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1 Euclidean Geometry

1.1 Isometries

Let (., .) be the standard inner product (dot product) on the Euclidean space
Rn, i.e. for x, y ∈ Rn we have

(x, y) = x · y =

n∑
i=1

xiyi

The Euclidean norm, ||x|| =
√

(x, x).
The Euclidean distance function, d(x, y) = ||x− y||.

We know that (Rn, d) is a metric space.

Definition. A map f : Rn → Rn is an isometry of Rn if

d(f(P ), f(Q)) = d(P,Q)

for all P,Q ∈ Rn.

Isometries may be defined for any metric space.

Recall that a n× n matrix A is orthogonal if ATA = AAT = I.

For x, y ∈ Rn,
(Ax,Ay) = (Ax)T (Ay)

= xTATAy

= (x,ATAy)

So A is orthogonal iff (Ax,Ay) = (x, y) for all x, y ∈ Rn.

Now from the definition we see

(x, y) =
1

2
(||x+ y||2 − ||x||2 − ||y||2)

Thus A is orthogonal iff ||Ax|| = ||x|| for all x ∈ Rn.

If f(x) = Ax+ b for some b ∈ Rn, then d(f(x), f(y)) = ||A(x− y)||.

So f is an isometry iff A is an orthogonal matrix.

Theorem. 1.1
Every isometry f : Rn → Rn is of the form

f(x) = Ax+ b

for some orthogonal A and b ∈ Rn.

Proof. Let e1, ..., en be the standard basis. Put f(0) = b, f(ei) − b = ai for
i = 1, ..., n.
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Then
||a0|| = ||f(ei)− f(0)||

= d(f(ei), f(0))

= d(ei, 0)

= ||ei||
= 1.

for i 6= j,

(ai, aj) = −1

2
(||ai − aj ||2 − ||ai||2 − ||aj ||2)

= −1

2
(||f(ei)− f(ej)||2 − 2)

= −1

2
(||ei − ej ||2 − 2)

= 0.

Thus {ai} is an orthonormal basis.

So the matrix
A = (a1 a2 ... an)

is orthogonal.

Now let g(x) = Ax+ b. We just have to prove that f = g.

We know g is an isometry. Also, g(x) = f(x) for x = 0, e1, ..., en, and

g−1(x) = A−1(x− b) = AT (x− b)

hence h = g−1 ◦ f is an isometry fixing 0, e1, ..., en.

We need to prove that h = id. Consider x ∈ Rn. Write

x =

n∑
i=1

xiei

and

y = h(x) =

n∑
i=1

yiei

Then
d(x, ei)

2 = ||x||2 + ||ei|| − 2xi,

d(x, 0)2 = ||x||2,
d(y, ei)

2 = ||y||2 + 1− 2yi,

d(y, 0) = ||y||2

h is an isomtery, h(0) = 0, h(ei) = ei, h(x) = y. So ||x||2 = ||y||2. So xi = yi for
all i. So h = id.

Let Isom(Rn) be the set of all isometries of Rn. This is a group by composition
(the group of rigid motions of Rn).
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Example. Consider Reflections in an affine hyperplane H ⊂ Rn.

H = {x ∈ Rn : u · x = c}

where ||u|| = 1, c ∈ R is a given constant.

Reflection in H:
RH : x→ x− 2(x · u− c)u

is an isometry (see example sheet).

Observe: if x ∈ H then RH = x.

If a ∈ H, t ∈ R, then

RH(a+ tu) = (a+ tu)− 2((a+ tu) · u− c)u
= (a+ tu)− 2tu

= a− tu

That means RH fixes precisely the points in H.

Conversely, suppose S ∈ Isom(Rn) and S fixes H.

Given a ∈ H, define translation by a: Ta(x) = x+ a. Then set

R = T−aSTa ∈ Isom(Rn)

R fixes H ′ = T−a(H) by inspection. Notice 0 ∈ H ′, so H ′ is a vector subspace
of Rn.

If H = {x · u = c}, then H ′ = {x · u = 0}.

Then, whenever x ∈ H ′, we have

(Ru, x) = (Ru,Rx)

= (u, x)

= 0

So Ru ⊥ H ′, i.e. Ru = λu for some λ ∈ R.

But ||Ru||2 = 1 as ||u||2 = 1, so λ2 = 1, i.e. λ = ±1.



1 EUCLIDEAN GEOMETRY 6

Since R fixes 0 (0 ∈ H ′), R is a linear map by Theorem 1.1 and either R = idRn

or R = RH′ (corresponding to the matrix Diag(−1, 1, ..., 1)).

So S is either idRn or S = TaRH′T−a is a reflection.

Checking S when

λ = −1 : x→ x− a→ (x− a)− 2((x− a) · u)u→ x− 2(x · u− c)u
noting a · u = c. Thus S = RH .

We find that RH is the unique isometry of Rn which fixes H but is not identity.

It can be shown that every isometry of Rn is a composition of at most n + 1
reflections (example sheet 1).

From Theorem 1.1, the subgroup consisting of isometries fixing the origin is
{f(x) = Ax : AAT = I} is naturally isomorphic to O(n).

A ∈ O(n) =⇒ (detA)2 = 1 =⇒ detA = ±1.

Definition. The special orthogonal group, SO(n), consists of the matrices in
O(n) with determinant +1.

1.2 Orthogonal groups

A = (
a b
c d

) ⇐⇒ a2 + c2 = 1, b2 + d2 = 1, ab+ cd = 0 ⇐⇒ A ∈ O(2). (*)

Set a = cos θ, b = − sinϕ, c = sin θ, d = cosϕ for appropriate 0 ≤ θ, ϕ ≤ 2π. So
(*) says tan θ = tanϕ ∈ R ∪ {∞}. So θ = ϕ or θ = ϕ± π. Respectively,

A =

(
cos θ − sin θ
sin θ cos θ

)
is a rotation through θ about O. detA = 1, so A ∈ SO(2). The other possibility
is

A =

(
cos θ sin θ
sin θ − cos θ

)
fixes a line l and must be a reflection in l (see graph below). We have detA = −1.
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Remark. Orientation of a vector space on equivalence class of bases.

• Let v1, ..., vn and v′1, ..., v
′
n and A = (Aij) the respective matrix for change from

{vi} to {v′i}. Then the bases are ”equivalent”, i.e. have the same orientation iff
detA > 0.

We define an isometry f(x) = Ax+ b to be orientation-preserving if detA = 1,
orientaiton-reversing if detA = −1.

Now we consider the group O(3).

Consider first the case detA = 1. Then

det(A− I) = det(AT − I) = det(A(AT − I)) = det(I −A)

But A has dimension 3. So det(A − I) = 0. So +1 is an eigenvalue of A. So
∃v1 ∈ R3 (WLOG let ||v1|| = 1) s.t. Av1 = v1.

Set W = 〈v1〉⊥. Then

w ∈W =⇒ (Aw, v1) = (Aw,Av1) = (w, v1) = 0

So A|W is a rotation of 2-dimensional space W . Choose an orthonormal basis
{v2, v3} of W . Then w.r.t {v1, v2, v3}, A becomes1 0 0

0 cos θ − sin θ
0 sin θ cos θ


Now let detA = −1. Then −A has determinant 1, so is of the above form in
some orthonormal basis. So A takes the form−1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ


with ϕ = θ + π. This is a rotated reflection (pure reflection when φ = 0).

1.3 Curves in Rn

Definition. A curve Γ in Rn is a continuous function Γ : [a, b]→ Rn.

A dissection is D : a = t0 < t1 < ... < tN = b of [a, b].

Set Pi = Γ(ti) ∈ Rn, SD =
∑
i || ~PiPi+1||.

We define the length of Γ as
l = sup

D
SD

if this exists (i.e. finite).
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If D = (Pi = Γ(ti))
N
i=1 is a dissection of Γ and D′ is a refinement (contain extra

points) of D, then SD ≤ SD′ by triangle inequality.

Let Mesh(D) = maxi(ti − ti−1). Then, if the length l of Γ exists (i.e. finite),
then we have

l = lim
Mesh(D→0)

SD.

Note also l = min{l̃ : l̃ ≥ SD∀D}.

Proposition. 1.2
If Γ is continuously differentiable (C1), then the length of Γ is

l =

∫ b

a

||Γ′(t)||dt

Proof. Assume n = 3 to ease the notation. We have

Γ(t) = (f1(t), f2(t), f3(t)).

Given s 6= t in [a, b], use MVT for each fi, we get

fi(t)− fi(s)
t− s

= f ′i(ξi)

for some ξi ∈ (s, t).

f ′i is continuous on [a, b]. So f ′i is uniformly continuous. So ∀ε > 0, ∃δ = δ(ε) > 0
s.t. |t− s| < δ =⇒ |f ′i(xii)− f ′i(ξ)| < ε ∀ξ ∈ (s, t).

So

||Γ(t)− Γ(s)

t− s
− Γ′(ξ)|| = ||(f ′1(ξ1), f ′2(ξ2), f ′3(ξ3))− (f ′1(ξ), f ′2(ξ), f ′3(ξ))||

<
ε

3
+
ε

3
+
ε

3
= ε
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i.e.
||Γ(t)− Γ(s)− (t− s)Γ′(ξ)|| < ε(t− s)

Now let t = ti, s = ti−1, ξ = ti−1+ti
2 . So

(ti − ti−1)||Γ′( ti−1 + ti
2

)|| − ε(ti − ti−1) ≤ ||Γ(ti)− Γ(ti−1)|| ≤ (ti − ti−1)||Γ′( ti + ti−1

2
)||+ ε(ti − ti−1)

So∑
i

(ti − ti−1)||Γ′( ti + ti−1

2
|| − ε(b− a) < SD <

∑
i

(ti − ti−1)||Γ′( ti + ti−1

2
)||+ ε(b− a)

But ||Γ′(t)|| is continuous, hence integrable. So

∑
i

(ti − ti−1)||Γ′( ti + ti−1

2
)|| →

∫ b

a

||Γ′(t)||dt

as Mesh(D)→ 0.

Thus the length of Γ is

l = lim
Mesh(D)→0

SD =

∫ b

a

||Γ′(t)||dt.
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2 Spherical Geometry

Denote S = S2 ⊂ R3 the unit sphere in with centre origin.

Definition. A great circle a.k.a (spherical) line in S2, is S2∩ a plane through
the origin.

Given two distincts non-antipodal points P,Q ∈ S2, there exists a unique line in
S2 through P,Q (as P,Q and the origin fix a plane).

Definition. For P,Q ∈ S2, the distance d(P,Q) is the length of the shorter
of the two spherical line segments PQ along the great circle through P and Q.
d(P,Q) = π if P,Q are antipodal.

Note that d(P,Q) = angle between P = ~OP and Q = ~OQ = cos−1(P ·Q).

A spherical triangle ABC is defined like a Euclidean triangle, but withAB,BC,CA
line segments in S2 with lengths < π.

Notation. Write A = ~OA and etc.
Set

n1 =
C×B

sin a
,

n2 =
A×C

sin b
,

n3 =
B×A

sin c
.

These are unit normals to the planes OBC,OCA,OAB, pointing out of the solid
OABC.

α, β, γ are the angle between planes defining respective sides of ABC.

Note 0 < α, β, γ < π. So (angle between them)n̂2, n3 = π − α, n2 · n3 = − cosα.
Similarly, n1 · n2 = − cos γ, n1 · n3 = − cosβ.
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Theorem. 2.1 (Spherical cosine rule)
For a spherical triangle, we have

sin a sin b cos γ = cos c− cos a cos b.

Proof. Use (C×B) · (A×C) = (A ·C)(B ·C)− (C ·C)(B ·A) and∑
k

εijkεklm = δilδjm − δimδjl

from vector calculus. We know |C| = 1. So

RHS = (A ·C)(B ·C)− (B ·A)

So

− cos γ = n1 · n2 =
C×B

sin a
· A×C

sin b
=

(A ·C)(B ·C)− (A ·B)

sin a sin b
=

cos b cos a− cos c

sin a sin b

which is equivalent to what is required.

Corollary. 2.2 (Pythagoras for S2)
If γ = π

2 , then cos c = cos a · cos b.

Theorem. 2.3 (Spherical sine rule)
For a spherical triangle, we have

sin a

sinα
=

sin b

sinβ
=

sin c

sin γ

Proof. Use
(A×C)× (C×B) = (C · (B×A))C

from vector calculus. Recall n̂1, n2 = π − γ. We have

LHS = −(n1 × n2) sin a sin b

So n1 × n2 = C sin γ, as from RHS we see that this is a multiple of C. So

C · (A×B) = sin a sin b sin γ = A · (B×C) = sin b sin c sinα

Multiply by 1
sinα sin β sin γ we get

sin c

sin γ
=

sin b

sinβ
=

sin a

sinα

We have seen cosine and sine rules for spherical triangles. There is a second
cosine rule (Sheet 1 Q15).
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Remark. Recall for small a, b, c, sin a = a+O(a3), cos a = 1− a2

2 +O(a4). We
get the Euclidean versions in the limit a, b, c→ 0.

e.g. in Theorem 2.1,

ab cos γ = 1− c2

2
−
(

1− a2

2

)(
1− b2

2

)
+O(||(a, b, c)||3)

=⇒ c2 + 2ab cos γ = a2 + b2 +O(||(a, b, c)||3).

If γ = π, then C is in the line segment AB. So c = a + b. Otherwise from
Theorem 2.1, cos c > cos a cos b − sin a sin b = cos(a + b), so c < a + b. Also
c < π, a+ b < 2π.

Corollary. (Triangle inequality)
∀P,Q,R ∈ S2, we have d(P,Q) + d(Q,R) ≥ d(P,R) (spherical distance), with
equality only if Q is in the line segment PR of the shorter length.

Proof. The only case not covered by the previous discussion is when d(P,R) = π,
i.e. P,R antipodal. ThenR is in the line PQ. So d(P,R) = d(P,Q)+d(Q,R).

So we find that (S2, d) is a metric space.

Proposition. 2.5
Given a curve Γ on S2 from P to Q with l = length(Γ), we have

l ≥ d(P,Q)

Moreover, if l = d(P,Q) then Γ is a spherical line segment.

Proof. Γ : [0, 1] → S2. length(Γ) = l =⇒ ∀ dissection D of [0, 1]: 0 = t0 <
t1 < ... < tN = 1, pi = Γ(ti),

S̃D :=

N∑
i=1

d(pi−1, pi) > SD =

N∑
i=1

| ~pi−1pi|

where RHS is R3 distance.

Using the fact sin θ < θ ∀θ > 0,
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Now suppose l < d(P,Q). Then we can choose ε > 0 s.t. (1 + ε)l < d(P,Q).
Now since sin θ

θ → 1 as θ → 0, 2θ ≤ (1 + ε)2 sin θ for small θ > 0.

Γ is uniformly continuous on [0, 1]. So we can choose a refinedD with d(pi−1, pi) ≤
(1 + ε)| ~pi−1pi|. So

S̃D ≤ (1 + ε)SD ≤ (1 + ε)l < d(P,Q)

But S̃D ≥ d(P,Q) by triangle inequality (applied many times). Contradiction.
So l ≥ d(P,Q).

Suppose now l = d(P,Q) for some Γ : [0, 1]→ S. Then ∀t ∈ [0, 1],

d(P,Q) = l = lengthΓ|[0,t] + lengthΓ|[t,1]

≥ d(P,Γ(t)) + d(Γ(t), Q)

So d(P,Q) = d(P,Γ(t)) + d(Γ(t, Q) ∀t. So Γ(t) is in the shorter spherical line
segment PQ.

Sheet 1 Q4 is the Euclidean version of this discussion.

Remark. If Γ is a curve in S2 of minimal length from P toQ, then Γ is a spherical
line segment. Further, from the proof of proposition 2.5, length(Γ|[0,t]) =
d(P,Γ(t)) ∀t ∈ [0, 1]. So the parameterisation of Γ is monotonic, i.e. the distance
increases as t increases.

Proposition. 2.6 (Gauss-Bonnet theorem for S2)
If ∆ is a spherical triangle with angles α, β, γ, then

area(∆) = (α+ β + γ)− π.

Proof. A double lune with angle 0 < α < π is two regions on S cut out by 2
planes through antipodal points, say A and A′, where α is the angle between
the plane.
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The area of double lune is 4α (noting it is proportional to α, and area(S2) = 4π).

∆ = ABC is the intersection of 3 single lunes. So ∆ and its antipodal ∆′ is a
subset of each of 3 double lunes with angles α, β, γ.

Any other P 6∈ ∆ ∪∆′ is in only one double lune.

Thus 4(α+ β + γ) = 4π + 2 · (2∆) which gives the desired result.

Remark. (i) On S, we have α+ β + γ > π (→ π as a, b, c→ 0).
(ii) For convex n-gon, area(M) =

∑n
i=1 αi − (n− 2)π (cut into triangles).

2.1 Möbius geometry

Consider C∞ = C ∪ {∞} with coordinates ζ = x+ iy.
The stereographic projection π : S2 → C∞:
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is π(P ) = (NP ) ∩ {z = 0} ∼= C ∼= R2, π(N) =∞ where N = (0, 0, 1).

By Euclidean geometry we can get

π(x, y, z) =
x+ iy

1− z

Lemma. 2.7
If π′ is the stereographic projection from (0, 0,−1) (South pole), then

π′(P ) =
1

π(P )

∀P ∈ S2.

Proof. Let P = (x, y, z). Then π(P ) = x+iy
1−z , π′(P ) = x+iy

1+z . So

π(P ) · π′(P ) =
x2 + y2

1− z2
= 1

Note: π′ ◦ π−1 : C→ C takes ζ to 1
ζ
, the inversion in the unit circle {x2 + y2 =

1} = {|ζ| = 1}.
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If P = (x, y, z) ∈ S2, −P = (−x,−y,−z), then π(P ) = x+iy
1−z , π(−P ) = −x−iy

1+z .
So

π(P ) · π(−P ) =
−(x2 + y2)

1− z2
= −1.

So π(−P ) = − 1
ζ .

Möbius transformations act on C∞ and form a group G by composition. Any

A =

(
a b
c d

)
∈ GL(2,C) defines a Möbius map

ζ → aζ + b

cζ + d
.

For all λ ∈ C∗ = C\{0}, λA defines the same Möbius transformation.

Conversely, if A1, A2 give the same transformation, then ∃λ 6= 0 s.t. A1 = λA2.

So G ∼= PGL(2,C) = GL(2,C)/C∗. i.e. C∗ ∼= {λI : λ ∈ C∗} is a normal
subgroup.

It suffices to consider detA = 1. If det Ã = 1, A = λÃ, then 1 = det(λÃ) =
λ2 detA = λ2, i.e. λ = ±1.

So G ∼= PSL(2,C) = SL(2,C)/± I (group homomorphism SL(2,C)→ G.

On S2 we have rotations SO(3) acting as isometries (see Q5 ES 1).

Theorem. 2.8
Via the stereographic projection π, every rotation of S2 induces a Möbius map
defined by a matrix in the subgroup SU(2) ⊂ SL(2,C) (the Special Unitary
group of degree n is the group of n× n orthogonal matrix with determinant 1).
In the case n = 2, we have

SU(2) =

{(
a −b
b̄ ā

)
: |a|2 + |b|2 = 1

}
(Incidentally, SU(2)↔ S3 ⊂ R4).

Proof. (1) rotations r(z, θ) about the z−axis R(0, 0, 1) through angle θ. The
corresponding Möbius map is ζ → eiθζ, i.e. a rotation of the complex plane,
with matrix (

e
iθ
2 0

0 e−
iθ
2

)
∈ SU(2).

(2) rotation r(y, π2 ) is  0 0 1
0 1 0
−1 0 0

xy
z

 =

 z
y
−x
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Which is rotation about y−axis through ±i, sending −1 → ∞, 1 → 0, i → i.
There is only one such Möbius map

ζ ′ =
ζ − 1

ζ + 1

checking, this Möbius map gives r(y, π2 ): ζ = x+iy
1−z . So

ζ − 1

ζ + 1
=
x+ iy − 1 + z

x+ iy + 1− z
=

x− 1 + z + iy

x+ 1− (z − iy)
=

(z + iy)(x− 1 + z + iy)

(x+ 1)(z + iy) + (x2 − 1)

=
(z + iy)(x− 1 + z + iy)

(x+ 1)(z + iy + x− 1)
=
z + iy

1 + x
= ζ ′

r(y, π2 ) corresponds to Möbius map with

1√
2

(
1 −1
1 1

)
∈ SU(2).

(3) SO(3) is generated by r(y, π2 ) and r, (z, θ) for 0 ≤ θ < 2π.

Observe r(x, ϕ) = r(y, π2 )r(z, ϕ)r(y,−π2 ) (we can see that by considering the
image of ex under this map).

Also, ∀v ∈ S2 which is some unit vector, we can find ϕ,ψ s.t. g = r(z, ψ)r(x, ϕ) :

v→

1
0
0

.

r(x, ϕ) rotates v into the (x, y)−plane. Then for any given rotation we can write

r(v, θ) = g−1r(x, θ)g

(4) Thus, via π, any rotation of S2 correspond to a composition of Möbius maps
of C∞ with matrices in SU(2).

This theorem gives a group homomorphism via π of SO(3) and PSU(2) =
SU(2)/±I. This is injective. In fact it is also surjective, so this is an isomorphism.

Theorem. 2.9
The group SO(3) of rotations of S2 corresponds precisely with the subgroup
PSU(2) = SU(2)/± I of Möbius transformations acting on C∞.

Proof. Let g ∈ PSU(2) ⊂ G. Then

g(z) =
az − b
b̄z + ā

Suppose first g(0) = 0, so b = 0, aā = 1, a = e
iθ
2 for some real θ. Then g

corresponds to r(z, θ), i.e rotation about z−axis through θ (notation of the proof
of Theorem 2.8).
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In general, g(0) = w ∈ C∞. Let Q ∈ S2, π(Q) = w. Choose A ∈ SO(3)

with A(Q) =

 0
0
−1

. Let α ∈ PSU(2) the corresponding Möbius map (exists

by Theorem 2.8). Then α(w) = 0, α ◦ g fixes 0. Hence α ◦ g corresponds to
B = r(z, θ̃). Thus g corresponds to A−1B.

We’ve now shown that there is a 2−to−1 map SU(2)→ PSU(2) ∼= SO(3) and
a group homomorphism SU(2) ∼= S3.
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3 Triangulations and the Euler number

First, let’s introduce one more ’geometry’ - the locally Euclidean torus.

Definition. The torus T is the set R2/Z2 of equivalence classes of (x, y) ∈ R2

with equivalence relation

(x1, y1) ∼ (x2, y2) ⇐⇒
{
x1 − x2 ∈ Z
y1 − y2 ∈ Z

Thus a point in T represented by (x, y) is a coset (x, y) + Z2 of the subgroup Z2

of the additive group R2.

For any closed square Q ⊂ R2 with side length 1, define the distance d, for
P1, P2 ∈ T to be

d(P1, P2) = min
{
|v1 − v2| | v1,v2 ∈ R2,vi + Z2 = Pi ∀i

}
.

It’s easy to check that (T, d) is a metric space.

Let Q◦ denote the interior of Q. We have a natural map f : Q◦ → T a natural
bijection onto open U ⊂ T .

If P ∈ Q◦, then f restricted to a small open disc about P is an isometry. So
f : Q◦ → U is a homomorphism.

d is said to be a locally Euclidean distance function (for Euclidean metric).

Remark. T may also be ’embedded’ in R3.
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The distance function we set by considering curves in T ⊂ R3 is not the same.

Definition. A topological triangle on X (here we usually consider X being
either S2 or T ) is the image R ⊂ X of closed Euclidean triangle ∆ ⊂ R2 under
a homomorphism ∆→ R.

Example. A spherical triangle is a topological triangle (use a radial projection
to a plane in R3 from O).

Definition. A (topological) triangulation τ of X is a finite collection of topo-
logical triangles on X s.t.
• ∀ two triangles are either disjoint or meet in exactly one edge or meet in exactly
one vertex;
• each edge belongs to exactly two triangles.

Definition. The Euler number e = e(X, τ) is e = F − E + V where F is the
number of triangles, E is the number of edges, and V is the number of vertices.

A fact from algebraic topology: e is independent of the choice of τ , so in fact
e = e(X).

Example. Consider X = S2.

We have F = 8, E = 13, V = 6. So e = 2.
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Example. Consider X = T (imagine the diagonals are straight lines).

We have F = 18, E = 27, V = 9. So e = 0.

Note that in both cases we used geodesic triangles, i.e. edges are spherical or
Euclidean lines of S2 or T respectively.

Remark. Take a look again at the definition of a triangulation. We impose
X =

⋃F
i=1 ∆i (can be deduced from other conditions – exercise).

Proposition. 3.1
For every geodesic triangles of S2 or T , we have e being 2 or 0 respectively.

Proof. Denote ’faces’ of triangles ∆1, ...,∆F , and τi = αi + βi + γi, i = 1, ..., F ,
where αi, βi, γi are interior angles of the respective triangles. Then∑

τi = 2πV.

Also, 3F = 2E since every face has 3 edges and every edge is shared by 2 faces.
So F = 2E − 2F .

In the case of S2, by Gauss-Bonnet for S2 (Proposition 2.6), area ∆i = τi − π.
So

4π =

F∑
i=1

∆i =

F∑
i=1

(τi − π) = 2πV − πF

= 2πV − 2πE + 2πF

= 2πe

So e = 2.

In the case of torus T , we have τi = π ∀i as T is locally Euclidean. So

2πV =

F∑
i=1

τi = πF

So 2V = F = 2E − 2F . So V − E + F = 0.
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Remark. We may use topological polygonal decomposition (rather than topo-
logical triangles), and proposition 3.1 will still hold. Then considering S2, obtain
Euler’s formula

V − E + F = 2.
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4 Hyperbolic Geometry

• Revision of derivatives and the chain rule: let U ⊂ Rn be open, f = (f1, ..., fn) :
U → Rm is smooth (C∞) if each fi has continuous partial derivatives of every
order. This certainly implies differentiability (1st order partial derivatives are
continuous).

The derivative of f at a ∈ U is a linear map dfu : Rn → Rm (i.e. DF |a in
Analysis II), so that

||f(a+ h)− f(a)− dfa · h||
||h||

→ 0

as h→ 0 in Rn.

If m = 1, then dfn is expressed as
(
∂f
∂x1

(a), ..., ∂f∂xi (a)
)

via

(h1, ..., hn)→
n∑
i=1

∂f

∂xi
(a)hi

For general m, we may use the Jacobi matrix

J(f)a =

(
∂fi
∂xj

(a)

)
and h→ J(f)ah.

Example. Holomorphic (analytic) functions of complex variable f : U ⊂ C→ C.
f ′(z) is defined by

|f(z + w)− f(z)− f ′(z)w|
|w|

→ 0

as w → 0. Let f ′(z) = a+ ib, w = h1 + ih2. Then

f ′(z)w = (ah1 − bh2) + i(ah2 + bh1)

now R2 ∼= C, f : U ⊂ R2 → R2 then dfz : R2 → R2 is given by(
a −b
b a

)

Let U ⊂ Rn, v ⊂ Rp be open, f : U → Rm, g : V → U be smooth functions.
Then

f ◦ g : V → R

has derivative
d(f ◦ g)p = (df)g(p) ◦ (dg)p

for p ∈ V . Or, using the Jacobi matrices,

J(f ◦ g)p = J(f)g(p)J(g)p

by matrix multiplication.
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4.1 Riemannian metrics (on open sets of R2)

We use coordinates (u, v) ∈ R2, let V ⊂ R2 be open. A Riemannian matrix is
defined by giving C∞ functions E,F,G : V → R s.t.(

E(p) F (p)
F (p) G(p)

)
is a positive-definite matrix for every p ∈ V .

Thus ∀p ∈ V , the 2 × 2 matrix defines an inner product in R2(c.f. Linear
Algebra), i.e.

〈e1, e1〉p = E(p),

〈e2, e2〉p = G(p),

〈e1, e2〉p = F (p).

e.g. E = G = 1, F = 0 gives the standard Euclidean inner product.

Notation. We introduce the notation Edu2 +2Fdudv+Gdv2, where u : V → R,
v : V → R the coordinates are C∞ functions.

dup, dvp : R2 → R have derivatives (h1, h2)→ h1, (h1, h2)→ h2.

Thus du = dup, dv = dvp are elements of the dual space (R2)∗. Moreover they
are LI. So they form a basis of (R2)∗, which is the dual basis to the standard
basis of R2.

Thus du2, dudv, dv2 are bilinear forms on R2, with

du2(h, k) = du(h)du(k),

dudv(h, k) =
1

2
(du(h)dv(k) + du(k)dv(h),

dv2(h, k) = dv(h)dv(k)

corresponding to the matrices(
1 0
0 0

)
,

(
0 1/2

1/2 0

)
,

(
0 0
0 1

)

and so
Edu2 + 2Fdudv +Gdv2

is of the form (
E F
F G

)
.

Definition. The length of a smooth curve γ = (γ1(t), γ2(t)) : [0, 1]→ V ⊂ R2 is∫ 1

0

(
Eγ̇2

1 + 2F γ̇1γ̇2 +Gγ̇2
2

)1/2
dt

where the dot represents derivatievs with respect to t. Note that the integrand
is just 〈γ̇(t), γ̇(t)〉γ(t) (c.f. proposition 1.2).
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The area of a region W ⊂ V is defined as∫
W

(EG− F 2)1/2dudv

which is the Gram determinant.

Example. Consider V = R2 with Riemmanian metric

4(du2 + dv2)

(1 + u2 + v2)2

we shall see that via stereographic projection, π : S2 \ {N} → R2
u,v.

Recap on the Riemannian metrics. Suppose we have an open V ⊂ R2. We
may think of R2 as an affine space A2, or a vector space R2. It’s easy to have
identification A2 ∼= R2 (need to choose where to map the 0 ∈ R2). We can
attach a copy of R2 at P ∈ A2.

Now P ∈ S2 \ {N}, P 6= N . The tangent plane to S2 at P is

{x ∈ R3 : x ·
−−→
OP = 0}

x =
−−→
OX −

−−→
OP . Consider π(P ) = (u, v) ∈ R2 where π is the stereographic

projection.

Example. (see sheet 3)

For all x1, x2 ⊥
−−→
OP , x1 · x2 = 〈dπ|P (x1), dπ|P (x2)〉π(P ).

This formula defines an inner product 〈·, ·〉π(P ) on a ’copy of R2’ at π(P ).

Thus we induced an instance of Riemannian metric on V = R2 using dπP for
P ∈ S2 \ {N}.
Definition. Let V, Ṽ ⊂ R2 be open and endowed with Riemannian metrics.
Denote 〈·, ·〉P , O ∈ V and 〈·, ·〉∼Q, Q ∈ Ṽ the respective inner products.

A diffeomorphism ϕ : V → Ṽ is called an isometry iff for all P ∈ V , Q = ϕ(p)
we have

〈x,y〉P = 〈dϕP (x), dϕP (y)〉∼ϕ(P )=Q

for all x,y ∈ R2.

If γ : [0, 1] → V be a C1 curve, then γ̃ = ϕ ◦ γ : [0, 1] → Ṽ is also a C1 curve.
Let P = γ(t), so ϕ(P ) = γ̃(t). We have

〈γ̃′(t), γ̃′(t)〉γ̃(t) = 〈dϕP (γ′(t)), dϕP (γ′(t))〉ϕ(P )

by chain rule. If ϕ is an isometry then the above is equal to

〈γ′(t), γ′(t)〉γ(t)

Then (by integrating)

length(γ̃) = length(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉1/2γ(t) dt.

So isometries preserve lengths of curves, and so distances.
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4.2 Two models for the hyperbolic plane

Definition. The Poincare’s disc model for the hyperbolic plane is given by
D ⊂ C ∼= R2, D = {|ζ| < 1} and a Riemannian metric

4(du2 + dv2)

(1− u2 − v2)2
=

4|dζ|2

(1− |ζ|2)2
(*)

where ζ = u+ iv, dζ = du+ idv (e.g. dζ : C→ C linear map). Thus element of
the dual complex vector space(??). |dζ|2 = du2 + dv2.

(*) is a scaling of the Euclidean metric du2+dv2 by a factor depending on the polar
radius r = |ζ|: distances are scaled by 2

1−r2 and areas by 4
(1−r2)2 =

√
EG− F 2.

The upper half plane is H = {z ∈ C : =(z) > 0}. D bijects to H via Möbius

transformation ζ ∈ D → i(1+ζ)
1−ζ ∈ H.

We fix notation z ∈ H, z = x+ iy, z = 1(i+ζ)
1−ζ , ζ ∈ D, ζ = u+ iv, ζ = z−i

z+i .

We shall prove this induces a Riemann metric on H, so that ζ → z as the above
Möbius map is an isometry D → H.

The Euclidean product on C(∼= R2) is 〈w1, w2〉 = <(w1w̄2) = w12̄2+w̄1w2

2 .

So if 〈·, ·〉 is Euclidean at ζ, then at z s.t. ζ = z−i
z+i we require

〈w1, w2〉z =

〈
dζ

dz
w1,

dζ

dz
w2

〉
Eud

=

∣∣∣∣dζdz
∣∣∣∣2<(w1w̄2)

i.e. on H, we obtain a Riemannian metric∣∣∣∣dζdz
∣∣∣∣2 (dx2 + dy2) = |dz2|

We compute
dζ

dz
=

1

z + i
− z − i

(z + i)2
=

2i

(z + i)2
,

1− |ζ|2 = 1− |z − i|
2

|z + i|2
so

1

1− |ζ|2
=

|z + i|2

|z + i|2 − |z − i|2
=
|z + i|2

4=z

Putting everything together, the metric on H corresponding 4|dζ|2
(1−|ζ|2)2 is

4 · 4

|z + i|4
·
(
|z + i2

4=z

)2

· |dz|2 =
|dz|2

(=z)2
=
dx2 + dy2

y

Note that on H we got a scaling of Euclidean matric: distances scaled by 1/y
and areas scaled by 1/y2.
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Definition. The upper half-plane model for the hyperbolic plane is H with
metric

dx2 + dy2

y2

Consider PSL(2,R) =
{
z → az+b

cz+d : a, b, c, d ∈ R, ad− bc = 1
}

, the subgroup of

Möbius transformations sending R ∪ {∞} → R ∪ {∞} and H → H.

Proposition. 4.1
The elements of PSL(2,R) are isometries of H and thus preserve lengths of
curves.

Proof. Easy to check that PSL(2,R) is generated by:
z → z + a, a ∈ R;
z → az, a ∈ R+;
z → −1/z.

It suffices to show that every of these three maps preserves the Riemannian
metric

|dz|2

(=z)2
=
dx2 + dy2

y2

The first two are clear. We check the third one f(z) = −1/z:
w → f ′(z)w, f ′(z) = 1/z2, so

d

(
−1

z

)
=
dz

z2
,∣∣∣∣d(−1

z

)∣∣∣∣2 =
|dz|2

|z|4
,

=
(
−1

z

)
=
−1

|z|2
=z̄ =

=z
|z|2

Thus
|d(−1/z)|2

|=(−1/z)|2
=

1/|z|4|dz|2

(=z)2/|z|4
=
|dz|2

(=z)2

Remark. Each z → az + b for a, b ∈ R, a > 0 in PSL(2,R) Hence PSL(2,R)
acts transitively on H.

Each Möbius transformation preserves the set of circles and straight lines in C.
If L = iR, g ∈ PSL(2,R), then g(L) is either a circle centred at a point in R or
straight line perpendicular to R.

Put L+ = {it : t > 0}. Then g(L+) is either a semicircle with ends in R or
vertical half line starting at a point in R. We call these lines the hyperbolic lines
in H.
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Lemma. 4.2
Through any two points z1, z2 ∈ H, there is a unique hyperbolic line l.

Proof. This is clear when <z1 = <z2. If not, then the perpendicular bisector of
z1z2 intersect R at one point, which is the centre of the semicircle.

Lemma. 4.3
PSL(2,R) acts transitively on the set of hyperbolic lines.

Proof. It suffices to show that for all hyperbolic lines l, there exists g ∈ PSL(2,R)
s.t. g(l) = L+. This is clear when l is a vertical half line. If l is a semicircle,
endpoints s < t ∈ R, then g(z) = z−t

z−s which is valid as the determinant of the
corresponding matrix is positive. Also, g(t) = 0, g(s) = ∞, and the only half
line through them is L+.

Remark. Furthermore, we can achieve g(s) = 0, g(t) =∞ by composing with
z → −1/z. Also we can map all given point P ∈ l to g(P ) = i ∈ L+ (compose
with z → az, a > 0).

Definition. Given two points z1, z2 ∈ H, the hyperbolic distance, ρ(z1, z2), is
the length of segment [z1, z2] ⊂ l of the unique hyperbolic line through z1, z2.
Then PSL(2,R) preserves ρ (by Lemma 4.2, Proposition 4.1 and some previous
theory).

Proposition. 4.4
If γ : [0, 1] → H is piece-wise C1-norm with γ(0) = z1,, γ(1) = z2, then
length(γ) ≥ ρ(z1, z2) with equality holds iff γ is the hyperbolic line through z1

and z2 parameterized monotonically (i.e. no going back).

Proof. We assume γ is C1. ∃ g ∈ PSL(2,R) that takes g(l)toL+ (which is
an isometry). So WLOG let z1 = iu, z2 = iv, u < v ∈ R. Then write
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γ(t) = x(t) + iy(t), we have

length(γ) =

∫ 1

0

1

y

√
ẋ2 + ẏ2dt

≥
∫ 1

0

|ẏ|
y
dt

≥
∣∣∣∣∫ 1

0

ẏ

y
dt

∣∣∣∣
≥ log y(t)|10

Thus
ρ(z1, z2) = log

v

u
Equality holds only if ẋ ≡ 0, ẏ ≥ 0, i.e. monotonic.

Remark. This proposition implies triangle inequality for ρ(·, ·): length(γ) =
ρ(z1, z2) ≤ ρ(z1, z3) + ρ(z3, z2), with equality iff z3 ∈ γ.

Thus (H, ρ) is a metric space.

Now consider the Geometry of the disc model.

Recall ζ ∈ D → z = 1+ζ
1−ζ ∈ H.

z ∈ H → ζ = z−i
z+i ∈ D.

So (i) PSL(2,R) ∼= the group of Möbius transformations sending |ζ| = 1 to itself
and D → D. Call this group G.
(ii) Hyperbolic lines in D are segments of circles meeting |ζ| = 1 orthogonally
including diameters.
(iii) G acts transitively on hyperbolic lines in D.
(iv) The length minimizing curves are segments of hyperbolic lines parameterized
monotonically.

Let ρ denote the hyperbolic distance.

Lemma. 4.5
(i) Rotations z → eiθz (θ ∈ R) are in G;
(ii) if a ∈ D, then g(z) = z−a

1−āz is in G.

Proof. It’s easy to see as these are linear maps, |eiθz| = |z|, d(eiθz)| = dz (recall

the metric 4|dz|2
(1−|z|2)2 ).

(iii) g sends the set {|z| = 1} to itself: if |z| = 1, then

|1− āz| = |z̄(1− āz)| = |z̄ − ā| = |z − a| 6= 0

So
∣∣∣ z−a1−āz

∣∣∣ = 1, and |z| = 1 =⇒ |g(z)| = 1. Also g(a) = 0.

Exercise. (c.f. Q9 sheet 2, Complex Analysis sheet 1)
We can show conversely that every element G is of the form g(z) = eiθ z−a1−āz for
some real θ and |a| < 1.
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Proposition. 4.6
If 0 ≤ r < 1, then

ρ(0, reiθ) = ρ(0, r) = 2 tanh−1 r (*)

In general, for z1, z2 ∈ D,

ρ(z1, z2) = 2 tanh−1

∣∣∣∣ z1 − z2

1− z̄1z2

∣∣∣∣
Proof. The first equality of (*) is clear from lemma 4.5(i). For the second one,
use γ(t) = t, 0 ≤ t ≤ r, then from definition of length we get

ρ(0, r) =

∫ r

0

2dt

1− t2
= 2 tanh−1 r

which gives the first part.

For the general case, let l be the unique hyperbolic line through z1, z2. Apply
the isometry g(z) = z−z1

1−z̄1z (by lemma 4.5(ii)), we get g(z1) = 0, so g(l) is a
segment of a diameter. We may further rotate about 0, and get g(z2) = r ∈ R+.
Thus

r =

∣∣∣∣ z2 − z1

1− z̄1z2

∣∣∣∣
and the proposition follows.

Remark. When there is a ’distinguished’ point, it’s often convenient to map it
to zero and use the Disc model.

Example. We show ∀P and for all hyperbolic line l, P 6∈ l, there exists unique
hyperbolic line l′ s.t. l′ meets l orthogonally, say l∩l′ = Q, and ρ(P,Q) ≤ ρ(P,Q′)
∀Q′ ∈ l.

WLOG let P = 0 ∈ D. Then just note the triangle inequality.

Lemma. 4.7
Suppose g is an isometry of H, and g fixes every point L+. Then either g = idH ,
or g(z)−−z̄ ∀z ∈ H, i.e. a reflection in the y−axis.
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Proof. Let P ∈ H, P 6∈ L+. Then there is a unique line l′ through P with
l′ ⊥ L+, so l′ is a semi-circle. Let Q = l′ ∩ L+. Then

ρ(P,Q) = ρ(g(P ), Q)

as g(Q) = Q.

Then g(P ) ∈ l′ by the uniqueness of l′, and either g(P ) = P or g(P ) = P ′, where
P ′ is the image of P under the reflection z → −z̄. Now s.t.p. if g(P ) = P , then
g = idH (for if g(P ) = P ′ then compose g with z → −z̄ (an ieometry) to obtain
g is z → −z̄).

Let A 6= P , A 6∈ L+, g(A) = A′. WLOG let P ∈ H+ = {z ∈ H|Re(z) > 0}. Let
A ∈ H+.

then ρ(A′, P ) = ρ(A,P ) (as g is isometry and g(P ) = P ). But ρ(A′, P ) =
ρ(A′, B) + ρ(B,P ) = ρ(A,B) + ρ(B,P ), contradicts with triangle inequality
B 6∈ line(AP ). Thus g(A) = A, i.e. g is identity.

We call R : z ∈ H → −z̄ ∈ H the hyperbolic reflection in L+, and for any
hyperbolic line l in H with T ∈ PSL(2,R), T (l) = L+, call Rl := T−1RT the
reflection (hyperbolic) in l.
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By proposition 4.7, Rl is the unique isometry fixing points in l but is not the
identity.

Exercise. Write out the reflections using the disc model.

4.3 Hyperbolic triangles

Definition. A hyperbolic triangle ∆ABC is the region determined by 3 hyper-
bolic line segments.

Including cases when one vertex, say A, is at ’infinity’, i.e. A ∈ R ∪ {∞} for H,
A ∈ {|z| = 1} for D, then α = 0.

We shall prove that the area of ∆ABC = π − α− β − γ.

Theorem. 4.8 (Gauss-Bonnet for hyperbolic triangles)
For each hyperbolic triangle T = ∆ABC with angles α, β, γ ≥ 0,

area T = π − α− β − γ.

Proof. First, do the case γ = 0, so C is at infinity. Use the H model, WLOG let
C =∞ (apply (g ∈ PSL(2,R) if needed). Use z → z + a, a ∈ R, to centre the
semicircle AB at 0 (noting AC,BC are in the vertical half-lines).

Use z → bz to arche the radius of semicircle of AB to be 1.
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Thus WLOG AB ⊂ {x2 + y2 = 1, y > 0} and then

area T =

∫ cos β

cos(π−α)

(∫ ∞
(1−x2)1/2

dy

y2

)
dx

=

∫ cos β

cos(π−α)

dx

(1− x2)1/2

= (− arccosx)|cos β
cos(π−α) = (π − α)− β

noting arcsinx+ arccosx = π
2 , arccos : [−1, 1]→ [0, π], and as γ = 0.

In general, using the H model again, we can apply g ∈ PSL(2,R) to move AC
into a vertical line. Then as before move (with isometry) AB into a {x2 +y2 = 1}
(AC will remain vertical).

Consider ∆1 = AB∞, ∆2 = BC∞. Then

area ∆1 = π − α− (β + γ), area ∆2 = π − δ − (π − γ)
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So
area T = area∆1 − area∆2

= π − α− β − δ − π + δ + π − γ
= π − α− β − γ.

There is hyperbolic version of sine and cosine rules (see Q16 sheet 2).

Every two lines on S2 (i.e. great circles) meet, in 2 points; every two lines on R2

meet (in 1 point) if and only if they are not parallel.

Definition. Use the D model of hyperbolic plane, two hyperbolic lines l1, l2 are
parallel iff they only meet at {|ζ| = 1}, and are ultraparallel iff they do not meet
anywhere in {ζ| ≤ 1}.

Euclid’s parallel axiom (the 5th axiom) says that, given a line l and P 6∈ l, there
exists unique line l′ s.t. P ∈ l′ with l ∩ l′ =∞. This fails both on S2 and on the
hyperbolic plane – but for a very different reason.

4.4 Thy hyperbolic model

Consider the Lorenzian inner product 〈x, y〉 on R2 with matrix1 0 0
0 1 0
0 0 −1


Set q(x) := 〈x, x〉 = x2 + y2 − z2 for all x = (x, y, z). Let

S := {x ∈ R3 : q(x) = −1}

this is the 2-sheet hyperboloid, with

S+ = S ∩ {z > 0}

the upper sheet. Let π : S+ → D ⊂ C be

π(x, y, z) =
x+ iy

1 + z
= u+ iv

the stereographic projection from (0, 0,−1).
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Put r2 = u2 + v2, and σ = π−1 : Du,v → S+ ⊂ R3:

σ(u, v) =
1

1− r2
(2u, 2v, 1 + r2)

Now check the inner product on the tangent plane to S+ at σ(u, v) spanned by
σn := ∂σ

∂u = dσ(e1), σv = ∂σ
∂v = dσ(e2), e1, e2 are the standard basis of R2. Then

σu =
2

(1− r2)2
(1 + u2 − v2, 2uv, 2u)

σv =
2

(1− r2)2
(2uv, 1 + v2 − u2, 2v)

we restrict Lorenzian 〈·, ·〉 to span 〈σu, σv〉 we get a symmetric bilinear form on
R2 at each (u, v) ∈ D, Edu2 + 2Fdudv + Gdv2, with E = 〈σu, σu〉 = 4

(1−r2)2 ,

F = 0, G = E,i.e.
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5 Smooth embedded surfaces (in R3)

Definition. Let S ⊂ R3. S is a parameterised smooth embedded surface if each
Q ∈ S has an open neighbourhood Q ∈ U = W ∩ S for W open in R3 (subset
topology) and a map σ : V → U from open V ⊂ R2

u,v s.t.
• σ is a homomorphism of V onto U ;
• σ = σ(u, v) is C∞ (all partial derivatives of all orders exist and are continuous);
• at each Q = σ(P ), the vectors ∂σ

∂u (P ), ∂σ∂v (P ) are linearly independent.

Now σ(u, v) =

x(u, v)
y(u, v)
z(u, v)

. Then

σu(P ) =
∂σ

∂u
(P ) =

∂x/∂u∂y/∂u
∂z/∂u

 (P ) = dσP (e1), σv(P ) = dσP (e2)

where e1, e2 are standard basis of R2. (u, v) are smooth coordinates on U ⊂ S.

The subspace spanR 〈σu(P ), σu(p)〉 is the tangent plane TQS to S at Q = σ(P ).

σ is a smooth (C∞) parameterisation of U ⊂ S.

Proposition. 5.1
Suppose σ : V → U , σ̃ : Ṽ → U are two C∞ parameterisations of U . Then the
homomorphism ϕ = σ−1 ◦ σ̃ : Ṽ → V is a diffeomorphism.

Proof. It suffices to consider ϕ on a small neighbourhood of some P = (u0, v0) ∈

Ṽ . The Jacobi matrix of

xu xv
yu yv
zu zv

 has rank 2 for each (u, v) ∈ V by the

definition of σ. WLOG let (xu, xv) and (yu, yv) be linearly indepnedent at

(u0, v0). Let F (u, v) =

(
x(u, v)
y(u, v)

)
. Then by inverse function theorem (from

Analysis II), F maps some open neighbourhood of (u0, v0) ∈ N diffeomorphically
onto the image (open) N ′ ⊂ R2. Now σ(N) is open, Ñ ⊂ U = σ̃−1(σ(N)) ⊂ Ṽ
is open (by homomorphism property). σ1F is bijective, so π = F ◦ σ−1 is also
bijective. So F̃ = π ◦ σ̃.
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Furthermore, π(x, y, z) = (x, y) is certainly smooth since it’s a linear map. Now
ϕ = σ−1 ◦ σ̃ = σ−1 ◦ π−1 ◦ π ◦ σ̃ = F−1 ◦ F̃ on Ñ a smooth map as F−1 and F̃
are so. By symmetry, ϕ−1 is also C∞ on N . So done.

Corollary. the tangent plane TQS is independent of the choice of parameterisa-
tion σ.

Proof. Let σ̃(ũ, ṽ) = σ(ϕ(ũ, ṽ), ϕ2(ũ, ṽ)), ϕ = (ϕ1, ϕ2). By chain rule,

σ̃ũ = (ϕ1)ũσu + (ϕ2)ũσv, σ̃ṽ = (ϕ1)ṽσu + (ϕ2)ṽσv

. Then the Jacobi matrix for ϕ is

J(ϕ) =

(
ϕ1,ũ ϕ2,ũ

ϕ1,ṽ ϕ2,ṽ

)
which is invertible as ϕ is a diffeomorphism.

Remark. We can compute σ̃ũ × σ̃ṽ = det(Jϕ)σu × σv.

Definition. The unit normal to S at Q is

N = NQ :=
σu × σv
||σu × σv||

Note that N is well-defined up to a sign.

θ := σ−1 : U ⊂ S → V ⊂ R2 is called a chart.

Example. Consider on S2 the two stereographic projections from the North
and South poles; they are both charts with domains covering S2.

If S ⊂ R3 is an embedded surface, then each TQS (Q ∈ S inherits an inner
product from R3 - i.e. we get a family of inner products depending on Q ∈ S.
This family is the first fundamental form of S.

Given a parameterisation σ : V → U ⊂ S and P ∈ V , a, b ∈ R2, 〈a, b〉P :=
〈dσP (a), dσP (b)〉R3 w.r.t. standard basis e1, e2 of R2, the RHS becomes Edu2 +
2Fdudv + Gdv2 with E = 〈σu, σu〉R3 , F = 〈σu, σv〉R3 , G = 〈σv, σv〉R3 . Here
σu = dσ(e1), σv = dσ(e2).

This Riemannian metric of V is also called the first fundamental form w.r.t σ
(especially in practical examples).

Fact: if σ̃ = σ ◦ ϕ : Ṽ → Ũ as in proposition 5.1, then ϕ is an isometry of the
respective Riemannian metric on V and Ṽ .

Definition. Given a smooth curve Γ : [a, b]→ S ⊂ R3,

length(Γ) :=

∫ b

a

||Γ′(t)||dt

energy(Γ) :=

∫ b

a

||Γ′(t)||2dt.
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When Γ([a, b]) ⊂ U = σ(V ), then there exists unique γ : [a, b]→ V open in R2

s.t. Γ = σ ◦ γ (we use these coordinates in R2 to express the curve in terms of u
and v). So γ = (γ1, γ2), Γ′(t) = (dσ)γ(t)(γ̇1(t)e1 + γ̇2(t)e2) = γ̇1σu + γ̇2σv. So

length(Γ) =

∫ b

a

(
Eγ̇2

1 + 2F γ̇1γ̇2 +Gγ̇2
2

)1/2
dt

Definition. Given a C∞ parameterisation σ : V → U ⊂ S of surface S and a
region T ⊂ U . Then

area(T ) =

∫
θ(T )

(EG− F 2)1/2dudv

where θ(T ) = σ−1 is the respective chart.

Proposition. 5.3
The area is well defined, i.e. area(T ) is independent of the partamerisation σ.
Thus we may extend the definition of area(T ) to more general T which is not
necessarily contained in one parameterized neighbourhood.

Remark. In practical examples, σ(V ) = U is often dense in S. Then it suffices
to use just this U to compute area(S).

Areas and lengths are invariant under isometries.



6 GEODESICS 39

6 Geodesics

Let V ⊂ R2
u,v open and we are given a Riemannian metric Edu2+2Fdudv+Gdv2.

Suppose γ = (γ1, γ2) : [a, b]→ V is a C∞ curve.

Definition. γ is a geodesic if:
(1) d

dt (Eγ̇1 + F γ̇2) = 1
2 (Euγ̇

2
1 + 2Fuγ̇1γ̇2 +Guγ̇

2
2) and

(2) d
dt (F γ̇1 +Gγ̇2) = 1

2 (Evγ̇
2
1 + 2Fvγ̇1γ̇2 +Gvγ̇

2
2)

hold for all t ∈ [a, b].

Let γ(a) = p, γ(b) = q. A proper variation of γ is a C∞ map h : [a, b]×(−ε, ε)→
V ⊂ R2 s.t. h(t, 0) = γ(t), t ∈ [a, b], h(a, τ) = p, h(b, τ) = q for all τ ∈ (−ε, ε).
So for all τ , γτ : [a, b]→ V , γτ = h(t, τ) is a C∞ curve.

Proposition. 6.1
γ satisfies the geodesic ODEs iff γ is the stationary point of for the energy
function for all proper variations, i.e. d

dτ |τ=0E(γτ ) = 0.

Proof. We write γ(t) = (i(t), v(t)). Then

energy(Γ) =

∫ b

a

(
E(u, v)u̇2 + 2F (u, v)u̇v̇ +G(u, v)v̇2

)
dt

=

∫ b

a

I(u, v, u̇, v̇dt.

Euler-Lagrange equations: a solution γ is stationary iff

d

dt

(
∂I

∂u̇

)
=
∂I

∂u
,

d

dt

(
∂I

∂v̇

)
=
∂U

∂v

But LHS of the first equation is just 2Eu̇+2F v̇ and RHS is euu̇
2 +2Fuu̇v̇+Guv̇

2.
So we get the first geodesic equation. The second is obtained similarly.

Now let S ⊂ R3 be an embedded surface. σ : V → U ⊂ S a parameterisation,
θ = σ−1 : U → V the chart, and let Γ : [a, b]→ S a smooth curve in S, γ = θ ◦Γ
a smooth curve in V .

Define Γ to be a geodesic on S iff γ is a geodesic in V , i.e. iff Γ is a startionary

point of
∫ b
a
||Γ′(t)||2dt. This is independent of choice of σ.

Corollary. 6.2
If a curve Γ in S minimizes the energy among all the curves with the same
end-points, then Γ is a geodesic.

Proof. Let Γ : [a, b]→ S. For all a < a1 < b1 < b, Γ1 = Γ|[a1,b1] then minimizes
the energy among all curves from Γ(a1) to Γ(b1).



6 GEODESICS 40

If a1, b1 are such that Γ[(a1, b1]) ⊂ U for some parameterized neighbourhood,
then Γ1 must be a geodesic by proposition 6.1, Γ1 is a geodesic. Now vary a1, b1
to get a cover of [a, b].

Lemma. 6.3
Let V ⊂ R2, P,Q ∈ V , V is endowed with a Riemannian metric. Consider C∞

curve γ0, γ0(0) = P , γ0(1) = Q. Then γ0 minimizes the energy iff γ0 minimizes
the length and has constant speed γ̇0.

Proof. Cauchy-Schwartz for f, g ∈ C[0, 1] says(∫ 1

0

fg

)2

≤
∫ 1

0

f2

∫ 1

0

g2

with equality attained iff g = λf for some λ ∈ R, or alternatively f = 0.

Put f ≡ 1, g = ||γ̇||. Then

(length(γ))2 ≤ energy(γ)

with equality attained only if ||γ̇|| is a constant.

If length(γ) = l, then the minimum of energy l2 does occur exactly when ||γ̇|| is
a constant.

Remark. We can show that a curve γ is geodesic precisely if Γ locally minimizes
energy, also iff γ locally minimizes length and has constant speed. By locally
minimizing we mean that ∀t0, ∃ε > 0 s.t. γ|t0−ε,t0+ε] minimizes length/energy.

Remark. Geodesic ODEs actually imply ||Γ′(t)|| is a constant (see example
sheet 3 Q7).

Further properties of the geodesics:

Recall that the defining ODEs are of the form

d

dt

((
E F
F G

)(
u̇
v̇

))
= terms with derivative of lower order

The matrix

(
E F
F G

)
is invertible, thus the ODE is of the form (ü, v̈) =

F(u, v, u̇, v̇). Standard theory of ODEs (Analysis II, application of the contrac-
tion mappings) show that for all P = (u0, v0) ∈ V ⊂ R2, for all a = (p0, q0) ∈ R2,
there exists unique geodesic γ(t) = (u(t), v(t)), for |t| < ε, with γ(0) = P ,
γ̇(0) = a.

Example. Consider S2 ⊂ R3, for all P ∈ S2, all tangent direction (at P ), there
exists a unique great circle.

As arcs of great circles of length < π are length minimizing, we find from
Corollary 6.2 and Lemma 6.3, that the great circles are all the geodesics on S2.

Similarly, on the hyperbolic plane, the hyperbolic lines are all the geodesics.

This can also be verified directly – see Q7 sheet 3.
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We can use the geodesics on a surface S ⊂ R3 to construct around each point P ∈
S the geodesic polar coordinates (a coordinate chart simplifying the coefficients
of the first fundamental form(E,F,G)).

Sketch of proof:
Solutions of the geodesic ODEs depend on C∞ on the initial conditions.
Let ψ : U → V ⊂ R2 where V is open, and a coordinate chart P ∈ U ⊂ S where
U is open, and ψ(P ) = 0 ∈ V .

For all value θ, there exists a unique geodesic γθ : (−ε, ε)→ V with γθ(0) = 0,
γ̇θ(0) =the unit vector in the direction of |tehta.

Set σ(rθ) := γθ(r). We can show:
1) σ is smooth in (r, θ);
2) For all θ0, ψ−1 ◦ σ : {(r, θ) : 0 < r < ε, θ0 < θ < θ0 + 2π} := W → S, i.e.
σ : W → V \ {0},
psi−1 : V \ {0} → U \ {P} ⊂ S.

ψ−1 ◦ σ is a valid parameterisation, so σ−1 ◦ ψ is a valid chart.

The values (r, θ) of this chart are the geodesic polar coordinates at P .

Gauss lemma says the geodesic circles {r = r0} ⊂W are perpendicular to their
radii, i.e. to γθ, and the Riemmanian metric on W is

dr2 +G(r, θ)dθ2.

An atlas is a collection of charts (with domains) covering S. For example,
geodesic polar coordinates define an atlas.

Other good atlases are given in sheet 3 (for S = S2).

6.1 Surface of Revolution

We consider S ⊂ R3 that can be obtained by rotating a plane curve η around a
straight line l.

WLOG let l be the z−axis and η in the (x, z)−plane, i.e.

η : (a, b) ⊆ R, η(u) = (f(u), 0, g(u)).

We require:
(1) ||η′(u)|| = 1 for all u. This basically requires the ’velocity’ to be 1, and can
be always obtained by parameterising using length;
(2) f(u) > 0;
(3) η is a homomorphism onto its image. This rules out some weird examples
that we don’t want, for example,
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Define S as the image of σ(u, v) = (f(u) cos v, f(u) sin v, g(u)), a < u < b,
0 ≤ v ≤ 2π, and for all α ∈ R, σα : (a, b)× (α, α+ 2π) is a homomorphism onto
its image (see Q1 sheet 3). Then

σαu = (f ′ cos v, f ′ sin v, g′),

σαv = (−f sin v, f cos v, 0)

so
σu × σv = (−fg′ cos v,−fg′ sin v, ff ′),

||σαu × σαv ||2 = f2(f ′2 + g′2) = f2 > 0( 6= 0)

Thus σα is a valid parameterisation. so S is a valid embedded surface. The first
fundamental form w.r.t. σα is

E = ||σu||2 = f ′2 + g′2 = 1,

F = σu · σv = 0,

G = ||σv||2 = f2.

So the Riemannian metric is du2 + f2dv2.

Definition. Curves on S of the form γ(t) = σ(t, v0) are called meridians,
γ(t) = σ(u0, t) are called parallels.

Then the geodesic ODEs for γ = (u, v) in V ⊂ R2 are{
ü = f · dfdu · v̇

2

d
dt (f

2v̇) = 0

Proposition. 6.4
Assume ||γ̇|| = 1, i.e. u̇+ f2(u)v̇2 = 1. Then
(i) Every unit speed meridian γ(t) = σ(t, v0) is a geodesic;
(ii) A unit speed parallel γ(t) = σ(u0, t) is a geodesic precisely when df

du (u0) = 0,
i.e. u0 is a stationary point.

Proof. (i) v = v0 =constant. So the second equation holds. Also we have u̇ is a
constant since v̇ = 0. So the first equation holds as well.
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(ii) u = u0 =constant so ||γ̇||2 = f2(u0)v̇2 = 1. So v̇ = ± 1
f(u0) 6= 0 is a constant.

Then the second equation holds. Now the first equation only holds if df
du (u0) = 0

as ü = 0.
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7 Gaussian Curvature

Recall the curves η : [0, l]→ R2 a C∞ curve with ||η′|| = 1. Recall the curvature
κ at η(s) is determined by

η′′ = κn

where n is a norm along η (n · η′ = 0, ||
mathbfn = 1, and κ ≥ 0.

Let f : [c, d] → [0, l] be smooth, f ′(t) > 0, so we may reparameterize γ(t) =
η(f(t)). Then γ̇ = ḟ ·η′(f(t)), ||γ̇||2 = f2. Also η′′(f(t)) = κn. κ =the curvature
at γ(t). By Taylor’s theorem,

γ(t+ ∆t)− γ(t) = ḟ · η′(f(t))∆t+
1

2
[f̈ · η′(f(t)) + ḟ2 · η′′(f(t))](∆t)2 + ...

So

γ(t+ ∆t)− γ(t)) · n =
1

2
||γ̇||2κ(∆t)2 + ...

γ(t+ ∆t)− γ(t)||2 = ||γ̇||2(∆t)2 + ...

Thus 1
2κ = the ratio of the leading (quadratic) terms (above), and is independent

of parameterisation.

Now let σ : V → U ⊂ S a parameterisation of surface S ⊂ R3. Apply Taylor’s
theorem,

σ(u+∆u, v+∆v)−σ(u, v) = σu∆u+σv∆v+
1

2
(σuu(∆u)2+2σuv∆u∆v+σvv(∆v)2)+...

Recall

N =
σu × σv
||σu × σv||

Deviation from the tangent plane is

(σ(u+ ∆u, v + ∆v)− σ(u, v)) ·N =
1

2
(L(∆u)2 + 2M∆uDeltav +N(∆v)2) + ...

where L = σuuN, M = σuvN, N = σvvN.
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Recall

||σ(u+ ∆u, v + ∆v)− σ(u, v)||2 = E(∆u)2 + 2F (∆u)(∆v) +G(∆v)2 + ...

Definition. The second fundamental form on V (for S) is

Ldu2 + 2Mdudv +Ndv2

with L,M,N ∈ C∞(N) as just defined.

Definition. The Gaussian curvature K of S at P is

K =
LN −M2

EG− F 2

If K > 0, the second fundamental form is either positive definite or negative
definite.
On the other hand, if K < 0, then the second fundamental form is indefinite.
If K = 0, the second fundamental form is semi-definite.

Example. The unit sphere has K > 0, the Pringle crisp has K < 0.

Remark. It can be checked, similar to the curves story, that K does not depend
on parameterisation.

Proposition. 7.1
Write N for the unit normal

σu × σv
||σu × σv||

Then at each point, Nu = aσu + bσv, Nv = cσu + dσv(*), where

−
(
L M
M N

)
=

(
a b
c d

)(
E F
G H

)
(**)

in particular, K = ad− bc.

Proof. N ·N = 1, so N ·Nu = 0 and N ·Nv = 0. So (*) holds for some a, b, c, d.

N · σu = 0

=⇒ Nu · σu + N · σuu = 0

=⇒ Nu · σu = −L

similarly, Nu · σv = −M = Nv · σu, Nv · σv = −N dot (*) with σu and with σv,
we get

−L = aE + bF,

−M = cE + dF

−N = aF + bG,

−N = cF + dG

which is (**). Take the determinants to obtain

K = det

(
a b
c d

)
.
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Theorem. 7.2
Suppose for a σ : V → U ⊂ S ⊂ R3. The first fundamental form du2+G(u, v)dv2

(G ∈ C∞(v)). Then

K =
−(
√
G)uu√
G

Proof. To show K = − (
√
Guu√
G

when the first fundamental form (Riemannian

metric) is of the form du2 + G(u, v)dv2, set e = σu, f = σv√
G

, N = e × f an

orthonormal basis of R3 depending on (u, v) (σ(u, v) is a parameterisaion as
before).

e · e = 1 =⇒ e · eu = 0 =⇒ eu = αf + λ1N .

Similarly, ev = βf + λ2N , fu = −α̃e + µ1N, fv = −β̃e + µ2N(+). Then
e · f = 0 =⇒ eu · f + e · fu = 0 =⇒ α = α̃. Similar calculation shows β = β̃.
Now

α = eu · f

= σii ·
σv√
G

=

[
(σu · σv)u −

1

2
(σu · σu)u

]
1√
G

= 0.

β = ev · f

= σuv ·
σv√
G

=
1

2
Gu/
√
G

= (
√
G)u

Also from (+),
λ1u2 − λ2u1

= eu · fv − ev · fu
= (e · fv)u − (e · fu)v

= −βu
= −(

√
G)uu.

From Proposition 7.1,

Nu ×Nv = (ad− bc)σu × σv
= Kσu × σv
= K
√
G(e× f)

So by VC identities

K
√
G = (Nu ×Nv) · (e× f)

= (Nu · e)(N · f)− (Nu · f)(Nv · e)
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But
(N · e)u = 0 = Nu · e+N · eu.

So the above equals

(N · eu)(N · fu)− (N · fu)(N · ev) = λ1µ2 − λ2µ1 − (
√
G)uu

So done.

Definition. An Abstract smooth surface S is a metric space (or Hausdorf
topological space) with coflection of homeomorphism called charts θi : Ui → Vi
on open Vi ⊂ R2, s.t.
(i) S ∪i Ui;
(ii) ∀i, j, ϕij = θi ◦ θ−1

j : θj(Ui ∩ Uj)→ θi(Ui ∩ Uj) is a diffeomorphism.

A Riemmanian metric on S is given by a Riemmanian metric on each Vi = θi(Ui)
subject to compatibility condition

〈dϕP (a), dϕP (b)〉ϕ(P ) = 〈a,b〉P

where ϕ = ϕij , a,b ∈ R2.

Then length, areas, energy, geodesics, etc are all well-defined on S via charts
and first fundamental form E,F,G using formulae as before.

It can be shown that for all P ∈ S, we can construct the geodesic polar coordinates
(ρ, θ) = (u, v) around P s.t. metric is du2 +G(u, v)dv2.

Now we define the curvature at P to be

K = − (
√
Guu√
G

.

Example. (i) R2 with du2 + dv2.
(ii) S2 ⊂ R3 embedded surface – Q3 sheet 3.

(iii) D unit in R2 with 4(dx2+dy2)
(1−x2−y2)2 isometric to H with dx2+dy2

y2 .

N.B.
• just one char suffices for (i) and (ii);
• hyperbolic plane cannot be realized as embedded surface in R3 (theorem of
Hilbert).

(i) dx2 + dy2, G = 1 shows that K = 0.
(ii) S2 ⊂ R3 – exercise Q1 Sheet 3. Use spherical polars (fix radius = 1), get

σ(ρ, θ) = (sin ρ cos θ, sin ρ sin θ, cos ρ),

dρ2 + sin2 ρdθ2

(First fundamental form).
√
G = sin ρ, K ≡ 1.

(iii) Hyperbolic disc. Change x, y to Euclidean polars (r, θ). Then

4(dx2 + dy2)

(1− (x2 + y2))2
=

4(dρ2 + ρ2dθ2

(1− ρ2)2
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Let ρ = 2 tanh−1 r. Hyperbolic metric becomes

dρ2 + sinh2 ρdθ2,
√
G = sinh ρ

So K ≡ −1.

Triangulations make sense for abstract surfaces S too when S is compact.

Set e(S) = F − E + V the Euler Number.

Theorem. (Gauss-Bonnet)
(1) If the sides of triangle ∆ = ABC are geodesic segments, then∫

∆

KdA = (α+ β + γ)− π

where α, β, γ are angles, dA =
√
EG− F 2dudv in each chart. So

(2) If S is compact, then ∫
S

KdA = 2π · e(S).

this is called the global Gauss-Bonnet.
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