Geometry

March 14, 2017

Contents

1 Euclidean Geometry

1.1 Isometries

Let $(.,.)$ be the standard inner product (dot product) on the Euclidean space \mathbb{R}^n , i.e. for $x, y \in \mathbb{R}^n$ we have

$$
(x,y) = x \cdot y = \sum_{i=1}^{n} x_i y_i
$$

The Euclidean norm, $||x|| = \sqrt{(x, x)}$. The Euclidean distance function, $d(x, y) = ||x - y||$.

We know that (\mathbb{R}^n, d) is a metric space.

Definition. A map $f : \mathbb{R}^n \to \mathbb{R}^n$ is an *isometry* of \mathbb{R}^n if

$$
d(f(P), f(Q)) = d(P, Q)
$$

for all $P, Q \in \mathbb{R}^n$.

Isometries may be defined for any metric space.

Recall that a $n \times n$ matrix A is orthogonal if $A^T A = AA^T = I$. For $x, y \in \mathbb{R}^n$,

$$
(Ax, Ay) = (Ax)T (Ay)
$$

$$
= xT AT Ay
$$

$$
= (x, AT Ay)
$$

So A is orthogonal iff $(Ax, Ay) = (x, y)$ for all $x, y \in \mathbb{R}^n$.

Now from the definition we see

$$
(x,y) = \frac{1}{2} (||x+y||^2 - ||x||^2 - ||y||^2)
$$

Thus A is orthogonal iff $||Ax|| = ||x||$ for all $x \in \mathbb{R}^n$.

If $f(x) = Ax + b$ for some $b \in \mathbb{R}^n$, then $d(f(x), f(y)) = ||A(x - y)||$.

So f is an isometry iff A is an orthogonal matrix.

Theorem. 1.1

Every isometry $f : \mathbb{R}^n \to \mathbb{R}^n$ is of the form

$$
f(x) = Ax + b
$$

for some orthogonal A and $b \in \mathbb{R}^n$.

Proof. Let $e_1, ..., e_n$ be the standard basis. Put $f(0) = b, f(e_i) - b = a_i$ for $i = 1, ..., n$.

Then

$$
||a_0|| = ||f(e_i) - f(0)||
$$

= $d(f(e_i), f(0))$
= $d(e_i, 0)$
= $||e_i||$
= 1.

for $i \neq j$,

$$
(a_i, a_j) = -\frac{1}{2} (||a_i - a_j||^2 - ||a_i||^2 - ||a_j||^2)
$$

= $-\frac{1}{2} (||f(e_i) - f(e_j)||^2 - 2)$
= $-\frac{1}{2} (||e_i - e_j||^2 - 2)$
= 0.

Thus $\{a_i\}$ is an orthonormal basis.

So the matrix

$$
A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}
$$

is orthogonal.

Now let $g(x) = Ax + b$. We just have to prove that $f = g$. We know g is an isometry. Also, $g(x) = f(x)$ for $x = 0, e_1, ..., e_n$, and

$$
g^{-1}(x) = A^{-1}(x - b) = A^T(x - b)
$$

hence $h = g^{-1} \circ f$ is an isometry fixing $0, e_1, ..., e_n$.

We need to prove that $h = id$. Consider $x \in \mathbb{R}^n$. Write

$$
x = \sum_{i=1}^{n} x_i e_i
$$

and

$$
y = h(x) = \sum_{i=1}^{n} y_i e_i
$$

Then

$$
d(x, e_i)^2 = ||x||^2 + ||e_i|| - 2x_i,
$$

\n
$$
d(x, 0)^2 = ||x||^2,
$$

\n
$$
d(y, e_i)^2 = ||y||^2 + 1 - 2y_i,
$$

\n
$$
d(y, 0) = ||y||^2
$$

h is an isomtery, $h(0) = 0$, $h(e_i) = e_i$, $h(x) = y$. So $||x||^2 = ||y||^2$. So $x_i = y_i$ for all *i*. So $h = id$.

Let Isom(\mathbb{R}^n) be the set of all isometries of \mathbb{R}^n . This is a group by composition (the group of rigid motions of \mathbb{R}^n).

Example. Consider Reflections in an affine hyperplane $H \subset \mathbb{R}^n$.

where $||u|| = 1, c \in \mathbb{R}$ is a given constant.

Reflection in H :

$$
R_H: x \to x - 2(x \cdot u - c)u
$$

is an isometry (see example sheet).

Observe: if $x \in H$ then $R_H = x$.

If $a \in H$, $t \in \mathbb{R}$, then

$$
R_H(a+tu) = (a+tu) - 2((a+tu) \cdot u - c)u
$$

= $(a+tu) - 2tu$
= $a - tu$

That means R_H fixes precisely the points in H .

Conversely, suppose $S \in \text{Isom}(\mathbb{R}^n)$ and S fixes H.

Given $a \in H$, define translation by a: $T_a(x) = x + a$. Then set

$$
R = T_{-a}ST_a \in \text{Isom}(\mathbb{R}^n)
$$

R fixes $H' = T_{-a}(H)$ by inspection. Notice $0 \in H'$, so H' is a vector subspace of \mathbb{R}^n .

If $H = \{x \cdot u = c\}$, then $H' = \{x \cdot u = 0\}$.

Then, whenever $x \in H'$, we have

$$
(Ru, x) = (Ru, Rx)
$$

$$
= (u, x)
$$

$$
= 0
$$

So $Ru \perp H'$, i.e. $Ru = \lambda u$ for some $\lambda \in \mathbb{R}$.

But $||Ru||^2 = 1$ as $||u||^2 = 1$, so $\lambda^2 = 1$, i.e. $\lambda = \pm 1$.

Since R fixes 0 $(0 \in H')$, R is a linear map by Theorem 1.1 and either $R = id_{Rⁿ}$ or $R = R_{H'}$ (corresponding to the matrix Diag(-1, 1, ..., 1)).

So S is either $id_{\mathbb{R}^n}$ or $S = T_a R_{H'} T_{-a}$ is a reflection.

Checking S when

 $\lambda = -1: x \to x - a \to (x - a) - 2((x - a) \cdot u)u \to x - 2(x \cdot u - c)u$ noting $a \cdot u = c$. Thus $S = R_H$.

We find that R_H is the unique isometry of \mathbb{R}^n which fixes H but is not identity.

It can be shown that every isometry of \mathbb{R}^n is a composition of at most $n + 1$ reflections (example sheet 1).

From Theorem 1.1, the subgroup consisting of isometries fixing the origin is ${f(x) = Ax : AA^T = I}$ is naturally isomorphic to $O(n)$.

 $A \in O(n) \implies (\det A)^2 = 1 \implies \det A = \pm 1.$

Definition. The *special orthogonal group*, $SO(n)$, consists of the matrices in $O(n)$ with determinant +1.

1.2 Orthogonal groups

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \iff a^2 + c^2 = 1, b^2 + d^2 = 1, ab + cd = 0 \iff A \in O(2). \tag{*}
$$

Set $a = \cos \theta$, $b = -\sin \varphi$, $c = \sin \theta$, $d = \cos \varphi$ for appropriate $0 \le \theta$, $\varphi \le 2\pi$. So (*) says $\tan \theta = \tan \varphi \in \mathbb{R} \cup {\infty}$. So $\theta = \varphi$ or $\theta = \varphi \pm \pi$. Respectively,

$$
A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$

is a rotation through θ about O. det $A = 1$, so $A \in SO(2)$. The other possibility is

$$
A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}
$$

fixes a line l and must be a reflection in l (see graph below). We have det $A = -1$.

Remark. *Orientation* of a vector space on equivalence class of bases.

• Let $v_1, ..., v_n$ and $v'_1, ..., v'_n$ and $A = (A_{ij})$ the respective matrix for change from ${v_i}$ to ${v'_i}$. Then the bases are "equivalent", i.e. have the same orientation iff $\det A > 0.$

We define an isometry $f(x) = Ax + b$ to be *orientation-preserving* if det $A = 1$, orientaiton-reversing if det $A = -1$.

Now we consider the group $O(3)$.

Consider first the case det $A = 1$. Then

$$
\det(A - I) = \det(A^T - I) = \det(A(A^T - I)) = \det(I - A)
$$

But A has dimension 3. So $\det(A - I) = 0$. So +1 is an eigenvalue of A. So $\exists v_1 \in \mathbb{R}^3$ (WLOG let $||v_1|| = 1$) s.t. $Av_1 = v_1$.

Set $W = \langle v_1 \rangle^{\perp}$. Then

$$
w \in W \implies (Aw, v_1) = (Aw, Av_1) = (w, v_1) = 0
$$

So $A|_W$ is a rotation of 2-dimensional space W. Choose an orthonormal basis ${v_2, v_3}$ of W. Then w.r.t ${v_1, v_2, v_3}$, A becomes

$$
\begin{pmatrix}\n1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta\n\end{pmatrix}
$$

Now let det $A = -1$. Then $-A$ has determinant 1, so is of the above form in some orthonormal basis. So A takes the form

$$
\begin{pmatrix}\n-1 & 0 & 0 \\
0 & \cos \varphi & -\sin \varphi \\
0 & \sin \varphi & \cos \varphi\n\end{pmatrix}
$$

with $\varphi = \theta + \pi$. This is a *rotated reflection* (pure reflection when $\phi = 0$).

1.3 Curves in \mathbb{R}^n

Definition. A curve Γ in \mathbb{R}^n is a continuous function $\Gamma : [a, b] \to \mathbb{R}^n$.

A dissection is $\mathcal{D}: a = t_0 < t_1 < \ldots < t_N = b$ of $[a, b]$.

Set $P_i = \Gamma(t_i) \in \mathbb{R}^n$, $S_{\mathcal{D}} = \sum_i ||P_i \vec{P}_{i+1}||$.

We define the *length* of Γ as

$$
l = \sup_{\mathcal{D}} S_{\mathcal{D}}
$$

if this exists (i.e. finite).

If $\mathcal{D} = (P_i = \Gamma(t_i))_{i=1}^N$ is a dissection of Γ and \mathcal{D}' is a refinement (contain extra points) of D , then $S_{\mathcal{D}} \leq S_{\mathcal{D}}$, by triangle inequality.

Let Mesh $(\mathcal{D}) = \max_i (t_i - t_{i-1})$. Then, if the length l of Γ exists (i.e. finite), then we have

$$
l = \lim_{\text{Mesh}(\mathcal{D}\to 0)} S_{\mathcal{D}}.
$$

Note also $l = \min\{\tilde{l} : \tilde{l} \geq S_{\mathcal{D}} \forall \mathcal{D}\}.$

Proposition. 1.2

If Γ is continuously differentiable (C^1) , then the length of Γ is

$$
l = \int_{a}^{b} ||\Gamma'(t)||dt
$$

Proof. Assume $n = 3$ to ease the notation. We have

$$
\Gamma(t) = (f_1(t), f_2(t), f_3(t)).
$$

Given $s \neq t$ in [a, b], use MVT for each f_i , we get

$$
\frac{f_i(t) - f_i(s)}{t - s} = f'_i(\xi_i)
$$

for some $\xi_i \in (s, t)$.

 f'_i is continuous on [a, b]. So f'_i is uniformly continuous. So $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ s.t. $|t - s| < \delta \implies |f'_i(x_i) - f'_i(\xi)| < \varepsilon \ \forall \xi \in (s, t).$

So

$$
||\frac{\Gamma(t) - \Gamma(s)}{t - s} - \Gamma'(\xi)|| = ||(f'_1(\xi_1), f'_2(\xi_2), f'_3(\xi_3)) - (f'_1(\xi), f'_2(\xi), f'_3(\xi))||
$$

$$
< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}
$$

$$
= \varepsilon
$$

i.e.

$$
||\Gamma(t)-\Gamma(s)-(t-s)\Gamma'(\xi)|| < \varepsilon(t-s)
$$

Now let $t = t_i$, $s = t_{i-1}$, $\xi = \frac{t_{i-1} + t_i}{2}$. So

$$
(t_i - t_{i-1})||\Gamma'(\frac{t_{i-1} + t_i}{2})|| - \varepsilon(t_i - t_{i-1}) \le ||\Gamma(t_i) - \Gamma(t_{i-1})|| \le (t_i - t_{i-1})||\Gamma'(\frac{t_i + t_{i-1}}{2})|| + \varepsilon(t_i - t_{i-1})
$$

So

$$
\sum_{i} (t_i - t_{i-1}) ||\Gamma'(\frac{t_i + t_{i-1}}{2}|| - \varepsilon(b - a) < S_{\mathcal{D}} < \sum_{i} (t_i - t_{i-1}) ||\Gamma'(\frac{t_i + t_{i-1}}{2})|| + \varepsilon(b - a)
$$

But $||\Gamma'(t)||$ is continuous, hence integrable. So

$$
\sum_{i} (t_i - t_{i-1}) ||\Gamma'(\frac{t_i + t_{i-1}}{2})|| \to \int_a^b ||\Gamma'(t)||dt
$$

as $\text{Mesh}(\mathcal{D}) \to 0$.

Thus the length of Γ is

$$
l = \lim_{\text{Mesh}(\mathcal{D}) \to 0} S_{\mathcal{D}} = \int_a^b ||\Gamma'(t)||dt.
$$

2 Spherical Geometry

Denote $S = S^2 \subset \mathbb{R}^3$ the unit sphere in with centre origin.

Definition. A great circle a.k.a (spherical) line in S^2 , is $S^2 \cap$ a plane through the origin.

Given two distincts non-antipodal points $P, Q \in S^2$, there exists a unique line in S^2 through P, Q (as P, Q and the origin fix a plane).

Definition. For $P, Q \in S^2$, the distance $d(P, Q)$ is the length of the shorter of the two spherical line segments PQ along the great circle through P and Q . $d(P,Q) = \pi$ if P, Q are antipodal.

Note that $d(P,Q) = \text{angle between } \mathbf{P} = \vec{OP} \text{ and } \mathbf{Q} = \vec{OQ} = \cos^{-1}(\mathbf{P} \cdot \mathbf{Q}).$

A spherical triangle ABC is defined like a Euclidean triangle, but with AB, BC, CA line segments in S^2 with lengths $\lt \pi$.

Notation. Write $\mathbf{A} = \vec{OA}$ and etc. Set

$$
\mathbf{n}_1 = \frac{\mathbf{C} \times \mathbf{B}}{\sin a},
$$

$$
\mathbf{n}_2 = \frac{\mathbf{A} \times \mathbf{C}}{\sin b},
$$

$$
\mathbf{n}_3 = \frac{\mathbf{B} \times \mathbf{A}}{\sin c}.
$$

These are unit normals to the planes OBC, OCA, OAB, pointing out of the solid OABC.

 α, β, γ are the angle between planes defining respective sides of ABC.

Note $0 < \alpha, \beta, \gamma < \pi$. So (angle between them) $\widehat{n_2, n_3} = \pi - \alpha$, $\mathbf{n}_2 \cdot \mathbf{n}_3 = -\cos \alpha$. Similarly, $\mathbf{n_1} \cdot \mathbf{n_2} = -\cos \gamma$, $\mathbf{n_1} \cdot \mathbf{n_3} = -\cos \beta$.

Theorem. 2.1 (Spherical cosine rule) For a spherical triangle, we have

 $\sin a \sin b \cos \gamma = \cos c - \cos a \cos b.$

Proof. Use $(C \times B) \cdot (A \times C) = (A \cdot C)(B \cdot C) - (C \cdot C)(B \cdot A)$ and

$$
\sum_{k} \varepsilon_{ijk} \varepsilon_{klm} = \delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}
$$

from vector calculus. We know $|\mathbf{C}| = 1$. So

$$
RHS = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{C}) - (\mathbf{B} \cdot \mathbf{A})
$$

So

$$
-\cos\gamma = \mathbf{n}_1 \cdot \mathbf{n}_2 = \frac{\mathbf{C} \times \mathbf{B}}{\sin a} \cdot \frac{\mathbf{A} \times \mathbf{C}}{\sin b} = \frac{(\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{C}) - (\mathbf{A} \cdot \mathbf{B})}{\sin a \sin b} = \frac{\cos b \cos a - \cos c}{\sin a \sin b}
$$

which is equivalent to what is required.

Corollary. 2.2 (Pythagoras for S^2) If $\gamma = \frac{\pi}{2}$, then $\cos c = \cos a \cdot \cos b$.

Theorem. 2.3 (Spherical sine rule) For a spherical triangle, we have

$$
\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}
$$

Proof. Use

$$
(\mathbf{A} \times \mathbf{C}) \times (\mathbf{C} \times \mathbf{B}) = (\mathbf{C} \cdot (\mathbf{B} \times \mathbf{A}))\mathbf{C}
$$

from vector calculus. Recall $\widehat{n_1, n_2} = \pi - \gamma$. We have

$$
LHS = -(\mathbf{n}_1 \times \mathbf{n}_2) \sin a \sin b
$$

So $\mathbf{n}_1 \times \mathbf{n}_2 = \mathbf{C} \sin \gamma$, as from RHS we see that this is a multiple of C. So

$$
\mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) = \sin a \sin b \sin \gamma = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \sin b \sin c \sin \alpha
$$

Multiply by $\frac{1}{\sin \alpha \sin \beta \sin \gamma}$ we get

$$
\frac{\sin c}{\sin \gamma} = \frac{\sin b}{\sin \beta} = \frac{\sin a}{\sin \alpha}
$$

 \Box

We have seen cosine and sine rules for spherical triangles. There is a second cosine rule (Sheet 1 Q15).

2 SPHERICAL GEOMETRY 12

Remark. Recall for small a, b, c , $\sin a = a + O(a^3)$, $\cos a = 1 - \frac{a^2}{2} + O(a^4)$. We get the Euclidean versions in the limit $a, b, c \rightarrow 0$.

e.g. in Theorem 2.1,

$$
ab\cos\gamma = 1 - \frac{c^2}{2} - \left(1 - \frac{a^2}{2}\right)\left(1 - \frac{b^2}{2}\right) + O(||(a, b, c)||^3)
$$

$$
\implies c^2 + 2ab\cos\gamma = a^2 + b^2 + O(||(a, b, c)||^3).
$$

If $\gamma = \pi$, then C is in the line segment AB. So $c = a + b$. Otherwise from Theorem 2.1, $\cos c > \cos a \cos b - \sin a \sin b = \cos(a+b)$, so $c < a+b$. Also $c < \pi, a+b < 2\pi$.

Corollary. (Triangle inequality)

 $\forall P, Q, R \in S^2$, we have $d(P, Q) + d(Q, R) \geq d(P, R)$ (spherical distance), with equality only if Q is in the line segment PR of the shorter length.

Proof. The only case not covered by the previous discussion is when $d(P, R) = \pi$, i.e. P, R antipodal. Then R is in the line PQ. So $d(P, R) = d(P, Q) + d(Q, R)$.

So we find that (S^2, d) is a metric space.

Proposition. 2.5

Given a curve Γ on S^2 from P to Q with $l = length(\Gamma)$, we have

 $l \geq d(P,Q)$

Moreover, if $l = d(P, Q)$ then Γ is a spherical line segment.

Proof. $\Gamma : [0,1] \to S^2$. length(Γ) = l \implies \forall dissection \mathcal{D} of $[0,1]$: $0 = t_0$ < $t_1 < ... < t_N = 1, p_i = \Gamma(t_i),$

$$
\tilde{\mathcal{S}_D} := \sum_{i=1}^N d(p_{i-1}, p_i) > \mathcal{S_D} = \sum_{i=1}^N |p_i - p_i|
$$

where RHS is \mathbb{R}^3 distance.

Using the fact $\sin \theta < \theta \,\forall \theta > 0$,

Now suppose $l < d(P,Q)$. Then we can choose $\varepsilon > 0$ s.t. $(1 + \varepsilon)l < d(P,Q)$. Now since $\frac{\sin \theta}{\theta} \to 1$ as $\theta \to 0$, $2\theta \le (1 + \varepsilon)2\sin \theta$ for small $\theta > 0$.

 $Γ$ is uniformly continuous on [0, 1]. So we can choose a refined D with $d(p_{i-1}, p_i)$ ≤ $(1+\varepsilon)|p_{i-1}p_i|$. So

$$
\tilde{\mathcal{S}}_{\mathcal{D}} \le (1+\varepsilon)\mathcal{S}_{\mathcal{D}} \le (1+\varepsilon)l < d(P,Q)
$$

But $\tilde{S_D} \geq d(P,Q)$ by triangle inequality (applied many times). Contradiction. So $l \geq d(P,Q)$.

Suppose now $l = d(P, Q)$ for some $\Gamma : [0, 1] \to S$. Then $\forall t \in [0, 1]$,

$$
d(P,Q) = l = length\Gamma|_{[0,t]} + length\Gamma|_{[t,1]}
$$

\n
$$
\geq d(P,\Gamma(t)) + d(\Gamma(t),Q)
$$

So $d(P,Q) = d(P,\Gamma(t)) + d(\Gamma(t,Q) \forall t$. So $\Gamma(t)$ is in the shorter spherical line segment PQ . \Box

Sheet 1 Q4 is the Euclidean version of this discussion.

Remark. If Γ is a curve in S^2 of minimal length from P to Q, then Γ is a spherical line segment. Further, from the proof of proposition 2.5, $length(\Gamma|_{[0,t]}) =$ $d(P, \Gamma(t))$ $\forall t \in [0, 1]$. So the parameterisation of Γ is *monotonic*, i.e. the distance increases as t increases.

Proposition. 2.6 (Gauss-Bonnet theorem for S^2) If Δ is a spherical triangle with angles α, β, γ , then

$$
area(\Delta) = (\alpha + \beta + \gamma) - \pi.
$$

Proof. A *double lune* with angle $0 < \alpha < \pi$ is two regions on S cut out by 2 planes through antipodal points, say A and A', where α is the angle between the plane.

The area of double lune is 4α (noting it is proportional to α , and $area(S^2) = 4\pi$).

 $\Delta = ABC$ is the intersection of 3 single lunes. So Δ and its antipodal Δ' is a subset of each of 3 double lunes with angles α, β, γ .

Any other $P \notin \Delta \cup \Delta'$ is in only one double lune.

Thus $4(\alpha + \beta + \gamma) = 4\pi + 2 \cdot (2\Delta)$ which gives the desired result.

 \Box

Remark. (i) On S, we have $\alpha + \beta + \gamma > \pi$ ($\rightarrow \pi$ as $a, b, c \rightarrow 0$). (ii) For convex *n*-gon, $area(M) = \sum_{i=1}^{n} \alpha_i - (n-2)\pi$ (cut into triangles).

 2.1 Möbius geometry

Consider $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ with coordinates $\zeta = x + iy$. The stereographic projection $\pi : S^2 \to \mathbb{C}_{\infty}$:

is $\pi(P) = (NP) \cap \{z = 0\} \cong \mathbb{C} \cong \mathbb{R}^2$, $\pi(N) = \infty$ where $N = (0, 0, 1)$.

By Euclidean geometry we can get

$$
\pi(x, y, z) = \frac{x + iy}{1 - z}
$$

Lemma. 2.7

If π' is the stereographic projection from $(0, 0, -1)$ (South pole), then

$$
\pi'(P) = \frac{1}{\overline{\pi(P)}}
$$

 $\forall P \in S^2$.

Proof. Let $P = (x, y, z)$. Then $\pi(P) = \frac{x+iy}{1-z}$, $\pi'(P) = \frac{x+iy}{1+z}$. So

$$
\overline{\pi(P)} \cdot \pi'(P) = \frac{x^2 + y^2}{1 - z^2} = 1
$$

 \Box

Note: $\pi' \circ \pi^{-1} : \mathbb{C} \to \mathbb{C}$ takes ζ to $\frac{1}{\zeta}$, the *inversion in the unit circle* $\{x^2 + y^2 =$ 1 } = { $|\zeta|$ = 1}.

If
$$
P = (x, y, z) \in S^2
$$
, $-P = (-x, -y, -z)$, then $\pi(P) = \frac{x+iy}{1-z}$, $\pi(-P) = \frac{-x-iy}{1+z}$
So

$$
\pi(P) \cdot \overline{\pi(-P)} = \frac{-(x^2 + y^2)}{1 - z^2} = -1.
$$

So $\pi(-P) = -\frac{1}{\zeta}$.

Möbius transformations act on \mathbb{C}_{∞} and form a group G by composition. Any $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{C})$ defines a Möbius map

$$
\zeta \rightarrow \frac{a \zeta + b}{c \zeta + d}.
$$

For all $\lambda \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}, \lambda A$ defines the same Möbius transformation.

Conversely, if A_1 , A_2 give the same transformation, then $\exists \lambda \neq 0$ s.t. $A_1 = \lambda A_2$.

So $G \cong \text{PGL}(2,\mathbb{C}) = GL(2,\mathbb{C})/\mathbb{C}^*$. i.e. $\mathbb{C}^* \cong {\lambda I : \lambda \in \mathbb{C}^* }$ is a normal subgroup.

It suffices to consider det $A = 1$. If det $\tilde{A} = 1$, $A = \lambda \tilde{A}$, then $1 = \det(\lambda \tilde{A}) =$ $\lambda^2 \det A = \lambda^2$, i.e. $\lambda = \pm 1$.

So $G \cong PSL(2,\mathbb{C}) = SL(2,\mathbb{C})/ \pm I$ (group homomorphism $SL(2,\mathbb{C}) \rightarrow G$.

On S^2 we have rotations $SO(3)$ acting as isometries (see Q5 ES 1).

Theorem. 2.8

Via the stereographic projection π , every rotation of S^2 induces a Möbius map defined by a matrix in the subgroup $SU(2) \subset SL(2,\mathbb{C})$ (the Special Unitary group of degree *n* is the group of $n \times n$ orthogonal matrix with determinant 1). In the case $n = 2$, we have

$$
SU(2) = \left\{ \begin{pmatrix} a & -b \\ \bar{b} & \bar{a} \end{pmatrix} : |a|^2 + |b|^2 = 1 \right\}
$$

(Incidentally, $SU(2) \leftrightarrow S^3 \subset \mathbb{R}^4$).

Proof. (1) rotations $r(z, \theta)$ about the z-axis $\mathbb{R}(0, 0, 1)$ through angle θ . The corresponding Möbius map is $\zeta \to e^{i\theta} \zeta$, i.e. a rotation of the complex plane, with matrix

$$
\begin{pmatrix} e^{\frac{i\theta}{2}} & 0\\ 0 & e^{-\frac{i\theta}{2}} \end{pmatrix} \in SU(2).
$$

(2) rotation $r(y, \frac{\pi}{2})$ is

$$
\begin{pmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \ y \ z \end{pmatrix} = \begin{pmatrix} z \ y \ -x \end{pmatrix}
$$

.

2 SPHERICAL GEOMETRY 17

Which is rotation about y–axis through $\pm i$, sending $-1 \to \infty$, $1 \to 0$, $i \to i$. There is *only one* such Möbius map

$$
\zeta'=\frac{\zeta-1}{\zeta+1}
$$

checking, this Möbius map gives $r(y, \frac{\pi}{2})$: $\zeta = \frac{x+iy}{1-z}$. So

$$
\frac{\zeta - 1}{\zeta + 1} = \frac{x + iy - 1 + z}{x + iy + 1 - z} = \frac{x - 1 + z + iy}{x + 1 - (z - iy)} = \frac{(z + iy)(x - 1 + z + iy)}{(x + 1)(z + iy) + (x^2 - 1)}
$$

$$
= \frac{(z + iy)(x - 1 + z + iy)}{(x + 1)(z + iy + x - 1)} = \frac{z + iy}{1 + x} = \zeta'
$$

 $r(y, \frac{\pi}{2})$ corresponds to Möbius map with

$$
\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \in SU(2).
$$

(3) $SO(3)$ is generated by $r(y, \frac{\pi}{2})$ and $r, (z, \theta)$ for $0 \le \theta < 2\pi$.

Observe $r(x,\varphi) = r(y,\frac{\pi}{2})r(z,\varphi)r(y,-\frac{\pi}{2})$ (we can see that by considering the image of e_x under this map).

Also, $\forall v \in S^2$ which is some unit vector, we can find φ, ψ s.t. $g = r(z, \psi)r(x, \varphi)$: $\mathbf{v} \rightarrow$ $\sqrt{ }$ $\overline{1}$ 1 0 0 \setminus \cdot

 $r(x, \varphi)$ rotates v into the (x, y) −plane. Then for any given rotation we can write

$$
r(\mathbf{v}, \theta) = g^{-1}r(x, \theta)g
$$

(4) Thus, via π , any rotation of S^2 correspond to a composition of Möbius maps of \mathbb{C}_{∞} with matrices in $SU(2)$. \Box

This theorem gives a group homomorphism via π of $SO(3)$ and $PSU(2) =$ $SU(2)/\pm I$. This is injective. In fact it is also surjective, so this is an isomorphism.

Theorem. 2.9

The group $SO(3)$ of rotations of S^2 corresponds precisely with the subgroup $PSU(2) = SU(2)/\pm I$ of Möbius transformations acting on \mathbb{C}_{∞} .

Proof. Let $q \in PSU(2) \subset G$. Then

$$
g(z) = \frac{az - b}{\bar{b}z + \bar{a}}
$$

Suppose first $g(0) = 0$, so $b = 0$, $a\bar{a} = 1$, $a = e^{\frac{i\theta}{2}}$ for some real θ . Then g corresponds to $r(z, \theta)$, i.e rotation about z–axis through θ (notation of the proof of Theorem 2.8).

In general, $g(0) = w \in \mathbb{C}_{\infty}$. Let $Q \in S^2$, $\pi(Q) = w$. Choose $A \in SO(3)$ $\sqrt{ }$ \setminus 0 with $A(Q) =$. Let $\alpha \in PSU(2)$ the corresponding Möbius map (exists 0 \mathcal{L} −1 by Theorem 2.8). Then $\alpha(w) = 0$, $\alpha \circ g$ fixes 0. Hence $\alpha \circ g$ corresponds to $B = r(z, \tilde{\theta})$. Thus g corresponds to $A^{-1}B$. \Box

We've now shown that there is a 2-to−1 map $SU(2) \rightarrow PSU(2) \cong SO(3)$ and a group homomorphism $SU(2) \cong S^3$.

3 Triangulations and the Euler number

First, let's introduce one more 'geometry' - the locally Euclidean torus.

Definition. The *torus* T is the set $\mathbb{R}^2/\mathbb{Z}^2$ of equivalence classes of $(x, y) \in \mathbb{R}^2$ with equivalence relation

$$
(x_1, y_1) \sim (x_2, y_2) \iff \begin{cases} x_1 - x_2 \in \mathbb{Z} \\ y_1 - y_2 \in \mathbb{Z} \end{cases}
$$

Thus a point in T represented by (x, y) is a coset $(x, y) + \mathbb{Z}^2$ of the subgroup \mathbb{Z}^2 of the additive group \mathbb{R}^2 .

For any closed square $Q \subset \mathbb{R}^2$ with side length 1, define the *distance d*, for $P_1, P_2 \in T$ to be

$$
d(P_1, P_2) = \min\left\{ |\mathbf{v}_1 - \mathbf{v}_2| \mid \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2, \mathbf{v}_i + \mathbb{Z}^2 = P_i \ \forall i \right\}.
$$

It's easy to check that (T, d) is a metric space.

Let Q° denote the interior of Q. We have a natural map $f: Q^{\circ} \to T$ a natural bijection onto open $U \subset T$.

If $P \in Q^{\circ}$, then f restricted to a small open disc about P is an isometry. So $f: Q^\circ \to U$ is a homomorphism.

d is said to be a locally Euclidean distance function (for Euclidean metric).

Remark. T may also be 'embedded' in \mathbb{R}^3 .

The distance function we set by considering curves in $T \subset \mathbb{R}^3$ is not the same.

Definition. A *topological triangle* on X (here we usually consider X being either S^2 or T) is the image $R \subset X$ of closed Euclidean triangle $\Delta \subset \mathbb{R}^2$ under a homomorphism $\Delta \to R$.

Example. A spherical triangle is a topological triangle (use a radial projection to a plane in \mathbb{R}^3 from O).

Definition. A (topological) *triangulation* τ of X is a finite collection of topological triangles on X s.t.

• ∀ two triangles are either disjoint or meet in exactly one edge or meet in exactly one vertex;

• each edge belongs to exactly two triangles.

Definition. The Euler number $e = e(X, \tau)$ is $e = F - E + V$ where F is the number of triangles, E is the number of edges, and V is the number of vertices.

A fact from algebraic topology: e is independent of the choice of τ , so in fact $e = e(X)$.

Example. Consider $X = S^2$.

We have $F = 8, E = 13, V = 6$. So $e = 2$.

Example. Consider $X = T$ (imagine the diagonals are straight lines).

We have $F = 18, E = 27, V = 9$. So $e = 0$.

Note that in both cases we used geodesic triangles, i.e. edges are spherical or Euclidean lines of S^2 or T respectively.

Remark. Take a look again at the definition of a triangulation. We impose $X = \bigcup_{i=1}^{F} \Delta_i$ (can be deduced from other conditions – exercise).

Proposition. 3.1

For every geodesic triangles of S^2 or T, we have e being 2 or 0 respectively.

Proof. Denote 'faces' of triangles $\Delta_1, ..., \Delta_F$, and $\tau_i = \alpha_i + \beta_i + \gamma_i$, $i = 1, ..., F$, where $\alpha_i, \beta_i, \gamma_i$ are interior angles of the respective triangles. Then

$$
\sum \tau_i = 2\pi V.
$$

Also, $3F = 2E$ since every face has 3 edges and every edge is shared by 2 faces. So $F = 2E - 2F$.

In the case of S^2 , by Gauss-Bonnet for S^2 (Proposition 2.6), area $\Delta_i = \tau_i - \pi$. So

$$
4\pi = \sum_{i=1}^{F} \Delta_i = \sum_{i=1}^{F} (\tau_i - \pi) = 2\pi V - \pi F
$$

$$
= 2\pi V - 2\pi E + 2\pi F
$$

$$
= 2\pi e
$$

So $e = 2$.

In the case of torus T, we have $\tau_i = \pi \ \forall i$ as T is locally Euclidean. So

$$
2\pi V = \sum_{i=1}^{F} \tau_i = \pi F
$$

So $2V = F = 2E - 2F$. So $V - E + F = 0$.

Remark. We may use topological polygonal decomposition (rather than topological triangles), and proposition 3.1 will still hold. Then considering S^2 , obtain Euler's formula

$$
V - E + F = 2.
$$

4 Hyperbolic Geometry

• Revision of derivatives and the chain rule: let $U \subset \mathbb{R}^n$ be open, $f = (f_1, ..., f_n)$: $U \to \mathbb{R}^m$ is smooth (C^{∞}) if each f_i has continuous partial derivatives of every order. This certainly implies differentiability (1st order partial derivatives are continuous).

The derivative of f at $a \in U$ is a linear map $df_u : \mathbb{R}^n \to \mathbb{R}^m$ (i.e. $DF|_a$ in Analysis II), so that

$$
\frac{||f(a+h) - f(a) - df_a \cdot h||}{||h||} \to 0
$$

as $h \to 0$ in \mathbb{R}^n .

If $m = 1$, then df_n is expressed as $\left(\frac{\partial f}{\partial x_1}(a), ..., \frac{\partial f}{\partial x_i}(a)\right)$ via

$$
(h_1, ..., h_n) \to \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a)h_i
$$

For general m , we may use the *Jacobi matrix*

$$
J(f)_a = \left(\frac{\partial f_i}{\partial x_j}(a)\right)
$$

and $\mathbf{h} \to J(f)_{a} \mathbf{h}$.

Example. Holomorphic (analytic) functions of complex variable $f: U \subset \mathbb{C} \to \mathbb{C}$. $f'(z)$ is defined by

$$
\frac{|f(z+w) - f(z) - f'(z)w|}{|w|} \to 0
$$

as $w \to 0$. Let $f'(z) = a + ib$, $w = h_1 + ih_2$. Then

$$
f'(z)w = (ah_1 - bh_2) + i(ah_2 + bh_1)
$$

now $R^2 \cong \mathbb{C}$, $f: U \subset \mathbb{R}^2 \to \mathbb{R}^2$ then $df_z: \mathbb{R}^2 \to \mathbb{R}^2$ is given by

$$
\begin{pmatrix} a & -b \\ b & a \end{pmatrix}
$$

Let $U \subset \mathbb{R}^n$, $v \subset \mathbb{R}^p$ be open, $f: U \to \mathbb{R}^m$, $g: V \to U$ be smooth functions. Then

 $f \circ q : V \to \mathbb{R}$

has derivative

$$
d(f \circ g)_p = (df)_{g(p)} \circ (dg)_p
$$

for $p \in V$. Or, using the Jacobi matrices,

$$
J(f \circ g)_p = J(f)_{g(p)} J(g)_p
$$

by matrix multiplication.

4.1 Riemannian metrics (on open sets of \mathbb{R}^2)

We use coordinates $(u, v) \in \mathbb{R}^2$, let $V \subset \mathbb{R}^2$ be open. A Riemannian matrix is defined by giving C^{∞} functions $E, F, G: V \to \mathbb{R}$ s.t.

$$
\begin{pmatrix} E(p) & F(p) \\ F(p) & G(p) \end{pmatrix}
$$

is a positive-definite matrix for every $p \in V$.

Thus $\forall p \in V$, the 2 × 2 matrix defines an inner product in \mathbb{R}^2 (c.f. Linear Algebra), i.e. $\overline{E}(r)$

$$
\langle e_1, e_1 \rangle_p = E(p),
$$

$$
\langle e_2, e_2 \rangle_p = G(p),
$$

$$
\langle e_1, e_2 \rangle_p = F(p).
$$

e.g. $E = G = 1, F = 0$ gives the standard Euclidean inner product.

Notation. We introduce the notation $E du^2 + 2F du dv + G dv^2$, where $u: V \to \mathbb{R}$, $v: V \to \mathbb{R}$ the coordinates are C^∞ functions.

 $du_p, dv_p : \mathbb{R}^2 \to \mathbb{R}$ have derivatives $(h_1, h_2) \to h_1, (h_1, h_2) \to h_2$.

Thus $du = du_p$, $dv = dv_p$ are elements of the dual space $(\mathbb{R}^2)^*$. Moreover they are LI. So they form a basis of $(\mathbb{R}^2)^*$, which is the dual basis to the standard basis of \mathbb{R}^2 .

Thus $du^2, dudv, dv^2$ are bilinear forms on \mathbb{R}^2 , with

$$
du^{2}(h, k) = du(h)du(k),
$$

\n
$$
dudv(h, k) = \frac{1}{2}(du(h)dv(k) + du(k)dv(h),
$$

\n
$$
dv^{2}(h, k) = dv(h)dv(k)
$$

corresponding to the matrices

$$
\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
$$

and so

$$
E du^2 + 2F du dv + G dv^2
$$

is of the form

$$
\begin{pmatrix} E & F \\ F & G \end{pmatrix}
$$

.

Definition. The *length* of a smooth curve $\gamma = (\gamma_1(t), \gamma_2(t)) : [0, 1] \to V \subset \mathbb{R}^2$ is

$$
\int_0^1 (E\dot{\gamma}_1^2 + 2F\dot{\gamma}_1\dot{\gamma}_2 + G\dot{\gamma}_2^2)^{1/2} dt
$$

where the dot represents derivatievs with respect to t . Note that the integrand is just $\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle_{\gamma(t)}$ (c.f. proposition 1.2).

4 HYPERBOLIC GEOMETRY 25

The *area* of a region $W \subset V$ is defined as

$$
\int_W (EG - F^2)^{1/2} du dv
$$

which is the Gram determinant.

Example. Consider $V = \mathbb{R}^2$ with Riemmanian metric

$$
\frac{4 (du^2 + dv^2)}{(1 + u^2 + v^2)^2}
$$

we shall see that via stereographic projection, $\pi : S^2 \setminus \{N\} \to \mathbb{R}^2_{u,v}$.

Recap on the Riemannian metrics. Suppose we have an open $V \subset \mathbb{R}^2$. We may think of \mathbb{R}^2 as an affine space A^2 , or a vector space \mathbb{R}^2 . It's easy to have identification $A^2 \cong \mathbb{R}^2$ (need to choose where to map the $\mathbf{0} \in \mathbb{R}^2$). We can attach a copy of \mathbb{R}^2 at $P \in A^2$.

Now $P \in S^2 \setminus \{N\}, P \neq N$. The tangent plane to S^2 at P is

$$
\{\mathbf x \in \mathbb R^3 : \mathbf x \cdot \overrightarrow{OP} = 0\}
$$

 $\mathbf{x} = \overrightarrow{OX} - \overrightarrow{OP}$. Consider $\pi(P) = (u, v) \in \mathbb{R}^2$ where π is the stereographic projection.

Example. (see sheet 3) For all $x_1, x_2 \perp \overrightarrow{OP}, \mathbf{x}_1 \cdot \mathbf{x}_2 = \langle d\pi | P(\mathbf{x}_1), d\pi | P(\mathbf{x}_2) \rangle_{\pi(P)}$.

This formula defines an inner product $\langle \cdot, \cdot \rangle_{\pi(P)}$ on a 'copy of \mathbb{R}^2 ' at $\pi(P)$. Thus we induced an instance of Riemannian metric on $V = \mathbb{R}^2$ using $d\pi_P$ for $P \in S^2 \setminus \{N\}.$

Definition. Let $V, \tilde{V} \subset \mathbb{R}^2$ be open and endowed with Riemannian metrics. Denote $\langle \cdot, \cdot \rangle_P$, $O \in V$ and $\langle \cdot, \cdot \rangle_Q^{\sim}$, $Q \in V$ the respective inner products.

A diffeomorphism $\varphi: V \to \tilde{V}$ is called an *isometry* iff for all $P \in V$, $Q = \varphi(p)$ we have

$$
\langle \mathbf{x}, \mathbf{y} \rangle_P = \langle d\varphi_P(\mathbf{x}), d\varphi_P(\mathbf{y}) \rangle_{\varphi(P)=Q}^{\sim}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$.

If $\gamma : [0,1] \to V$ be a C^1 curve, then $\tilde{\gamma} = \varphi \circ \gamma : [0,1] \to \tilde{V}$ is also a C^1 curve. Let $P = \gamma(t)$, so $\varphi(P) = \tilde{\gamma}(t)$. We have

$$
\langle \tilde{\gamma}'(t), \tilde{\gamma}'(t) \rangle_{\tilde{\gamma}(t)} = \langle d\varphi_P(\gamma'(t)), d\varphi_P(\gamma'(t)) \rangle_{\varphi(P)}
$$

by chain rule. If φ is an isometry then the above is equal to

$$
\left\langle \gamma'(t),\gamma'(t)\right\rangle _{\gamma(t)}
$$

Then (by integrating)

$$
length(\tilde{\gamma}) = length(\gamma) = \int_0^1 \left\langle \gamma'(t), \gamma'(t) \right\rangle_{\gamma(t)}^{1/2} dt.
$$

So isometries preserve lengths of curves, and so distances.

4.2 Two models for the hyperbolic plane

Definition. The *Poincare's disc model* for the hyperbolic plane is given by $D \subset \mathbb{C} \cong \mathbb{R}^2$, $D = \{ |\zeta| < 1 \}$ and a Riemannian metric

$$
\frac{4(du^2 + dv^2)}{(1 - u^2 - v^2)^2} = \frac{4|d\zeta|^2}{(1 - |\zeta|^2)^2}
$$
\n
$$
(*)
$$

where $\zeta = u + iv$, $d\zeta = du + idv$ (e.g. $d\zeta : \mathbb{C} \to \mathbb{C}$ linear map). Thus element of the dual complex vector space(??). $|d\zeta|^2 = du^2 + dv^2$.

(*) is a scaling of the Euclidean metric du^2+dv^2 by a factor depending on the polar radius $r = |\zeta|$: distances are scaled by $\frac{2}{1-r^2}$ and areas by $\frac{4}{(1-r^2)^2}$ on the polar
 $\sqrt{EG - F^2}$.

The upper half plane is $H = \{z \in \mathbb{C} : \Im(z) > 0\}$. D bijects to H via Möbius transformation $\zeta \in D \to \frac{i(1+\zeta)}{1-\zeta} \in H$.

We fix notation
$$
z \in H
$$
, $z = x + iy$, $z = \frac{1(i+\zeta)}{1-\zeta}$, $\zeta \in D$, $\zeta = u + iv$, $\zeta = \frac{z-i}{z+i}$.

We shall prove this induces a Riemann metric on H, so that $\zeta \to z$ as the above Möbius map is an isometry $D \to H$.

The Euclidean product on $\mathbb{C}(\cong \mathbb{R}^2)$ is $\langle w_1, w_2 \rangle = \Re(w_1 \bar{w}_2) = \frac{w_1 \bar{2}_2 + \bar{w}_1 w_2}{2}$.

So if $\langle \cdot, \cdot \rangle$ is Euclidean at ζ , then at z s.t. $\zeta = \frac{z-i}{z+i}$ we require

$$
\langle w_1, w_2 \rangle_z = \left\langle \frac{d\zeta}{dz} w_1, \frac{d\zeta}{dz} w_2 \right\rangle_{Eud} = \left| \frac{d\zeta}{dz} \right|^2 \Re(w_1 \bar{w}_2)
$$

i.e. on H , we obtain a Riemannian metric

$$
\left|\frac{d\zeta}{dz}\right|^2 (dx^2 + dy^2) = |dz^2|
$$

We compute

$$
\frac{d\zeta}{dz} = \frac{1}{z+i} - \frac{z-i}{(z+i)^2} = \frac{2i}{(z+i)^2},
$$

$$
1 - |\zeta|^2 = 1 - \frac{|z-i|^2}{|z+i|^2}
$$

so

$$
\frac{1}{1-|\zeta|^2} = \frac{|z+i|^2}{|z+i|^2 - |z-i|^2} = \frac{|z+i|^2}{4\Im z}
$$

Putting everything together, the metric on H corresponding $\frac{4|d\zeta|^2}{(1-|\zeta|^2)}$ $rac{4|a\zeta|}{(1-|\zeta|^2)^2}$ is

$$
4 \cdot \frac{4}{|z+i|^4} \cdot \left(\frac{|z+i^2}{4\Im z}\right)^2 \cdot |dz|^2 = \frac{|dz|^2}{(\Im z)^2} = \frac{dx^2 + dy^2}{y}
$$

Note that on H we got a scaling of Euclidean matric: distances scaled by $1/y$ and areas scaled by $1/y^2$.

4 HYPERBOLIC GEOMETRY 27

Definition. The *upper half-plane* model for the hyperbolic plane is H with metric

$$
\frac{dx^2 + dy^2}{y^2}
$$

Consider $PSL(2, \mathbb{R}) = \left\{ z \to \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}$, the subgroup of Möbius transformations sending $\mathbb{R} \cup {\infty} \rightarrow \mathbb{R} \cup {\infty}$ and $H \rightarrow H$.

Proposition. 4.1

The elements of $PSL(2,\mathbb{R})$ are *isometries* of H and thus preserve lengths of curves.

Proof. Easy to check that $PSL(2, \mathbb{R})$ is generated by: $z \to z + a, a \in \mathbb{R};$ $z \to az, a \in R^+;$ $z \rightarrow -1/z$.

It suffices to show that every of these three maps preserves the Riemannian metric

$$
\frac{|dz|^2}{(\Im z)^2} = \frac{dx^2 + dy^2}{y^2}
$$

The first two are clear. We check the third one $f(z) = -1/z$: $w \rightarrow f'(z)w, f'(z) = 1/z^2$, so

$$
d\left(\frac{-1}{z}\right) = \frac{dz}{z^2},
$$

$$
d\left(\frac{-1}{z}\right)\Big|^2 = \frac{|dz|^2}{|z|^4},
$$

$$
\Im\left(\frac{-1}{z}\right) = \frac{-1}{|z|^2}\Im\overline{z} = \frac{\Im z}{|z|^2}
$$

Thus

$$
\frac{|d(-1/z)|^2}{|\Im(-1/z)|^2} = \frac{1/|z|^4|dz|^2}{(\Im z)^2/|z|^4} = \frac{|dz|^2}{(\Im z)^2}
$$

Remark. Each $z \to az + b$ for $a, b \in \mathbb{R}$, $a > 0$ in $PSL(2, \mathbb{R})$ Hence $PSL(2, \mathbb{R})$ acts transitively on H.

Each Möbius transformation preserves the set of circles and straight lines in \mathbb{C} . If $L = i\mathbb{R}, g \in PSL(2,\mathbb{R})$, then $g(L)$ is either a circle centred at a point in \mathbb{R} or straight line perpendicular to R.

Put $L^+ = \{it : t > 0\}$. Then $g(L^+)$ is either a semicircle with ends in R or vertical half line starting at a point in R. We call these lines the hyperbolic lines in H.

Lemma. 4.2

Through any two points $z_1, z_2 \in H$, there is a unique hyperbolic line l.

Proof. This is clear when $\Re z_1 = \Re z_2$. If not, then the perpendicular bisector of z_1z_2 intersect R at one point, which is the centre of the semicircle.

 \Box

Lemma. 4.3 $PSL(2,\mathbb{R})$ acts transitively on the set of hyperbolic lines.

Proof. It suffices to show that for all hyperbolic lines l, there exists $g \in PSL(2,\mathbb{R})$ s.t. $g(l) = L^+$. This is clear when l is a vertical half line. If l is a semicircle, endpoints $s < t \in \mathbb{R}$, then $g(z) = \frac{z-t}{z-s}$ which is valid as the determinant of the corresponding matrix is positive. Also, $g(t) = 0$, $g(s) = \infty$, and the only half line through them is L^+ . \Box

Remark. Furthermore, we can achieve $g(s) = 0$, $g(t) = \infty$ by composing with $z \to -1/z$. Also we can map all given point $P \in l$ to $g(P) = i \in L^+$ (compose with $z \to az, a > 0$).

Definition. Given two points $z_1, z_2 \in H$, the *hyperbolic distance*, $\rho(z_1, z_2)$, is the length of segment $[z_1, z_2] \subset l$ of the unique hyperbolic line through z_1, z_2 . Then $PSL(2,\mathbb{R})$ preserves ρ (by Lemma 4.2, Proposition 4.1 and some previous theory).

Proposition. 4.4

If $\gamma : [0,1] \to H$ is piece-wise C¹-norm with $\gamma(0) = z_1, \gamma(1) = z_2$, then $length(\gamma) \ge \rho(z_1, z_2)$ with equality holds iff γ is the hyperbolic line through z_1 and z_2 parameterized monotonically (i.e. no going back).

Proof. We assume γ is C^1 . $\exists g \in PSL(2,\mathbb{R})$ that takes $g(l) \text{to} L^+$ (which is an isometry). So WLOG let $z_1 = iu, z_2 = iv, u < v \in \mathbb{R}$. Then write $\gamma(t) = x(t) + iy(t)$, we have

$$
length(\gamma) = \int_0^1 \frac{1}{y} \sqrt{\dot{x}^2 + \dot{y}^2} dt
$$

$$
\geq \int_0^1 \frac{|\dot{y}|}{y} dt
$$

$$
\geq \left| \int_0^1 \frac{\dot{y}}{y} dt \right|
$$

$$
\geq \log y(t)|_0^1
$$

Thus

$$
\rho(z_1, z_2) = \log \frac{v}{u}
$$

Equality holds only if $\dot{x} \equiv 0, \, \dot{y} \ge 0$, i.e. monotonic.

Remark. This proposition implies triangle inequality for $\rho(\cdot, \cdot)$: length (γ) = $\rho(z_1, z_2) \leq \rho(z_1, z_3) + \rho(z_3, z_2)$, with equality iff $z_3 \in \gamma$.

Thus (H, ρ) is a metric space.

Now consider the Geometry of the disc model.

Recall $\zeta \in D \to z = \frac{1+\zeta}{1-\zeta} \in H$. $z \in H \to \zeta = \frac{z-i}{z+i} \in D.$

So (i) $PSL(2,\mathbb{R}) \cong$ the group of Möbius transformations sending $|\zeta| = 1$ to itself and $D \to D$. Call this group G.

(ii) Hyperbolic lines in D are segments of circles meeting $|\zeta| = 1$ orthogonally including diameters.

(iii) G acts transitively on hyperbolic lines in D .

(iv) The length minimizing curves are segments of hyperbolic lines parameterized monotonically.

Let ρ denote the hyperbolic distance.

Lemma. 4.5 (i) Rotations $z \to e^{i\theta} z$ ($\theta \in \mathbb{R}$) are in G; (ii) if $a \in D$, then $g(z) = \frac{z-a}{1-\bar{a}z}$ is in G.

Proof. It's easy to see as these are linear maps, $|e^{i\theta}z| = |z|, d(e^{i\theta}z)| = dz$ (recall the metric $\frac{4|dz|^2}{(1-|z|^2)}$ $\frac{4|az|}{(1-|z|^2)^2}$).

(iii) g sends the set $\{|z|=1\}$ to itself: if $|z|=1$, then

$$
|1 - \bar{a}z| = |\bar{z}(1 - \bar{a}z)| = |\bar{z} - \bar{a}| = |z - a| \neq 0
$$

So $\left|\frac{z - a}{1 - \bar{a}z}\right| = 1$, and $|z| = 1 \implies |g(z)| = 1$. Also $g(a) = 0$.

Exercise. (c.f. Q9 sheet 2, Complex Analysis sheet 1) We can show conversely that every element G is of the form $g(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}$ for some real θ and $|a| < 1$.

Proposition. 4.6

If $0 \leq r < 1$, then

$$
\rho(0, re^{i\theta}) = \rho(0, r) = 2 \tanh^{-1} r \tag{*}
$$

In general, for $z_1, z_2 \in D$,

$$
\rho(z_1, z_2) = 2 \tanh^{-1} \left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right|
$$

Proof. The first equality of $(*)$ is clear from lemma 4.5(i). For the second one, use $\gamma(t) = t, 0 \le t \le r$, then from definition of length we get

$$
\rho(0,r) = \int_0^r \frac{2dt}{1 - t^2} = 2 \tanh^{-1} r
$$

which gives the first part.

For the general case, let *l* be the unique hyperbolic line through z_1, z_2 . Apply the isometry $g(z) = \frac{z-z_1}{1-\bar{z}_1z}$ (by lemma 4.5(ii)), we get $g(z_1) = 0$, so $g(l)$ is a segment of a diameter. We may further rotate about 0, and get $g(z_2) = r \in \mathbb{R}_+$. Thus $\begin{array}{c} \end{array}$

$$
r = \left| \frac{z_2 - z_1}{1 - \bar{z}_1 z_2} \right|
$$

 $\bigg\}$ $\overline{}$ $\overline{}$

and the proposition follows.

Remark. When there is a 'distinguished' point, it's often convenient to map it to zero and use the Disc model.

Example. We show $\forall P$ and for all hyperbolic line l, $P \notin l$, there exists unique hyperbolic line l' s.t. l' meets l orthogonally, say l∩l' = Q, and $\rho(P,Q) \leq \rho(P,Q')$ $\forall Q' \in l$.

WLOG let $P = 0 \in D$. Then just note the triangle inequality.

Lemma. 4.7

Suppose g is an isometry of H, and g fixes every point L^+ . Then either $g = id_H$, or $g(z) - \overline{z} \ \forall z \in H$, i.e. a reflection in the y–axis.

Proof. Let $P \in H$, $P \notin L^+$. Then there is a unique line l' through P with $l' \perp L^+$, so l' is a semi-circle. Let $Q = l' \cap L^+$. Then

$$
\rho(P,Q) = \rho(g(P), Q)
$$

as $g(Q) = Q$.

Then $g(P) \in l'$ by the uniqueness of l', and either $g(P) = P$ or $g(P) = P'$, where P' is the image of P under the reflection $z \to -\bar{z}$. Now s.t.p. if $g(P) = P$, then $g = id_H$ (for if $g(P) = P'$ then compose g with $z \to -\overline{z}$ (an ieometry) to obtain q is $z \rightarrow -\overline{z}$).

Let $A \neq P$, $A \notin L^+$, $g(A) = A'$. WLOG let $P \in H^+ = \{z \in H | Re(z) > 0\}$. Let $A\in H^+.$

then $\rho(A',P) = \rho(A,P)$ (as g is isometry and $g(P) = P$). But $\rho(A',P) =$ $\rho(A',B) + \rho(B,P) = \rho(A,B) + \rho(B,P)$, contradicts with triangle inequality $B \notin line(AP)$. Thus $g(A) = A$, i.e. g is identity. \Box

We call $R: z \in H \to -\bar{z} \in H$ the hyperbolic reflection in L^+ , and for any hyperbolic line l in H with $T \in PSL(2, \mathbb{R})$, $T(l) = L^{+}$, call $R_l := T^{-1}RT$ the reflection (hyperbolic) in l.

4 HYPERBOLIC GEOMETRY 32

By proposition 4.7, R_l is the unique isometry fixing points in l but is not the identity.

Exercise. Write out the reflections using the disc model.

4.3 Hyperbolic triangles

Definition. A hyperbolic triangle $\triangle ABC$ is the region determined by 3 hyperbolic line segments.

Including cases when one vertex, say A, is at 'infinity', i.e. $A \in \mathbb{R} \cup \{\infty\}$ for H , $A \in \{|z|=1\}$ for D, then $\alpha = 0$.

We shall prove that the area of $\triangle ABC = \pi - \alpha - \beta - \gamma$.

Theorem. 4.8 (Gauss-Bonnet for hyperbolic triangles) For each hyperbolic triangle $T = \Delta ABC$ with angles $\alpha, \beta, \gamma \geq 0$,

$$
area T = \pi - \alpha - \beta - \gamma.
$$

Proof. First, do the case $\gamma = 0$, so C is at infinity. Use the H model, WLOG let $C = \infty$ (apply $(g \in PSL(2, \mathbb{R})$ if needed). Use $z \to z + a, a \in \mathbb{R}$, to centre the semicircle AB at 0 (noting AC, BC are in the vertical half-lines).

Use $z \rightarrow bz$ to arche the radius of semicircle of AB to be 1.

Thus WLOG $AB \subset \{x^2 + y^2 = 1, y > 0\}$ and then

$$
\begin{aligned}\n\text{area } T &= \int_{\cos(\pi - \alpha)}^{\cos \beta} \left(\int_{(1 - x^2)^{1/2}}^{\infty} \frac{dy}{y^2} \right) dx \\
&= \int_{\cos(\pi - \alpha)}^{\cos \beta} \frac{dx}{(1 - x^2)^{1/2}} \\
&= (-\arccos x)|_{\cos(\pi - \alpha)}^{\cos \beta} = (\pi - \alpha) - \beta\n\end{aligned}
$$

noting $\arcsin x + \arccos x = \frac{\pi}{2}$, $\arccos : [-1, 1] \rightarrow [0, \pi]$, and as $\gamma = 0$.

In general, using the H model again, we can apply $g \in PSL(2,\mathbb{R})$ to move AC into a vertical line. Then as before move (with isometry) AB into a $\{x^2+y^2=1\}$ (AC will remain vertical).

Consider $\Delta_1 = AB \infty$, $\Delta_2 = BC \infty$. Then

area
$$
\Delta_1 = \pi - \alpha - (\beta + \gamma)
$$
, area $\Delta_2 = \pi - \delta - (\pi - \gamma)$

So

area
$$
T = area\Delta_1 - area\Delta_2
$$

= $\pi - \alpha - \beta - \delta - \pi + \delta + \pi - \gamma$
= $\pi - \alpha - \beta - \gamma$.

There is hyperbolic version of sine and cosine rules (see Q16 sheet 2).

Every two lines on S^2 (i.e. great circles) meet, in 2 points; every two lines on \mathbb{R}^2 meet (in 1 point) if and only if they are not parallel.

Definition. Use the D model of hyperbolic plane, two hyperbolic lines l_1, l_2 are parallel iff they only meet at $\{|\zeta|=1\}$, and are ultraparallel iff they do not meet anywhere in $\{\zeta | \leq 1\}.$

Euclid's parallel axiom (the 5th axiom) says that, given a line l and $P \notin l$, there exists unique line l' s.t. $P \in l'$ with $l \cap l' = \infty$. This fails both on S^2 and on the hyperbolic plane – but for a very different reason.

4.4 Thy hyperbolic model

Consider the *Lorenzian* inner product $\langle x, y \rangle$ on \mathbb{R}^2 with matrix

$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}
$$

Set $q(\mathbf{x}) := \langle x, x \rangle = x^2 + y^2 - z^2$ for all $\mathbf{x} = (x, y, z)$. Let

$$
S := \{ \mathbf{x} \in \mathbb{R}^3 : q(\mathbf{x}) = -1 \}
$$

this is the 2-sheet hyperboloid, with

$$
S^+ = S \cap \{z > 0\}
$$

the upper sheet. Let $\pi : S^+ \to D \subset \mathbb{C}$ be

$$
\pi(x,y,z)=\frac{x+iy}{1+z}=u+iv
$$

the stereographic projection from $(0, 0, -1)$.

Put $r^2 = u^2 + v^2$, and $\sigma = \pi^{-1} : D_{u,v} \to S^+ \subset \mathbb{R}^3$:

$$
\sigma(u,v) = \frac{1}{1 - r^2} (2u, 2v, 1 + r^2)
$$

Now check the inner product on the tangent plane to S^+ at $\sigma(u, v)$ spanned by $\sigma_n := \frac{\partial \sigma}{\partial u} = d\sigma(e_1), \ \sigma_v = \frac{\partial \sigma}{\partial v} = d\sigma(e_2), \ e_1, e_2$ are the standard basis of \mathbb{R}^2 . Then

$$
\sigma_u = \frac{2}{(1 - r^2)^2} (1 + u^2 - v^2, 2uv, 2u)
$$

$$
\sigma_v = \frac{2}{(1 - r^2)^2} (2uv, 1 + v^2 - u^2, 2v)
$$

we restrict Lorenzian $\langle \cdot, \cdot \rangle$ to span $\langle \sigma_u, \sigma_v \rangle$ we get a symmetric bilinear form on \mathbb{R}^2 at each $(u, v) \in D$, $E du^2 + 2F du dv + G dv^2$, with $E = \langle \sigma_u, \sigma_u \rangle = \frac{4}{(1 - r^2)^2}$, $F = 0, G = E, i.e.$

5 Smooth embedded surfaces (in R^3)

Definition. Let $S \subset \mathbb{R}^3$. S is a parameterised smooth embedded surface if each $Q \in S$ has an open neighbourhood $Q \in U = W \cap S$ for W open in R^3 (subset topology) and a map $\sigma: V \to U$ from open $V \subset \mathbb{R}^2_{u,v}$ s.t.

- σ is a homomorphism of V onto U;
- $\bullet \sigma = \sigma(u, v)$ is C^{∞} (all partial derivatives of all orders exist and are continuous); • at each $Q = \sigma(P)$, the vectors $\frac{\partial \sigma}{\partial u}(P), \frac{\partial \sigma}{\partial v}(P)$ are linearly independent.

Now
$$
\sigma(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix}
$$
. Then
\n
$$
\sigma_u(P) = \frac{\partial \sigma}{\partial u}(P) = \begin{pmatrix} \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial u} \end{pmatrix}(P) = d\sigma_P(e_1), \sigma_v(P) = d\sigma_P(e_2)
$$

where e_1, e_2 are standard basis of \mathbb{R}^2 . (u, v) are smooth coordinates on $U \subset S$. The subspace $span_{\mathbb{R}}\langle \sigma_u(P), \sigma_u(p)\rangle$ is the tangent plane T_QS to S at $Q = \sigma(P)$. σ is a smooth (C^{∞}) parameterisation of $U \subset S$.

Proposition. 5.1

Suppose $\sigma: V \to U$, $\tilde{\sigma}: \tilde{V} \to U$ are two C^{∞} parameterisations of U. Then the homomorphism $\varphi = \sigma^{-1} \circ \tilde{\sigma} : \tilde{V} \to V$ is a diffeomorphism.

Proof. It suffices to consider φ on a small neighbourhood of some $P = (u_0, v_0) \in$ \tilde{V} . The Jacobi matrix of $\sqrt{ }$ $\overline{1}$ x_u x_v y_u y_v z_u z_v \setminus has rank 2 for each $(u, v) \in V$ by the definition of σ . WLOG let (x_u, x_v) and (y_u, y_v) be linearly indepnedent at (u_0, v_0) . Let $F(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \end{pmatrix}$ $y(u, v)$. Then by inverse function theorem (from Analysis II), F maps some open neighbourhood of $(u_0, v_0) \in N$ diffeomorphically onto the image (open) $N' \subset \mathbb{R}^2$. Now $\sigma(N)$ is open, $\tilde{N} \subset U = \tilde{\sigma}^{-1}(\sigma(N)) \subset \tilde{V}$ is open (by homomorphism property). $\sigma_1 F$ is bijective, so $\pi = F \circ \sigma^{-1}$ is also bijective. So $\tilde{F} = \pi \circ \tilde{\sigma}$.

Furthermore, $\pi(x, y, z) = (x, y)$ is certainly smooth since it's a linear map. Now $\varphi = \sigma^{-1} \circ \tilde{\sigma} = \sigma^{-1} \circ \pi^{-1} \circ \pi \circ \tilde{\sigma} = F^{-1} \circ \tilde{F}$ on \tilde{N} a smooth map as F^{-1} and \tilde{F} are so. By symmetry, φ^{-1} is also C^{∞} on N. So done. \Box

Corollary. the tangent plane T_QS is independent of the choice of parameterisation σ .

Proof. Let $\tilde{\sigma}(\tilde{u}, \tilde{v}) = \sigma(\varphi(\tilde{u}, \tilde{v}), \varphi_2(\tilde{u}, \tilde{v}))$, $\varphi = (\varphi_1, \varphi_2)$. By chain rule,

$$
\tilde{\sigma}_{\tilde{u}} = (\varphi_1)_{\tilde{u}} \sigma_u + (\varphi_2)_{\tilde{u}} \sigma v, \tilde{\sigma}_{\tilde{v}} = (\varphi_1)_{\tilde{v}} \sigma_u + (\varphi_2)_{\tilde{v}} \sigma v
$$

. Then the Jacobi matrix for φ is

$$
J(\varphi) = \begin{pmatrix} \varphi_{1,\tilde{u}} & \varphi_{2,\tilde{u}} \\ \varphi_{1,\tilde{v}} & \varphi_{2,\tilde{v}} \end{pmatrix}
$$

which is invertible as φ is a diffeomorphism.

Remark. We can compute $\tilde{\sigma}_{\tilde{u}} \times \tilde{\sigma}_{\tilde{v}} = \det(J\varphi)\sigma_u \times \sigma_v$.

Definition. The unit normal to S at Q is

$$
N = N_Q := \frac{\sigma_u \times \sigma_v}{||\sigma_u \times \sigma_v||}
$$

Note that N is well-defined up to a sign.

 $\theta := \sigma^{-1} : U \subset S \to V \subset \mathbb{R}^2$ is called a *chart*.

Example. Consider on S^2 the two stereographic projections from the North and South poles; they are both charts with domains covering S^2 .

If $S \subset \mathbb{R}^3$ is an embedded surface, then each T_QS $(Q \in S$ inherits an inner product from \mathbb{R}^3 - i.e. we get a *family* of inner products depending on $Q \in S$. This family is the first fundamental form of S.

Given a parameterisation $\sigma: V \to U \subset S$ and $P \in V$, $a, b \in \mathbb{R}^2$, $\langle a, b \rangle_P :=$ $\langle d\sigma_P(a), d\sigma_P(b)\rangle_{\mathbb{R}^3}$ w.r.t. standard basis e_1, e_2 of \mathbb{R}^2 , the RHS becomes $E\dot{d}u^2 +$ $2Fdudv + Gdv^2$ with $E = \langle \sigma_u, \sigma_u \rangle_{\mathbb{R}^3}$, $F = \langle \sigma_u, \sigma_v \rangle_{\mathbb{R}^3}$, $G = \langle \sigma_v, \sigma_v \rangle_{\mathbb{R}^3}$. Here $\sigma_u = d\sigma(e_1), \sigma_v = d\sigma(e_2).$

This Riemannian metric of V is also called the first fundamental form w.r.t σ (especially in practical examples).

Fact: if $\tilde{\sigma} = \sigma \circ \varphi : \tilde{V} \to \tilde{U}$ as in proposition 5.1, then φ is an isometry of the respective Riemannian metric on V and \tilde{V} .

Definition. Given a smooth curve $\Gamma : [a, b] \to S \subset \mathbb{R}^3$,

$$
length(\Gamma) := \int_{a}^{b} ||\Gamma'(t)||dt
$$

$$
energy(\Gamma) := \int_{a}^{b} ||\Gamma'(t)||^{2} dt.
$$

5 SMOOTH EMBEDDED SURFACES (IN R^3)

When $\Gamma([a, b]) \subset U = \sigma(V)$, then there exists unique $\gamma : [a, b] \to V$ open in \mathbb{R}^2 s.t. $\Gamma = \sigma \circ \gamma$ (we use these coordinates in \mathbb{R}^2 to express the curve in terms of u and v). So $\gamma = (\gamma_1, \gamma_2)$, $\Gamma'(t) = (d\sigma)_{\gamma(t)}(\dot{\gamma}_1(t)e_1 + \dot{\gamma}_2(t)e_2) = \dot{\gamma}_1 \sigma_u + \dot{\gamma}_2 \sigma v$. So

$$
length(\Gamma) = \int_a^b \left(E \dot{\gamma}_1^2 + 2F \dot{\gamma}_1 \dot{\gamma}_2 + G \dot{\gamma}_2^2 \right)^{1/2} dt
$$

Definition. Given a C^{∞} parameterisation $\sigma: V \to U \subset S$ of surface S and a region $T \subset U$. Then

$$
area(T) = \int_{\theta(T)} (EG - F^2)^{1/2} du dv
$$

where $\theta(T) = \sigma^{-1}$ is the respective *chart*.

Proposition. 5.3

The area is well defined, i.e. $area(T)$ is independent of the partamerisation σ . Thus we may extend the definition of $area(T)$ to more general T which is not necessarily contained in one parameterized neighbourhood.

Remark. In practical examples, $\sigma(V) = U$ is often *dense* in S. Then it suffices to use just this U to compute $area(S)$.

Areas and lengths are invariant under isometries.

6 Geodesics

Let $V \subset \mathbb{R}^2_{u,v}$ open and we are given a Riemannian metric $E du^2 + 2F du dv + G dv^2$. Suppose $\gamma = (\gamma_1, \gamma_2) : [a, b] \rightarrow V$ is a C^{∞} curve.

Definition. γ is a *geodesic* if: (1) $\frac{d}{dt}(E\dot{\gamma}_1 + F\dot{\gamma}_2) = \frac{1}{2}(E_u\dot{\gamma}_1^2 + 2F_u\dot{\gamma}_1\dot{\gamma}_2 + G_u\dot{\gamma}_2^2)$ and (2) $\frac{d}{dt}(F\dot{\gamma}_1 + G\dot{\gamma}_2) = \frac{1}{2}(E_v\dot{\gamma}_1^2 + 2F_v\dot{\gamma}_1\dot{\gamma}_2 + G_v\dot{\gamma}_2^2)$ hold for all $t \in [a, b]$.

Let $\gamma(a) = p$, $\gamma(b) = q$. A proper variation of γ is a C^{∞} map $h : [a, b] \times (-\varepsilon, \varepsilon) \rightarrow$ $V \subset \mathbb{R}^2$ s.t. $h(t,0) = \gamma(t), t \in [a, b], h(a, \tau) = p, h(b, \tau) = q$ for all $\tau \in (-\varepsilon, \varepsilon)$. So for all τ , $\gamma_{\tau} : [a, b] \to V$, $\gamma_{\tau} = h(t, \tau)$ is a C^{∞} curve.

Proposition. 6.1

 γ satisfies the geodesic ODEs iff γ is the stationary point of for the energy function for all proper variations, i.e. $\frac{d}{d\tau}|_{\tau=0} E(\gamma_{\tau}) = 0$.

Proof. We write $\gamma(t) = (i(t), v(t))$. Then

$$
energy(\Gamma) = \int_{a}^{b} (E(u, v)\dot{u}^{2} + 2F(u, v)\dot{u}\dot{v} + G(u, v)\dot{v}^{2}) dt
$$

$$
= \int_{a}^{b} I(u, v, \dot{u}, \dot{v}dt).
$$

Euler-Lagrange equations: a solution γ is stationary iff

$$
\frac{d}{dt}\left(\frac{\partial I}{\partial \dot{u}}\right) = \frac{\partial I}{\partial u},
$$

$$
\frac{d}{dt}\left(\frac{\partial I}{\partial \dot{v}}\right) = \frac{\partial U}{\partial v}
$$

But LHS of the first equation is just $2E\dot{u} + 2F\dot{v}$ and RHS is $e_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2$. So we get the first geodesic equation. The second is obtained similarly. \Box

Now let $S \subset \mathbb{R}^3$ be an embedded surface. $\sigma : V \to U \subset S$ a parameterisation, $\theta = \sigma^{-1}: U \to V$ the chart, and let $\Gamma : [a, b] \to S$ a smooth curve in $S, \gamma = \theta \circ \Gamma$ a smooth curve in V .

Define Γ to be a *geodesic* on S iff γ is a geodesic in V, i.e. iff Γ is a startionary point of $\int_a^b ||\Gamma'(t)||^2 dt$. This is independent of choice of σ .

Corollary. 6.2

If a curve Γ in S minimizes the energy among all the curves with the same end-points, then Γ is a geodesic.

Proof. Let $\Gamma : [a, b] \to S$. For all $a < a_1 < b_1 < b$, $\Gamma_1 = \Gamma |_{[a_1, b_1]}$ then minimizes the energy among all curves from $\Gamma(a_1)$ to $\Gamma(b_1)$.

If a_1, b_1 are such that $\Gamma[(a_1, b_1]) \subset U$ for some parameterized neighbourhood, then Γ_1 must be a geodesic by proposition 6.1, Γ_1 is a geodesic. Now vary a_1, b_1 to get a cover of $[a, b]$. \Box

Lemma. 6.3

Let $V \subset \mathbb{R}^2$, $P, Q \in V$, V is endowed with a Riemannian metric. Consider C^{∞} curve γ_0 , $\gamma_0(0) = P$, $\gamma_0(1) = Q$. Then γ_0 minimizes the energy iff γ_0 minimizes the length and has constant speed $\dot{\gamma}_0$.

Proof. Cauchy-Schwartz for $f, g \in C[0, 1]$ says

$$
\left(\int_0^1 fg\right)^2 \le \int_0^1 f^2 \int_0^1 g^2
$$

with equality attained iff $g = \lambda f$ for some $\lambda \in \mathbb{R}$, or alternatively $f = 0$.

Put $f \equiv 1, g = ||\dot{\gamma}||$. Then

 $(lenath(\gamma))^2 \le energy(\gamma)$

with equality attained only if $||\dot{\gamma}||$ is a constant.

If $length(\gamma) = l$, then the minimum of energy l^2 does occur exactly when $||\dot{\gamma}||$ is a constant. \Box

Remark. We can show that a curve γ is geodesic precisely if Γ locally minimizes energy, also iff γ locally minimizes length and has constant speed. By locally minimizing we mean that $\forall t_0, \exists \varepsilon > 0$ s.t. $\gamma|_{t_0-\varepsilon,t_0+\varepsilon]}$ minimizes length/energy.

Remark. Geodesic ODEs actually imply $||\Gamma'(t)||$ is a constant (see example sheet 3 Q7).

Further properties of the geodesics:

Recall that the defining ODEs are of the form

$$
\frac{d}{dt}\left(\begin{pmatrix} E & F \\ F & G \end{pmatrix}\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix}\right) = \text{ terms with derivative of lower order}
$$

The matrix $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$ is invertible, thus the ODE is of the form (\ddot{u}, \ddot{v}) = $\mathcal{F}(u, v, \dot{u}, \dot{v})$. Standard theory of ODEs (Analysis II, application of the contraction mappings) show that for all $P = (u_0, v_0) \in V \subset \mathbb{R}^2$, for all $\mathbf{a} = (p_0, q_0) \in \mathbb{R}^2$,

there exists unique geodesic $\gamma(t) = (u(t), v(t)),$ for $|t| < \varepsilon$, with $\gamma(0) = P$, $\dot{\gamma}(0) = a.$

Example. Consider $S^2 \subset \mathbb{R}^3$, for all $P \in S^2$, all tangent direction (at P), there exists a unique great circle.

As arcs of great circles of length $\lt \pi$ are length minimizing, we find from Corollary 6.2 and Lemma 6.3, that the great circles are all the geodesics on S^2 .

Similarly, on the hyperbolic plane, the hyperbolic lines are all the geodesics.

This can also be verified directly – see Q7 sheet 3.

We can use the geodesics on a surface $S \subset \mathbb{R}^3$ to construct around each point $P \in$ S the *geodesic polar coordinates* (a coordinate chart simplifying the coefficients of the first fundamental form (E, F, G) .

Sketch of proof:

Solutions of the geodesic ODEs depend on C^{∞} on the initial conditions. Let $\psi: U \to V \subset \mathbb{R}^2$ where V is open, and a coordinate chart $P \in U \subset S$ where U is open, and $\psi(P) = 0 \in V$.

For all value θ , there exists a unique geodesic γ^{θ} : $(-\varepsilon, \varepsilon) \to V$ with $\gamma^{\theta}(0) = 0$, $\dot{\gamma}^{\theta}(0)$ =the unit vector in the direction of |tehta.

Set $\sigma(r\theta) := \gamma^{\theta}(r)$. We can show: 1) σ is smooth in (r, θ) ; 2) For all θ_0 , $\psi^{-1} \circ \sigma : \{(r, \theta) : 0 < r < \varepsilon, \theta_0 < \theta < \theta_0 + 2\pi\} := W \to S$, i.e. $\sigma: W \to V \setminus \{0\},\$ $psi^{-1}: V \setminus \{0\} \to U \setminus \{P\} \subset S.$

 $\psi^{-1} \circ \sigma$ is a valid parameterisation, so $\sigma^{-1} \circ \psi$ is a valid *chart*.

The values (r, θ) of this chart are the *geodesic polar coordinates* at P.

Gauss lemma says the geodesic circles ${r = r_0} \subset W$ are perpendicular to their radii, i.e. to γ^{θ} , and the Riemmanian metric on W is

$$
dr^2 + G(r, \theta)d\theta^2.
$$

An atlas is a collection of charts (with domains) covering S. For example, geodesic polar coordinates define an atlas.

Other good atlases are given in sheet 3 (for $S = S^2$).

6.1 Surface of Revolution

We consider $S \subset \mathbb{R}^3$ that can be obtained by rotating a plane curve η around a straight line l.

WLOG let l be the z-axis and η in the (x, z) -plane, i.e.

$$
\eta : (a, b) \subseteq \mathbb{R}, \eta(u) = (f(u), 0, g(u)).
$$

We require:

(1) $||\eta'(u)|| = 1$ for all u. This basically requires the 'velocity' to be 1, and can be always obtained by parameterising using length;

(2) $f(u) > 0$;

(3) η is a homomorphism onto its image. This rules out some weird examples that we don't want, for example,

Define S as the image of $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u)), a < u < b$, $0 \le v \le 2\pi$, and for all $\alpha \in \mathbb{R}$, σ^{α} : $(a, b) \times (\alpha, \alpha + 2\pi)$ is a homomorphism onto its image (see Q1 sheet 3). Then

$$
\sigma_u^{\alpha} = (f' \cos v, f' \sin v, g'),
$$

$$
\sigma_v^{\alpha} = (-f \sin v, f \cos v, 0)
$$

so

$$
\sigma_u \times \sigma_v = (-fg' \cos v, -fg' \sin v, ff'),
$$

$$
||\sigma_u^{\alpha} \times \sigma_v^{\alpha}||^2 = f^2(f'^2 + g'^2) = f^2 > 0(\neq 0)
$$

Thus σ^{α} is a valid parameterisation. so S is a valid embedded surface. The first fundamental form w.r.t. σ^{α} is

$$
E = ||\sigma_u||^2 = f'^2 + g'^2 = 1,
$$

\n
$$
F = \sigma_u \cdot \sigma_v = 0,
$$

\n
$$
G = ||\sigma_v||^2 = f^2.
$$

So the Riemannian metric is $du^2 + f^2 dv^2$.

Definition. Curves on S of the form $\gamma(t) = \sigma(t, v_0)$ are called *meridians*, $\gamma(t) = \sigma(u_0, t)$ are called *parallels*.

Then the geodesic ODEs for $\gamma = (u, v)$ in $V \subset \mathbb{R}^2$ are

$$
\begin{cases} \n\ddot{u} = f \cdot \frac{df}{du} \cdot \dot{v}^2 \\ \n\frac{d}{dt} (f^2 \dot{v}) = 0 \n\end{cases}
$$

Proposition. 6.4

Assume $||\dot{\gamma}|| = 1$, i.e. $\dot{u} + f^2(u)\dot{v}^2 = 1$. Then

(i) Every unit speed meridian $\gamma(t) = \sigma(t, v_0)$ is a geodesic;

(ii) A unit speed parallel $\gamma(t) = \sigma(u_0, t)$ is a geodesic precisely when $\frac{df}{du}(u_0) = 0$, i.e. u_0 is a stationary point.

Proof. (i) $v = v_0$ = constant. So the second equation holds. Also we have \dot{u} is a constant since $\dot{v} = 0$. So the first equation holds as well.

(ii) $u = u_0 = \text{constant}$ so $||\dot{\gamma}||^2 = f^2(u_0)\dot{v}^2 = 1$. So $\dot{v} = \pm \frac{1}{f(u_0)} \neq 0$ is a constant. Then the second equation holds. Now the first equation only holds if $\frac{df}{du}(u_0) = 0$ as $\ddot{u} = 0$.

7 Gaussian Curvature

Recall the curves $\eta : [0, l] \to \mathbb{R}^2$ a C^{∞} curve with $||\eta'|| = 1$. Recall the curvature κ at $\eta(s)$ is determined by

 $\eta'' = \kappa \mathbf{n}$

where **n** is a norm along η (**n** · $\eta' = 0$, || $mathbf{n} = 1$, and $\kappa \geq 0$.

Let $f : [c, d] \to [0, l]$ be smooth, $f'(t) > 0$, so we may reparameterize $\gamma(t) =$ $\eta(f(t))$. Then $\gamma = f \cdot \eta'(f(t)),$ $||\dot{\gamma}||^2 = f^2$. Also $\eta''(f(t)) = \kappa \mathbf{n}$. κ =the curvature at $\gamma(t)$. By Taylor's theorem,

$$
\gamma(t + \Delta t) - \gamma(t) = \dot{f} \cdot \eta'(f(t))\Delta t + \frac{1}{2}[\ddot{f} \cdot \eta'(f(t)) + \dot{f}^2 \cdot \eta''(f(t))](\Delta t)^2 + \dots
$$

So

$$
\gamma(t + \Delta t) - \gamma(t) \cdot \mathbf{n} = \frac{1}{2} ||\dot{\gamma}||^2 \kappa (\Delta t)^2 + \dots
$$

$$
\gamma(t + \Delta t) - \gamma(t) ||^2 = ||\dot{\gamma}||^2 (\Delta t)^2 + \dots
$$

Thus $\frac{1}{2}\kappa$ = the ratio of the leading (quadratic) terms (above), and is independent of parameterisation.

Now let $\sigma: V \to U \subset S$ a parameterisation of surface $S \subset \mathbb{R}^3$. Apply Taylor's theorem,

$$
\sigma(u+\Delta u, v+\Delta v) - \sigma(u, v) = \sigma_u \Delta u + \sigma_v \Delta v + \frac{1}{2} (\sigma_{uu}(\Delta u)^2 + 2\sigma_{uv} \Delta u \Delta v + \sigma_{vv} (\Delta v)^2) + \dots
$$

Recall

$$
\mathbf{N} = \frac{\sigma_u \times \sigma_v}{||\sigma_u \times \sigma_v||}
$$

Deviation from the tangent plane is

 $(\sigma(u + \Delta u, v + \Delta v) - \sigma(u, v)) \cdot \mathbf{N} = \frac{1}{2}$ $\frac{1}{2}(L(\Delta u)^2 + 2M\Delta uDeltav + N(\Delta v)^2) + ...$ where $L = \sigma_{uu} \mathbf{N}, M = \sigma_{uv} \mathbf{N}, N = \sigma_{vv} \mathbf{N}.$

Recall

$$
||\sigma(u + \Delta u, v + \Delta v) - \sigma(u, v)||^2 = E(\Delta u)^2 + 2F(\Delta u)(\Delta v) + G(\Delta v)^2 + \dots
$$

Definition. The second fundamental form on V (for S) is

$$
Ldu^2 + 2Mdu dv + Ndv^2
$$

with $L, M, N \in C^{\infty}(N)$ as just defined.

Definition. The *Gaussian curvature* K of S at P is

$$
\mathcal{K} = \frac{LN - M^2}{EG - F^2}
$$

If $K > 0$, the second fundamental form is either positive definite or negative definite.

On the other hand, if $K < 0$, then the second fundamental form is indefinite. If $K = 0$, the second fundamental form is semi-definite.

Example. The unit sphere has $K > 0$, the Pringle crisp has $K < 0$.

Remark. It can be checked, similar to the curves story, that K does not depend on parameterisation.

Proposition. 7.1

Write N for the unit normal

$$
\frac{\sigma_u \times \sigma_v}{||\sigma_u \times \sigma_v||}
$$

Then at each point, $N_u = a\sigma_u + b\sigma_v$, $N_v = c\sigma_u + d\sigma_v$ ^{*}), where

$$
-\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix}
$$
 (**)

in particular, $\mathcal{K} = ad - bc$.

Proof. $\mathbf{N} \cdot \mathbf{N} = 1$, so $\mathbf{N} \cdot \mathbf{N}_u = 0$ and $\mathbf{N} \cdot \mathbf{N}_v = 0$. So (*) holds for some a, b, c, d .

$$
\mathbf{N} \cdot \sigma_u = 0
$$

\n
$$
\implies \mathbf{N}_u \cdot \sigma_u + \mathbf{N} \cdot \sigma_{uu} = 0
$$

\n
$$
\implies \mathbf{N}_u \cdot \sigma_u = -L
$$

similarly, $N_u \cdot \sigma_v = -M = N_v \cdot \sigma_u$, $N_v \cdot \sigma_v = -N$ dot (*) with σ_u and with σ_v , we get \overline{L} = \overline{L} , \overline{L}

$$
-L = aE + bF,
$$

$$
-M = cE + dF
$$

$$
-N = aF + bG,
$$

$$
-N = cF + dG
$$

which is (**). Take the determinants to obtain

$$
\mathcal{K} = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
$$

Theorem. 7.2

Suppose for a $\sigma: V \to U \subset S \subset \mathbb{R}^3$. The first fundamental form $du^2 + G(u, v)dv^2$ $(G \in C^{\infty}(v))$. Then √

$$
\mathcal{K} = \frac{-(\sqrt{G})_{uu}}{\sqrt{G}}
$$

Proof. To show $K = -\frac{(\sqrt{3})^2}{4}$ $\frac{G_{uu}}{G_{uu}}$ $\frac{\dot{x}_{uu}}{\overline{G}}$ when the first fundamental form (Riemannian metric) is of the form $du^2 + G(u, v)dv^2$, set $e = \sigma_u$, $f = \frac{\sigma_v}{\sqrt{G}}$, $\mathbf{N} = e \times f$ and orthonormal basis of \mathbb{R}^3 depending on (u, v) $(\sigma(u, v)$ is a parameterisaion as before).

$$
e \cdot e = 1 \implies e \cdot e_u = 0 \implies e_u = \alpha f + \lambda_1 N.
$$

Similarly, $e_v = \beta f + \lambda_2 N$, $f_u = -\tilde{\alpha}e + \mu_1 N$, $f_v = -\tilde{\beta}e + \mu_2 N(+)$. Then $e \cdot f = 0 \implies e_u \cdot f + e \cdot f_u = 0 \implies \alpha = \tilde{\alpha}$. Similar calculation shows $\beta = \tilde{\beta}$. Now $\alpha = e_u \cdot f$

$$
\alpha = e_u \cdot f
$$

\n
$$
= \sigma_{ii} \cdot \frac{\sigma v}{\sqrt{G}}
$$

\n
$$
= \left[(\sigma_u \cdot \sigma_v)_u - \frac{1}{2} (\sigma_u \cdot \sigma_u)_u \right] \frac{1}{\sqrt{G}}
$$

\n
$$
= 0.
$$

\n
$$
\beta = e_v \cdot f
$$

\n
$$
= \sigma_{uv} \cdot \frac{\sigma v}{\sqrt{G}}
$$

\n
$$
= \frac{1}{2} G_u / \sqrt{G}
$$

\n
$$
= (\sqrt{G})_u
$$

Also from $(+)$,

$$
\lambda_1 u_2 - \lambda_2 u_1
$$

= $e_u \cdot f_v - e_v \cdot f_u$
= $(e \cdot f_v)_u - (e \cdot f_u)_v$

$$
= -\beta_u
$$

= -(\sqrt{G})_{uu}.

From Proposition 7.1,

$$
\mathbf{N}_u \times \mathbf{N}_v = (ad - bc)\sigma_u \times \sigma_v
$$

$$
= \mathcal{K}\sigma_u \times \sigma_v
$$

$$
= \mathcal{K}\sqrt{G}(e \times f)
$$

So by VC identities

$$
K\sqrt{G} = (\mathbf{N}_u \times \mathbf{N}_v) \cdot (e \times f)
$$

= (\mathbf{N}_u \cdot e)(\mathbf{N} \cdot f) - (\mathbf{N}_u \cdot f)(\mathbf{N}_v \cdot e)

But

$$
(N \cdot e)_u = 0 = N_u \cdot e + N \cdot e_u.
$$

So the above equals

$$
(N \cdot e_u)(N \cdot f_u) - (N \cdot f_u)(N \cdot e_v) = \lambda_1 \mu_2 - \lambda_2 \mu_1 - (\sqrt{G})_{uu}
$$

So done.

Definition. An *Abstract smooth surface* S is a metric space (or Hausdorf topological space) with coflection of homeomorphism called *charts* $\theta_i: U_i \to V_i$ on open $V_i \subset \mathbb{R}^2$, s.t. (i) $S \cup_i U_i$;

(ii)
$$
\forall i, j, \varphi_{ij} = \theta_i \circ \theta_j^{-1} : \theta_j(U_i \cap U_j) \to \theta_i(U_i \cap U_j)
$$
 is a diffeomorphism.

A Riemmanian metric on S is given by a Riemmanian metric on each $V_i = \theta_i(U_i)$ subject to compatibility condition

$$
\left\langle d\varphi_P(\mathbf{a}),d\varphi_P(\mathbf{b})\right\rangle_{\varphi(P)}=\left\langle \mathbf{a},\mathbf{b}\right\rangle_P
$$

where $\varphi = \varphi_{ij}, \mathbf{a}, \mathbf{b} \in \mathbb{R}^2$.

Then length, areas, energy, geodesics, etc are all well-defined on S via charts and first fundamental form E, F, G using formulae as before.

It can be shown that for all $P \in S$, we can construct the geodesic polar coordinates $(\rho, \theta) = (u, v)$ around P s.t. metric is $du^2 + G(u, v)dv^2$.

Now we *define* the *curvature* at P to be

$$
\mathcal{K} = -\frac{(\sqrt{G}_{uu})}{\sqrt{G}}.
$$

Example. (i) \mathbb{R}^2 with $du^2 + dv^2$. (ii) $S^2 \subset \mathbb{R}^3$ embedded surface – Q3 sheet 3. (iii) D unit in \mathbb{R}^2 with $\frac{4(dx^2+dy^2)}{(1-x^2-y^2)^2}$ isometric to H with $\frac{dx^2+dy^2}{y^2}$.

N.B.

• just one char suffices for (i) and (ii);

• hyperbolic plane *cannot* be realized as embedded surface in \mathbb{R}^3 (theorem of Hilbert).

(i) $dx^2 + dy^2$, $G = 1$ shows that $K = 0$. (ii) $S^2 \subset \mathbb{R}^3$ – exercise Q1 Sheet 3. Use spherical polars (fix radius = 1), get

$$
\sigma(\rho,\theta) = (\sin \rho \cos \theta, \sin \rho \sin \theta, \cos \rho),
$$

$$
d\rho^2 + \sin^2 \rho d\theta^2
$$

(First fundamental form). $\sqrt{G} = \sin \rho, K \equiv 1$. (iii) Hyperbolic disc. Change x, y to Euclidean polars (r, θ) . Then

$$
\frac{4(dx^2 + dy^2)}{(1 - (x^2 + y^2))^2} = \frac{4(d\rho^2 + \rho^2 d\theta^2)}{(1 - \rho^2)^2}
$$

Let $\rho = 2 \tanh^{-1} r$. Hyperbolic metric becomes

$$
d\rho^2 + \sinh^2 \rho d\theta^2,
$$

$$
\sqrt{G} = \sinh \rho
$$

So $\mathcal{K} \equiv -1$.

Triangulations make sense for abstract surfaces S too when S is compact.

Set $e(S) = F - E + V$ the Euler Number.

Theorem. (Gauss-Bonnet)

(1) If the sides of triangle $\Delta = ABC$ are geodesic segments, then

$$
\int_{\Delta} K dA = (\alpha + \beta + \gamma) - \pi
$$

where α, β, γ are angles, $dA =$ $\sqrt{EG - F^2} du dv$ in each chart. So (2) If S is compact, then

$$
\int_{S} K dA = 2\pi \cdot e(S).
$$

this is called the global Gauss-Bonnet.