The clique number of G is ω(G) = max{k : Xk ⊂ G}, then χ(G) ≥ ω(G).
However, sometimes this bound is not good: we can find G with ω(G) = 2 and
χ(G) arbitrarily large (example sheet 2).

(b) Suppose we have a colouring of G. Let W ⊂ V (G) be a colour class. Then
W is an independent set – no edges with W . The independence number of

G is α(G) = max{|W | : W ⊂ V (G),W independent}. Then χ(G) ≥ |G|
α(G) .

Sometimes this bound is not good either: for example, take G = Kk ∪ K̄k. Then

χ(G) = k, but |G|
α(G) = 2k

k+1 ≈ 2.
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We also have a simple upper bound: list vertices in some order, colour each in turn
using least colour not already used on its neighbours (Greedy algorithm). When
we colour v, at most d(v) ≤ ∆(G) colours unavailable. Thus χ(G) ≤ ∆(G) + 1.
(*)
But e.g. if G = K1,t, then χ(G) = 2, but ∆(G) = t. We are interested in for
which graphs G is (*) achieved. If G is complete, then χ(Kk) = k, ∆(Kk) = k−1;
if G is an odd cycle (say a 5-cycle) then χ(G) = 3, ∆(G) = 2. That’s all of them.

Theorem. (28, Brooks’ Theorem)
Let G be a connected graph that is neither complete nor an odd cycle. Then
χ(G) ≤ ∆(G).

Proof. We do induction on |G|. Write ∆ = ∆(G). We cannot have ∆ = 0, 1 as
G 6∼= K1,K2. If ∆ = 2 then G is a path or an even cycle, so χ(G) = 2. So we
assume ∆ ≥ 3.
Pick v ∈ G and let H be a component of G − v. We have either ∆(H) < ∆,
in which case by greedy algorithm bound we have χ(H) ≤ ∆(H) + 1 ≤ ∆, or
∆(H) = ∆. Then H is connected and not odd cycle (as ∆ ≥ 3). Moreover,
∃u ∈ H with u ∼ v in G. In G, d(u) ≤ ∆ so in H, d(u) ≤ ∆− 1. So H is not
regular, so not complete. Hence by induction hypothesis, χ(H) ≤ ∆.
We do this for each component of G− v to obtain a ∆-colouring c of G− v. If
ther is a colour missing from Γ(v), then use that colour at v. So assume that
is not the case. So we have Γ(v) = {x1, ..., x∆} with ∀ic(xi) = i. We can also
assume:
(i) if i 6= j then there is an ij-path Pij from xi to xj ,
(ii) if i 6= j then Pij is entire ij-component containing xi, xj , and
(iii) if i, j, k distinct then Pij , Pik meet only at xi.
(Why? If any of these fails then it is easy to check that the colouring c can be
modified to change the colour of xi (and allowing us to use colour i at vi – not
trivial, check).
As G 6∼= K∆+1, there are some i, j with i 6= j, xi 6∼ xj . As ∆ ≥ 3, pick
k ≥ [∆] \ {i, j}. Let u be the neighbour of xi of colour j. Now swap colour i
and k on the ik-component of xi (i.e. on Pik). This gives a new colouring c′,
with c′(xi) = k, c′(xk = i). Also, if w ∈ Pij with w 6= xi then c′(w) = c(w). So
c′(xj) = c′(u) = j. By (i) there is a kj-path from xi to xj , P

′
kj . By (ii), u ∈ P ′kj .

By (i), there is a ji-path P ′ji from xj to xk. By (ii), u ∈ P ′ji. But now P ′kj and
P ′ji meet at u, which is not in the neighbourhood of v, so is not one of the xi.
This contradicts with (iii).

4.3 Graphs on surfaces

For a surface S, we define the chromatic number of S to be max{χ(G)} where
G can be drawn on S.

W’ll also use the Euler-Poincare Formula without proof: if G can be drawn with
l faces, |G| = n, e(G) = m, then n−m+ l ≥ E.

Theorem. (Heawood’s Theorem)
Let S be a closed boundaryless surface of Euler characteristic E ≤ 1. Then
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χ(S) ≤ b 7+
√

49−24E
2 c.

Proof. Let χ = χ(S). Let G be a minimal χ−chromatic graph that can be
drawn on S -i.e. χ(G) = χ but H ⊂ G,H 6= G =⇒ χ(H) ≤ χ − 1. Clearly
G is connected and |G| ≥ χ. Let |G| = n ≥ χ, e(G) = m and draw G on S
with L faces. Then by Euler-Poincare, n −m + l ≥ E. As before, l ≤ 2

3m so

n− 1
3m ≥ E so m ≤ 3n− 3E. Hence δ(g) ≤ 2m

n ≤
6n−6E
n = 6− 6E

n (*). On the
other hand, if v ∈ G then G − v is (χ − 1)-colourable and this colouring does
not extend to a (χ− 1)-colouring of G. So d(v) ≥ χ− 1. Hence δ(G) ≥ χ− 1.
Combining this with (*) we get, if E ≤ 0: χ− 1 ≤ δ(G) ≤ 6− 6E

n ≤ 6− 6E
χ as

n ≥ χ. Hence χ2 − 7χ + 63 ≤ 0 and solve and we’ll get the desired result; if
E = 1, δ(G) ≤ 6 − 6

n < 6 so δ(G) ≤ 5 Hence χ − 1 ≤ 5, so χ ≤ 6 which also
satisfies the inequality.

Remark. Condition E ≤ 1 rules out only the sphere. The theorem is true for
sphere (4ct), but this proof doesn’t work if E = 2.

4.4 Edge Colouring

A k-edge-colouring of a graph G = (V,E) is a function φ : E → [k] s.t. if e, e′ ∈ E
with precisely one common vertex then φ(e) 6= φ(e′). The edge-chromatic number
of G is the minimum k s.t. G has a k-edge-colouring, denoted χ′(G). Clearly
∆(G) ≤ χ′(G) ≤ 2∆(G)− 1 by doing greedy. In fact,

Theorem. (30, Vizing’s theorem)
Let G be a graph. Then χ′(G) ≤ ∆(G) + 1.

Proof. Induction on e(G). When e(G) = 0 it’s trivial.
If e(G) > 0, let ∆ = ∆(G). Pick an edge xy1. By induction hypothesis, we can
find a (∆ + 1)-edge-colouring of G-xy1, φ, say. As ∆(G) < ∆ + 1, there is some
colour missing at each vertex. Let c1 be missing at y1. If c1 is also missing at
x then colour xy1 by c1. Otherwise, let y2 ∈ Γ(x) with φ(xy2) = c1, and let c2
be missing at y2. We continue inductively(*): given distinct y1, ..., yk ∈ Γ(x),
distinct colours c1, ..., ck missing at each yi, and φ(xyi+1) = ci. If ck is missing
at x, recolour xyi in colour ci and we are ok. Otherwise, let yk+1 ∈ Γ(x) with
φ(xyk+1) = ck. Let ck+1 be missing at yk. If ck+1 6∈ {c1, ..., ck} we continue as
step (*); otherwise, assume wlog ck+1 = c1 (if instead ck+1 = cj for some other j,
we can uncolour xyj , recolour xyi in colour ci (1 ≤ i < j) and relabel yj , yj+1, ..
as y1, y2, ...). Let c be a colour missing at x. Consider the cc1-subgraph of G,
i.e. only edges coloured c or c1. This subgraph has max degree ≤ 2 so each
component is a path or a cycle. Moreover, x, y1, yk+1 have degree ≤ 1 in this
subgraph. So x, y1, yk+1 are not all in teh same component. If x, y1 are in
different components then swap c, c1 on the component of y1 and give xy1 colour
c. Otherwise, x, yk+1 are in different components. In this case, uncolour xyk+1

and recolour xyi with colour i (1 ≤ i ≤ k). Then swap colours c, c1 on the cc1
component of yk+1 and give xyk+1 colour c.
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5 Connectivity

5.1 The Marriage Problem

Legal note: This problem was proposed in 1935, so marriage has 1 man and 1
woman.

Suppose we have n women and n men. For each women, we have a list of
’suitable’ husbands. Can we marry everyone off?

We reformulate as a bipartite graph: X-women, Y -men, edge = suitable.

Definition. Let G be a bipartite graph with bipartition on (X,Y ). A matching
from X to Y is a set M ⊂ E(G) s.t. for all x ∈ X, there is a unique e ∈M with
x ∈ e, and for all y ∈ Y there is at most one e ∈M with y ∈ e.

When can we find a matching? Obviously we need ∀x ∈ X, |Γ(x)| ≥ 1. We also
need if x, y ∈ X distinct then |Γ(x) ∪ Γ(y)| ≥ 2. In general, if A ⊂ X then we
need |Γ(A)| = | ∪x∈A Γ(x)| ≥ |A|.

Surprisingly enough, this necessary condition is actually also sufficient.

Theorem. (31, Hall’s Marriage Theorem)
Let G be a bipartite graph with bipartition (X,Y ). Then G has a matching
from X to Y iff G satisfies the Hall’s condition: ∀A ⊂ X, |Γ(A)| ≥ |A|.

Proof. It’s obvious that this is a necessary condition.

To prove sufficiency, we go by induction on |X|. It’s trivial for |X| = 0, 1.

For |X| ≥ 2, an easy case is if |Γ(A)| > |A| for all A ⊂ X with A 6= φ,X. Pick
any x ∈ X. |Γ(x)| ≥ 1, so pick y ∈ Γ(x). Look at G−{x, y}. This graph satisfies
Hall’s condition, so has a matching from X − {x} to Y − {y}. Add edge xy.

The harder case is when |Γ(A)| = |A| for some A 6= φ,X. So we can split
the bipartite graph into two parts, A ∪ Γ(A), and X \ A and Y \ Γ(A). Now
for A ∪ Γ(A) we can find a matching between them by induction hypothesis;
for its complement, take B ⊂ X \ A. Then |ΓG2(B)| = |Γ(A ∪ B) \ Γ(A)| =
|Γ(A ∪B)| − |Γ(A)| ≥ |A ∪B| − |A| = |B|. Hence the complement also satisfies
Hall’s condition and has a matching from X \A to Y \ Γ(A). Combine the two
matchings we get a matching from X to Y in G.

Definition. Let G = (V,E) be a graph. A set F ⊂ E is independent if no two
edges in F share a vertex.

Note: a matching from X to Y is just a set of |X| independent edges.

Corollary. (32, Defect Hall)
Let G be bipartite with bipartition (X,Y ), and let d ≥ 1. Then G contains
|X| − d independent edges iff for all A ⊂ X, |Γ(A)| ≥ |A| − d.
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Proof. We only have to prove backward. In marriage terminology: introduce d
imaginary perfect men, suitable husbands for all the women. This satisfies Halls’
condition, so has matching from X to Y . So at most d women unmarried.

Corollary. (33, Polyandrons Hall)
Let G be a bipartite graph, bipartition (X,Y ), d ≥ 2. Then G contains a set of
d|X| edges, each vertex in X in precisely d of them, each vertex in Y in at most
one ⇐⇒ ∀A ⊂ X, |Γ(A)| ≥ d|A|.

Proof. We only have to prove backward as well. In marriage terminology, we
clone each women d− 1 times, so we have d copies of each. This satisfies Hall’s
condition, so have matching from X to Y . To finish up we just destroy the
clones.

Further extensions are possible, e.g.
1) (Variable polyandrons): Women x1, ..., xn; numbers d1, ..., dn ≥ 1. Give
woman xi di husbands.
2) (Defect polyandrons): Aim to give each women d husbands but allow d
’missing’ husbands.
3) (Harder) (Same sex) If G is a graph, we can find a 1-factor in G – i.e. a set

of |G|2 independent edges?

5.2 Connectivity

Let k ≥ 1. We say a graph G is k-connected if whenever W ⊂ V (G) with
|W | < k, then G−W is connected (Assume for now that G is not a complete
graph).

For example, 1-connected = connected.

G is 2-connected = G is connected and has no ’cutvertex’, i.e. a vertex that, if
removed, would disconnect the graph.

Definition. Let G be a graph and a, b ∈ V (G) be distinct. A collection of paths
from a to b is independent if the paths meet only at a and b.

Suppose for all distinct a, b ∈ G there are k independent paths from a to b. Then
G is k-connected.

Converse? If G is k-connected and can only find k − 1 independent ab-paths for
some a, b ∈ G then would like to say that ’delete one vertex from each path to
disconnect the graph, contradiction?’ But this doesn’t work.

In fact, the converse is true, but is not obvious.

Definition. Let G be a graph and A,B ⊂ V (G). An AB−path is a path that
meets A in its vertex and nowhere else, and meets B in its last vertex and
nowhere else.
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A set W ⊂ V (G) is an AB−separator if G−W contains no AB−path.

Remark. • Both A and B are AB−seperator.
• Suppose G is k-connected. Then as long as |A|, |B| ≥ k, we have that any
AB−separator W satisfies |W | ≥ k.
• Note we do not require A ∩ B = φ. If v ∈ A ∩ B then v is an AB-path (of
length 0). So any AB-separator necessarily contains A ∩B.

Theorem. (34)
Let G be a graph and A,B ⊂ V (G). Let k = min{|W | : W is an AB-separator}.
Then G contains k vertex-disjoint AB-paths.
Note that vertex disjoint means paths don’t even meet inside A or B.

We’ll prove this next time.

Corollary. (35, Menger’s Theorem)
Let G be an incomplete k-connected graph and let a, b ∈ V (G), a 6= b. Then G
contains k independent ab-paths.

Proof. Suppose first a 6∼ b. Let A = Γ(a) and B = Γ(b). We have k-connected
and G−A,G−B disconnected, so |A|, |B| ≥ k. Hence any AB-separator W has
|W | ≥ k, so by theorem 34 there are k vertex-disjoint AB paths. Extend these
to a, b. If instead a ∼ b, G− ab is (k− 1)-connected so has k− 1 independent ab
paths by first part. ab is another one (of length 1).

Definition. If G is an incomplete graph, the connectivity of G is

K(G) = max({k ≥ 1 : G is k-connected} ∪ {0})

In light of Menger, we define K(Kn) = n− 1 for n ≥ 2.

Proof. (of theorem 34)
We do induction on e(G). When e(G) = 0, the smallest AB-separator is A ∩B,
and each vertex of A ∩B gives an AB-path (of length zero).
When e(G) > 0, pick xy ∈ E(G). Let W be an AB-separator of minimum order
in G− xy. If |W | ≥ k then by induction hypothesis there are k vertex-disjoint
AB paths in G− xy and so also in G. So assume |W | < k. Then W ∩ {x} is an
AB-separator in G. Hence |W ∩{x}| ≥ k. So |W | ≥ k−1, so |W | = k−1. Write
W = {w1, w2, ..., wk−1}. As |W | < k, G−W contains an AB-path. This path
must include the edge xy. Assume wlog x comes before y on this path (if not,
swap x and y. Let X = W ∩{x} and Y = W ∩{y}. Let U be an AX-separator in
G−xy. Then U is an AB-separator in G, so |U | ≥ k. So by induction hypothesis,
we have k vertex-disjoint AX-paths in G − xy, say P0, P1, ..., Pk−1 ending at
x,w1, ..., wk−1 respectively. Similarly, there are k vertex-disjoint Y V -paths in
G−xy, say Q0, Q1, ..., Qk−1 starting at y, w1, ..., wk−1 respectively. Given paths
P = u0u1...ul and Q = v0v1...vm meeting only at ul = v0, write p ∨Q for the
path u0...ulv1...vm. Then P0 ∨ xy ∨ Q0 and Pi ∨ Qi (1 ≤ i ≤ k − 1) are k
vertex-disjoint AB-paths in G.

In fact, Hall’s Marriage Theorem is also a consequence of T34. Let G be a
bipartite graph with bipartition (X < Y ) s.t. ∀A ⊂ X, |Γ(A)| ≥ |A|. Let W be
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an XY -separator. Then Γ(X \W ) ⊂ Y ∩W . So |W | = |X ∩W |+ |Y ∩W | ≥
|X ∩W |+ Γ(X \W )| ≥ |X ∩W |+ |X \W | = |X|. Hence by theorem 34, we
have |X| vertex-disjoint XY -paths, i.e. a matching from X to Y .

5.3 Edge-connectivity

Definition. Let G be a graph with |G| ≥ 2 and let l ≥ 1. We say G is l-edge-
connected if whenever D ⊂ E(G) with |D| < l we have G-D connected. The
edge-connectivity of G is

λ(G) = max({l ≥ 1 : G is l-edge-connected} ∪ {0})

Corollary. (36, Edge Menger)
Let G be l-edge connected, and a, b ∈ V (G) be disjoint. Then G has l edge-
disjoint ab-paths.

Proof. If G = K2 it’s trivial. Suppose now G 6= K2. The line graph of G =
(V < E) is the graph L(G) = (E,F ) where F = {ee′ : e, e′ ∈ E, e, e′ share
precisely 1 vertex}. Then L(G) is l-connected. Pick a′, b′ ∈ E with a ∈ a′,
b ∈ b′, a′ 6= b′. By Menger, L(G) has l independent a′b′−paths. This yields l
edge-disjoint ab-paths in G.

There’s a small mistake. We need to change ’Let a′, b′ ∈ E be distinct with
a ∈ a′, b ∈ b′ to be ’Add extra vertices a′, b′ to L(G) with a′ joined to each
e ∈ E with a ∈ e and b′ joined to each e ∈ E with b ∈ e.
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6 Probabilistic techniques

6.1 The probabilistic method

Recall the Ramsey number R(s) is the least n s.t. if we colour Kn with edges
blue/yellow, then there exists a monochromatic Ks. In Chapter 1 we proved
that R(s) = O(4s), and in example sheet we knew R(s) = Ω(s3). Similarly but
much harder we can prove R(s) = Ω(s4). Remarkably,

Theorem. (37, Erdos)

R(s) = Ω(
√

2
s
).

Proof. Fix n, s. Colour each edge of Kn blue/yellow at random independently,
each colour equally likely. Given H ⊂ Kn with H ∼= Ks, P(Hs monochromatic) =

2P(H blue) = 2( 1
2 )(

s
2). So P(Kn has a monochromatic Ks) ≤

(
n
s

)
2( 1

2 )(
s
2) ≤

ns

s! 2( 1
2 )(

s
2) ≤ ns2−

s(s−1)
2 = ( n√

2
s−1 )s < 1 if n <

√
2
s−1

. So if n <
√

2
s−1

then

there is some colouring with no monochromatic Ks. So R(s) ≥
√

2
s−1

.

6.2 Modifying a random graph

In theorem 37, we can randomly colour Kn blue/yellow and find P(no monochro-
matic Ks) > 0. Hence ∃ colouring with no monochromatic Ks. In general, we
do something random which lead to the probability that the event we desired
happens is positive (*), then we can get a lower bound.

However, sometimes it’s too hard to prove (*) directly and we have to work a bit
harder. Instead, we can have the probability of thing we want ’almost happens’
being positive, then take an example where the thing ’almost happens’, and
modify it somehow to get what we want.

Recall the Problem of Zarankiewicz: we defined in chapter 2, z(n, t) to be
the greatest possible number of edges in a graph with n vertices in each class
containing no Kt,t. We proved upper bound: if t ≥ 2, z(n, t) = O(n2−1/t). How
about lower bounds?

Theorem. (38)

If t ≥ 2, then z(n, t) = Ω(n2− 2
t+1 ).

Proof. Strategy: given n, p, let G be a random bipartite graph with vertex classes
X,Y , |X| = |Y | = n, where for each x ∈ X, y ∈ Y , there is a chance p that xy is
an edge of G independently. Let A = e(G) and let B be the number of K ′t,ts in G,
so A,B are random variables. Aim: given n, try to choose p s.t. E(A−B) large,

specifically E(A − b) = Ω(n2− 2
t+1 ). Then we can find a specific graph G with

A−B = Ω(n2− 2
t+1 ). Remove an edge from each Kt,t in G to form a graph H with

no Kt,t and e(H) = Ω(n2− 2
t+1 ). Now EA = n2p, and EB =

(
n
t

)2
pt

2 ≤ 1
t!2n

2tpt
2

,
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so E(A − B) ≥ n2p − 1
t!2n

2tpt
2

. We want n2p = n2t = pt
2

. So we just pick

p = n
2−2t

t2−1 = n−
2

t+1 . Then E(A−B) ≥ (1− 1
t!2 )n2− 2

t+1 as required.

Recall in example sheet 2 we constructed a triangle free graph of large chromatic
number. In fact:

Theorem. (39)
Let g ≥ 3, k ≥ 2. Then there is a graph G with no cycles of length ≤ g and
χ(G) ≥ k.

Proof. Strategy: fix n and p. Let G be a random graph with n vertices, each
possible edge present independently with probability p. Let X be the number

of short cycles in G. Recall that χ(G) ≥ |G|
α(G) where α(G) is independence

number of G. For cycles, by ’short’ we mean of length ≤ g. Aim: pick n and
p such that (1) P(X > n

2 ) < 1
2 , and (2) P(α(G) ≥ n

2k ) < 1
2 . Then P(X > n

2 or
α(G) ≥ n

2k ) < 1, so we can pick a specific G such that X ≤ n
2 and α(G) < n

2k .
Remove a vertex from each short cycle to get H with |H| ≥ n

2 and α(H) < n
2k

so χ(H) > n/2
n/2k = k.

(1) For 3 ≤ i ≤ g, let Xi be the number of cycles of length i appearing
as subgraphs of G. Then EXi =

(
n
i

)
i!
i2p

i ≤ (np)i. Now X =
∑g
i=3Xi, so

EXi ≤
∑g
i=3(np)i < g(np)g as long as np ≥ 1 (*). By Markov inequality,

P(X > n
2 ) ≤ EX

n/2 < 2gng−1pg ≤ 1
2 if p ≤ ( 1

4g )1/gn1/g−1. Take p = ( 1
4g )1/gn1/g−1.

Then np = ( 1
4g )1/gn1/g ≥ 1 if n is sufficiently large, satisfying (*).

(2)

P(α(G) ≥ n

2k
) ≤

(
n

n/2k

)
(1− p)(

n/2k
2 )

≤ nn/2ke−p
n2

16k2

= exp{ n
2k

log n− n2

16k2
· ( 1

4g
)1/gn1/g−1} → 0

as the negative term in exp dominates when n→∞.

Properties of Expectation:
We used:
1. Lineartiy of expectation:
E(
∑n
i=1Xi) =

∑n
i=1 EXi.

e.g. we had G bipartite, n vertices in each class, each possible edge present
independently with probability p; let B be the number of Kt,t’s in G, we said

EB =
(
n
t

)2
pt

2

. Why?

Let H1,...,HN be the possible Kt,t’s (N =
(
n
t

)2
). Let Xi = 1 if Hi appears in

G, and 0 otherwise. So EXi = pt
2

. Then B =
∑N
i=1Xi, so EB =

∑N
i=1 EXi =

NEXi =
(
n
t

)2
pt

2

as desired.
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2. Markov’s Inequality:
If X is a non-negative r.v. with finite mean and λ > 0, then

P(X ≥ λ) ≤ EX
λ

To prove that, we have λ1{X≥λ} ≤ X. Take expectations, we get λP(X ≥ λ) ≤
EX).

3. Chebyshev’s Inequality:
Let X be a r.v. with finite mean µ and finite variance σ2. Then P(|X − µ| ≥
ε) ≤ σ2

ε for all ε > 0. To prove this, apply Markov to the r.v. (X − µ)2 with
mean σ2.

6.3 The Structure of Random Graphs

Given n ≥ 1 and p ∈ [0, 1], the probability space G(n, p) consists of all graphs
G with vertex set {1, 2, ..., n} where for i, j ∈ [n] distinct, P (ij ∈ E(G)) = p,
independently for different edges. What does a typical G ∈ G(n, p) look like? For
example, does G contains a triangle? Intuitively the answer should be usually
yes if p is ’large’, and usually no if p is ’small’. In fact, we have a ’sharp threshold’
for the answer.

First we consider an easier example: does G contain an edge? Let G ∈ G(n, p)
and let X = e(G). Let µ = EX =

(
n
2

)
p = Np, where N =

(
n
2

)
. By Markov, P(G

has an edge) = P(X ≥ 1) ≤ EX = Np. So if µ = Np → 0 as n→∞, then P(G
has an edge)→ 0, i.e. if p = o( 1

N ) = o(n−2), then P(G has an edge)→ 0.

What if p is bigger, say p = ω(n−2), in which case µ = Np →∞? We nned to
think about variance. What is V ar(X)?
Let e1, e2, ..., eN be the possible edges of G (N =

(
n
2

)
), and let Xi = 1 if

ei appears in G, and 0 if not. Then X =
∑N
i=1Xi. Now EXi = p, and

EX2
i = p, so V ar(Xi) = EX2

i − (EXi)
2 = p− p2. The Xi’s are independent, so

V ar(X) =
∑N
i=1 V ar(Xi) = N(p− p2) = σ2, say.

By Chebyshev, P(X = 0) ≤ P(|x − µ| ≥ µ) ≤ σ2

µ2 = N(p−p2)
(Np)2 = 1

Np −
1
N =

1
µ −

1
N ≤

1
µ → 0 as n → ∞. So if p = ω(n−2), then P(X = 0) → 0. So

P(X ≥ 1)→ 1. In other words, P(G has an edge)→ 1.

We have proved that p = n−2 is a ’sharp threshold’ for G = G(n, p) to have an
edge, in the sense that:
• If p = o(n−2), then almost every G ∈ G(n, p) has no edge, whereas
• If p = ω(n−2) then almost every G ∈ G(n, p) has an edge.

Here we say ’almost every G ∈ G(n, p) has property Q’ to mean P(G ∈ G(n, p)
has Q) → 1 as n → ∞. Note that the term ’almost every’ has some different
meaning in some other course.

More generally, let A1, ..., An be events, X is the number of Ai that occur. Then
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X =
∑n
i=1Xi where Xi = 1 if Ai occurs, and 0 if not. So EXi = P(Ai). Hence

by linearity of expectation, EX =
∑n
i=1 P(Ai).

We know V ar(X) = EX2 − (EX)2. Now

EX2 = E[(

n∑
i=1

Xi)
2]

= E[(

n∑
i=1

Xi)(

n∑
j=1

Xj)]

= E
n∑
i=1

n∑
j=1

XiXj

=

n∑
i=1

n∑
j=1

E(XiXj)

=

n∑
i=1

n∑
j=1

P(Ai ∩Aj)

and (EX)2 = (
∑n
i=1 P(Ai))

2 =
∑n
i=1

∑n
j=1 P(Ai)P(Aj). Hence

V ar(X) =

n∑
i=1

n∑
j=1

(P(Ai ∩Aj)− P(Ai)P(Aj))

Note that, if Ai, Aj are indepndent, then the term in the sum is 0. So independent
pairs do not contribute to this sum.

Proposition. (40)
p = 1/n is a sharp threshold for G ∈ G(n, p) to contain a triangle, in the similar
sense as the above for an edge.

Proof. Let G ∈ G(n, p) and let X be the number of triangles in G. Let µ = EX
and σ2 = V ar(X). Then µ =

(
n
3

)
p3 ∼ 1

6 (np)3. Also, σ2 =
(
n
3

)
(p3 − p6) +(

n
3

)
3(n− 3)(p5 − p6) ≤ n3p3 + n4p5.

Suppose first p = o( 1
n ), i.e. np→ 0. Then by Markov, P(X = 0) = 1− P(X ≥

1) ≥ 1 − µ → 1 as n → ∞. Suppose instead p = ω( 1
n ) so np → ∞. Then by

Chebyshev,

σ2

µ2
≤ 1

µ2
(n3p3 + n4p5) ∼ 36

n6p6
(n3p3 + n4p5) =

36

(np)3
+

36

n · np
→ 0

as n→∞.

Following the same idea we should be able to find this threshold for any fixed
graph, the only problem is just that the variance calculation is much harder.

Another question is, what is the clique number ω(G) for typical G ∈ G(n, p)?



6 PROBABILISTIC TECHNIQUES 35

Theorem. (41)
There exists a function d : N → N such that a.e. G ∈ G(n, 1/2) has ω(G) ∈
{d− 1, d, d+ 1} (where d = d(n)).

Proof. (sketch)
Let G ∈ G(n, 1/2). Given k, let Xk be the number of Kk’s in G. Then

EXk =
(
n
k

)
2−(k

2) = g(k), say. We seek d with g(d) ≈ 1. If 1 � k � n, then

g(k) ≈ 1
k!n

k2−k
2/2 so log2 g(k) ≈ k log2 n− log2 k!− k2/2. We want g(d) = 1 so

log2 g(d) ≈ 0 so d ≈ 2 log2 n. In fact, we can find d ∼ 2 log2 n s.t. g(d) ≥ 1 and
g(d+ 1) < 1.

Suppose k ∼ 2 log2 n. Then

g(k + 1)

g(k)
=

n!k!(n− k)!

(k + 1)!(n− k − 1)!n!
2(k

2)−(k+1
2 )

=
n− k
k + 1

2−k

≤ n2−k ≈ 1

n
→ 0

as n→∞. Thus g(d+ 2)→ 0 and g(d− 1)→∞ as n→∞.

We must show:
1. P(Xd+1 = 0)→ 1 as n→∞, and
2. P(Xd−1 = 0)→ 0 as n→∞.

1.
P(Xd+2 = 0) = 1− P(Xd+2 ≥ 1)

≥ 1− EXd+2

= 1− g(d+ 2)→ 1

as n→∞ (by Markov).

2. Let µ = EXd−1 and σ2 = V ar(Xd−1). Note µ = g(d− 1)→∞. Now

σ2 =

d−1∑
i=2

(
n

d− 1

)(
d− 1

i

)(
n− (d− 1)

(d− 1)− i

)[
2−(2(d−1

2 )−(i
2)) − 2−2(d−1

2 )
]

Hence

σ2

µ2
≤
d−1∑
i=2

(
d−1
i

)(
n−d+1
d−1−i

)(
n
d−1

) 2(i
2) =

d−1∑
i=2

∆i

where ∆i is the above summand.

Now
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∆d−1 =
1(

n
d−1

)
2−(d−1

2 )
=

1

µ
→ 0,

∆d−2 =
(d− 1)(n− d+ 1)(

n
d−1

) 2(d−2
2 )

=
(d− 1)(n− d+ 1)(

n
d−1

)
2−(d−1

2 )
2−(d−2)

≤ 4nd2−d

µ

≈ 4n · 2 log2 n · n−2

µ
=

8 log2 n/n

µ
→ 0,

∆2 =

(
d−1

2

)(
n−d+1
d−3

)(
n
d−1

) · 2

≤
2
(
d−1

2

)(
n
d−3

)(
n
d−1

)
=

(d− 1)(d− 2)(d− 1)(d− 2)

n(n− 1)

∼ d4

n2
∼ 16(log2 n)4

n2
→ 0

It can be shown that these three terms dominate: the contribution to the sum
from ∆3, ...,∆d−3 is negligible. Thus σ2

µ2 → 0.

Now P(Xd−1 = 0) ≤ P(|Xd−1 − µ| ≥ µ) ≤ σ2

µ2 → 0 by Chebyshev.

Remark. 1. This also shows a.e. G ∈ G(n, 1/2) has ω(G) ∼ 2 log2 n = 2 logn
log 2 .

2. Same proof works to give same result for general p. Then

ω(G) ∼ 2 log n

log 1
p

Corollary. (42)

a.e. G ∈ G(n, p) has χ(G) ≤ (1 + o(1))n log 1/q
2 logn , where q = 1− p.

Proof. Let G ∈ G(n, p). Then Ḡ ∈ G(n, q). So by theorem 41, with probability
tending to 1 as n→∞, we have ω(Ḡ) ∼ 2 log nlog(1/q). So α(G) ∼ 2 logn

log(1/q) , so

χ(G) ≥ |G|
α(G) ∼

n log(1/q)
2 logn .
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7 Algebraic methods

Let G be a connected graph, u, v ∈ G. The distance from u to v is d(u, v), the
length of the shortest path from u to v. The diameter of G is maxu,v∈G d(u, v).

Graphs with diameter 1 are just Kn.

For diameter 2 we have many more possibilities. Question: How many vertices
can a graph of diameter 2 have if say ∆(G) = k? If we fix x ∈ G, then
V (G) = {x}∪Γ(x)∩Γ(Γ(x)). So |G| ≤ 1 + k+ k2− k = k2 + 1. Can we actually
achieve this?

Definition. A Moore graph is a graph G s.t. for some k, |G| = k2 +1, ∆(G) = k,
diameter of G is 2.

For which k can we find a Moore graph?

In general, if u, v ∈ G are distinct (G Moore), if u ∼ v then u, v have no
common neighbours, i.e. no triangles; if u 6∼ v, then u, v has exactly one common
neighbour, so no 4-cycles.

7.1 The Chromatic Polynomial

Suppose G is a k-colourable graph. How many k-colourings does G have?

Example. G = Kn, k < n: 0; k ≥ n: k(k − 1)...(k − n+ 1).

G a tree: can repeatedly remove leaves until we get down to a single vertex.
Reverse this order and do greedy: k(k − 1)|G|−1.

Write fG(k) for the number of k-colourings of G.

Definition. Let G be a graph and e = uv ∈ E(G). The contraction of G over e
is the graph G/e formed from G by deleting vertices u, v, adding a new vertex
e∗ with Γ(e∗) = Γ(u) ∪ Γ(v).

Theorem. (43, cut-fuse relation)
Let G be a graph, e ∈ E(G), k ≥ 1. Then fG(k) = fG−e(k)− fG/e(k).

Proof. Let e = uv. Let c be a k-colouring of G − e. If c(u) 6= c(v) then c
is a k-colouring of G, and every k-colouring of G arises uniquely like this. If
c(u) = c(v), then c yields a k-colouring of G/e, and every k-colouring of G/e
arises uniquely like this.

Corollary. (44)
Let G be a graph. Then fG is a polynomial.

Proof. Induction on e(G). if e(G) = 0 we have fG(k) = k|G|. If e(G) > 0, pick
e ∈ E(G). Then fG−e, fG/e are polynomials by induction hypothesis, and hence
fG as their sum is a polynomial.
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In light of this, we call fG the chromatic polynomial of G.

The original motivation is to study the four-colour theorem. We can rephrase
the 4CT as If G is planar, then fG(4) 6= 0. The idea is to do something algebraic
to prove this. The aim was to prove if G is planr and α is a root of fG then
α < 4. Unfortunately, no one managed to do this. However, fG carries some
information about G. For example:

Corollary. (45)
If |G| = n, e(G) = m, then fG(X) = Xn − mXn−1 + ..., i.e. the top two
coefficients depend completely on |G| and e(G).

Proof. Induction on e(G). When e(G) = 0, clearly f(X) = Xn. When e(G) > 0,
pick e ∈ E(G). Then fG(X) = fG−e(X)− fG/e(X) = Xn− (m− 1)Xn−1 + ...−
Xn−1 − .... So done.

7.2 Eigenvalues

Definition. Let G be a graph with V (G) = {1, 2, ..., n}. The adjacency matrix
of G is the n× n matrix A where Aij = 1 if i ∼ j, and is 0 otherwise.

Note that the adjacency matrix is always real symmetric. Also it has 0 on its
diagonal. Now what is A2? We have (A2)ij = AikAkj = |Γ(i)∩Γ(j)|, the number
of common neighbours of i, j. In particular, (A2)ii = d(i). So tr(A2) = 2e(G).
More generally, (Al)ij is the number of ways to walk from i to j in l steps. We
define a walk of length l from u to v to be a sequence u = u0...ul = v of (not
necessarily distinct) vertices with ui−1 ∼ ui for 1 ≤ i ≤ l. So we can say (Al)ij
is the number of walks of length l from i to j.

If G is a graph, the eigenvalues of G are the eigenvalues of its adjacency matrix
A.

Note that change of labelling of vertices is effectively a reordering of basis, which
doesn’t affect eigenvalues. Also, A is real symmetric, so the eigenvalues are real,
A is diagonalizable, and we have a orthonormal basis of eigenvectors.

Sometimes it’s easy to spot eigenvalues/eigenvectors.

Example. if G = Kn, then (1, 1, ..., 1)T is an eigenvector with eigenvalue n− 1.
Also A+ I is rank 1 so nullity n− 1, so −1 is an eigenvalue with multiplicity
n− 1.

Example. If G = C4, then A has rank 2 so nullity 2. So 0 is an eigenvalue with
multiplicity 2. Also we note that 2 is an eigenvalue with eigenvector (1, 1, 1, 1),
and −2 is an eigenvalue with eigenvector (1,−1, 1,−1).

Let A have orthonormal basis e1, ..., en of eigenvectors with eigenvalues λ1 ≥ λ−
2 ≥ ... ≥ λn. Given x ∈ Rn, we can write x =

∑n
i=1 xiei, where

∑n
i=1 x

2
i = ||x||2.

If we let A act on this, we get Ax =
∑n
i=1 λixiei, so Ax · x =

∑n
i=1 λix

2
i . Hence

λ1 = max ||x|| = 1Ax · x, and λn = min ||x|| = 1Ax · x.
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Theorem. (46)
Let G be a graph, ∆(G) = G, λ an eigenvalue of G. Then |λ| ≤ ∆. Moreover, if
G is connected, then ∆ is an eigenvalue ⇐⇒ G is ∆-regular, in this case, ∆
has multiplicity 1 and eigenvector (1, 1, ..., 1)T .

Proof. Let A be the adjacency matrix and x an eigenvector with eigenvalue λ.
Let i be s..t |xi| is maximal. WLOG xi = 1 and ∀j, |xj | ≤ 1. Then

|λ| = |λxi| = |(Ax)i)| = |
n∑
j=1

Aijxj | = |
∑
j∈Γ(i)

xj | ≤
∑
j∈Γ(i)

|xj | ≤ d(i) ≤ ∆

Assume now G is connected. We first show backward: if G is ∆-regular, then
clearly (1, 1, ..., 1)T is eigenvector, with eigenvalue ∆.
To show forward, suppose ∆ is an eigenvalue. Then taking λ = ∆ in previous:

∆ = (Ax)i =
∑
j∈Γ(i)

xj

Hence d(i) = ∆ and ∀j ∈ Γ(i), xj = 1. Repeat: ∀j ∈ Γ(i) we jave d(j) = ∆
and ∀k ∈ Γ(j), xk = 1. Continuing, as G connected, ∀k we have d(k) = ∆ and
xk = 1. So G is ∆-regular.

7.3 Strongly Regular Graphs

Let k, b ≥ 1 and a ≥ 0. A graph G is (k, a, b)-strongly-regular if G is k-regular
and, for all x, y ∈ G with x 6= y,
• x ∼ y =⇒ |Γ(x) ∩ Γ(y)| = a,
• x 6∼ y =⇒ |Γ(x) ∩ Γ(y)| = b.

Note that a strongly regular graph is connected. Indeed, it has diamater ≤ 2.

A Moore graph is (k, 0, 1-s-r. Conversely, suppoer G is (k, 0, 1)-s-r with k ≥ 2.
Then ∆(G) = k, G has diameter 2. Pick x ∈ G. Then

|G| = |{x}|+ |Γ(x)|+ |Γ(Γ(x)) \ {x}| = 1 + k + k2 − k = k2 + 1

so G is a Moore Graph.

Let G be (k, a, b)-s-r. Let A be the adjacency matrix of G. Let |G| = n. By
theorem 46, k is an eigenvalue of multiplicity 1 with eigenvector (1, 1, ..., 1)T = v.
What about other eigenvalues? Let λ 6= k be an eigenvalue with eigenvector x.
Now

(A2)ij =

 k i = j
a i ∼ j
b i 6= j, i 6∼ j

So A2 = kI+aA+b(J−I−A), where J is a matrix with every entry 1. Applying
this to x, noting that x ⊥ v (since we have an orthonormal eigenbasis) giving
Jx = 0, we get λ2x = kx+ aλx− bx− bλx. Also x 6= 0, so cancel x and we get

λ2 + (b− a)λ+ (b− k) = 0
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So the remaining eigenvalues are λ =
(a−b)±

√
(b−a)2−4(b−k)

2 with multiplicities
r, s for + and − respectively. Now A is diagonalizable so r + s+ 1 = n (1), and
tr(A) = 0 so λr+µs+k = 0 (2). Take λ× (1) - (2), we get (λ−µ)s = λ(n−1)+k.

We have λ − µ =
√

(b− a)2 − 4(b− k), so s = 1
2

[
(n− 1) + (a−b)(n−1)+2k√

(b−a)2−4(b−k)

]
,

and so r = 1
2

[
(n− 1)− (a−b)(n−1)+2k√

(b−a)2−4(b−k)

]
. Hence we have proved:

Theorem. (47, Rationality condition)

Let G be (k, a, b)-s-r. Then 1
2

[
(n− 1)± (a−b)(n−1)+2k√

(b−a)2−4(b−k)

]
∈ Z as they are multi-

plicites.

Example. Consider Moore graphs again: we have a = 0, b = 1, n = k2+1. So we

need 1
2

[
k2 ± 2k−k2√

4k−3

]
∈ Z as a neccesary condition for the corresponding Moore

graph to exist. There are two possibilities: either 2k − k2 = 0, i.e. k = 2, or we

need k−3 = u2 for some u ∈ N with u|2k−k2. Then k = u2+3
4 and k2−2k = ut

for some t ∈ Z. Hence (u
2+3
4 )2−2(u

2+3
4 ) = ut. So u4−6u2 +9−8u2−24 = 16ut,

so u4 − 2u2 − 16ut− 15 = 0. Hence u|15. So u = 1, 3, 5, 15. Hence k = 1, 3, 7, 57.
Can we actually find these? k = 1 doesn’t work as it’s not diameter 2. We’ve
previously seen that for k = 2 we have C5, and for k = 3 we have the Petersen
graph. k = 7? n = 50, and it is in fact possible to construct that graph. k = 57?
n is too large, and this question is still open.

—end of course—
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