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0 History

The primary motivation is to stury the solutions in C of polynomial equations
in one variable and to wonder whether there is a formula involving roots, i.e.
solution by radicals. Quadratics was solved at school. Cubics and quartics ware
solved in 1770 by Lagrange. In 1799 Ruffini claimed to have proven that Quntics
were not solvable by radicals but the proof was flawed. Abel gave the first
accepted proof in 1824 using existing ideas about permutation of roots. Galois
gave the first explanation as to why some polynomials are soluble by radicals
and others are not. He made use of a group of permutation of the roots and he
realized in particular, the importance of normal subgroups.

From GRM, if f(t) is an irreducible polynomian in K[t] where K is a field, then
K[t]/(f(t)) is a field.
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1 Field Extensions

1.1 Field extensions

Definition. A field extension K ≤ L is the inclusion of a field K into another
field L, with the same 0, 1, and restriction of + and · in L to K gives the + and
· in K.

Example. Q ≤ R, R ≤ C, Q ≤ Q(
√

2) = {λ+ µ
√

2, λ, µ ∈ Q}, {λ+ µi, λ, µ ∈
Q} = Q(i) ≤ C are all field extensions.

Suppose K ≤ L is a field extension. Then L is a K-vector space using the
addition from the field structure and the scalar multiplication given by the
multiplication within the field L.

Definition. The degree of L over K is dimK L is the dimension of the K-vector
space L. This may not be finite, and we denote it as |L : K|.
If |L : K| <∞, we say the extension is finite. Otherwise it’s infinite.

Example. |C : R| = 2 because 1, i is a basis. Similarly |Q(i) : Q| = 2.
In contrast, Q ≤ R is an infinite extension.

Theorem. (Tower Law)
Suppose K ≤ L ≤M are field extensions. Then

|M : K| = |M : L||L : K|

Proof. Assume |M : L| < ∞, |L : K| < ∞. Then we take L-basis {f1, ..., fb}
and K-basis {e− 1, ..., ea}.

Now take m ∈M . Then m =
∑b
i=1 µifi for some µi ∈ L. However, for each µi

we have µi =
∑a
j=1 λijej for some λij ∈ K. As a result,

m =

b∑
i=1

a∑
j=1

λijejfi

so {ejfi|1 ≤ j ≤ a, 1 ≤ i ≤ a} span M .

To prove linear independence, it’s enough to show that if m = 0, then each of
the λij must be 0. When m = 0, the linear independence of fi forces each µi to
be 0. But then by the linear independence of ei, each λij must be 0 as required.

The proof for infinite extensions is omitted. Observe (not very rigorously) that
if M is an infinite extension of L, then it is an infinite extension of K; and if L
is an infinite extension of K, then the larger field M must also be an infinite
extension of K.

Example. Consider Q ≤ Q(
√

2) ≤ Q(
√

2, i). Q(
√

2) has basis 1,
√

2 over
Q, Q(

√
2, i) has basis 1, i as a Q(

√
2)-vector space. Now Q(

√
2, i) has basis

1,
√

2, i, i
√

2 over Q. So |Q(i,
√

2) : Q| = 4 = 2 · 2.
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Note that any intermediate field strictly between Q(i,
√

2) and Q is going to be
of degree 2 over Q by Tower Law. But what are they? We have Q(

√
2,Q(i) and

Q(i
√

2) and we believe that’s all, though that is not trivial.

The Galois correspondence arising in the Fundamental Theorem of Galois Theory
gives an order-reversing bijection between the lattice of intermediate subfields
and the subgroups of a group of ring automorphisms of the big field (Q(i,

√
2)

here) that fix the smaller field element-wise.

Let’s consider the ring automorphisms of Q(i,
√

2) that fix Q. Certainly we have
the identity map. Another thing we have is complex conjugation g:

√
2→

√
2,

i→ −i. Also we have h :
√

2→ −
√

2 and i→ i as another automorphism. The
last one is gh sending

√
2→ −

√
2 and i→ −i. We shall note that ±

√
2 and ±i

are really the same thing here, as they are both roots of t2−2 = 0 and t2 + 1 = 0
respectively.

These four maps form the group of order 4 = |Q(
√

2, i) : Q|. Now note that
there is a correspondence:

The recipe for producing an intermediate subfield from a subgroup is to take
the elements of Q(i,

√
2) which are fixed by all elements of the subgroup, e.g.

Q(i
√

2) is the field of elements fixed by both e and gh.

This correspondence doesn’t always work for all finite field extensions. It works
for Galois extensions.

In the correspondence, normal extensions correspond to normal subgroups. In
the above example, all subgroups are normal and the extensions are normal.

We’ll also prove the Primitive Element Theorem, which in the context of finite
extensions of Q, tells us that they are necessarily of the form Q(α) for some α,
e.g. Q(i,

√
2) (or Q(i+

√
2)).

Now let’s review some material from GRM:

Definition. Suppose K ≤ L is a field extension. Take α ∈ L. We define
Iα = {f ∈ K[t] : f(α) = 0}, i.e. all the polynomials on K with α a root. α is
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algebraic over K if Iα 6= {0}. Otherwise, α is transcendental.

We say L is algebraic over K if α is algebraic over K for all α ∈ L.

Remark.

Iα = ker

(
K[t] → L
f(t) → f(α)

)
i.e. the set of polynomials in K[t] that have α as a root, is an ideal of K[t].

Example.
√

2 is algebraic over Q. π is transcendental over Q.

Lemma. (1.5)
Let K ≤ L be a finite field extension. Then L is algebraic over K.

Proof. Let |L : K| = n. Take α ∈ L. Consider 1, α, α2, ..., αn. These must be
linearly dependent in the n-dimensional K-vector space L. Therefore

∑n
0 λiα

i =
0 for some λi ∈ K not all zero. Then α is a root of f(t) =

∑n
0 λit

i, i.e. algebraic
over K.

Definition. (1.6)
The non-zero ideal Iα (where α is algebraic over K) is principal, since K[t] is a
principal ideal domain (K is a field, so K[t] is in fact a ED). So let Iα = (fα(t))
and fα(t) can be assumed to be monic. Such a monic fα(t) is the minimal
polynomial of α over K.

Remark. Multiplication by α within the field L gives a K-linear map L→ L,
an automorphism (if α 6= 0). In GRM we proved that the minimal polynomial
of a linear map is unique.

Example. The minimal polynomial of
√

2 over Q is t2 − 2, and is t−
√

2 over
R.

Lemma. (1.7)
Suppose K ≤ L is a field extension, and α ∈ L is algebraic over K. Then the
minimal polynomial fα(t) of α over K is irreducible in K[t]. As a result, Iα is a
prime ideal.

Proof. Suppose fα(t) = p(t)q(t). We must show that either p(t) or q(t) is a unit
in K[t]. Note that

0 = fα(α) = p(α)q(α)

WLOG assume p(α) = 0. Then p(t) ∈ Iα, i.e. p(t) = fα(t)·r(t) since Iα = (fα(t)).
So fα(t) = fα(t)r(t)q(t), i.e. r(t)q(t) = 1, hence q(t) is a unit of K[t]. So fα(t)
is irreducible.

Recall from GRM that irreducible elements of K[t] are prime (K[t] is PID), and
generate prime ideals of K[t]. So Iα is a prime ideal.

Definition. (1.8)
Suppose K ≤ L is a field extension, and α ∈ L. K(α) is the smallest subfield of
L that contains both K and α, called the field generated by K and α. We say
that L is a simple extension if L = K(β) for some β ∈ L.
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Note that the previous Primitive Element Theorem can be restated as: any finite
extension of Q is a simple extension over Q.

Also, given α1, ..., αn ∈ L, K ≤ L, we call K(α1, ..., αn) the smallest intermediate
field containing α1, ..., αn. It is the field generated by K and α1, ..., αn.

On the other hand we’ll prove that K[α], the image of the map K[t] → L by
f(t)→ f(α), is the ring generated by K and α (for α ∈ L).

Theorem. (1.9)
Suppose K ≤ L is a field extension, α ∈ L is algebraic over K. Then
(i) K(α) = K[α];
(ii) |K(α) : K| = deg fα(t) where fα(t) is the minimal polynomial of α over K.

Proof. (i) Clearly K[α] ≤ K(α). We need to show that if 0 6= β ∈ K[α], then it
is a unit in K[α], so K[α] is a field.
For every β we have β = g(α) for some g(t) ∈ K[t]. Since β = g(α) 6= 0,
g(t) 6∈ Iα = (fα(t)). Thus fα(t) - g(t). From theorem 1.7, fα(t) is irreducible.
From GRM, since K[t] is a PID, we know there exist r(t), s(t) ∈ K[t] with
r(t)fα(t) + s(t)g(t) = 1 in K[t]. Hence s(α)g(α) = 1 in K[α]. So β = g(α) is a
unit as required.

(ii) Let n = deg fα(t). We’ll show that {1, α, ..., αn−1} is a K-vector space basis
of K[α].
If fα(t) = tn + an−1t

n−1 + ...+ a0 with ai ∈ K, then αn = −an−1αn−1− ...− a0.
This implies that αn is a linear combination of {1, ..., αn−1}.
An easy induction shows that αm for m ≥ n is likewise a linear combination of
{1, α, ..., αn−1}. Thus the above set spans K[α].
Suppose λn−1α

n−1 + ...+λ0 = 0. Let g(t) = λn−1t
n−1 + ...+λ0. Since g(α) = 0,

we have g(t) ∈ Iα = (fα(t)). So g(t) = 0 or fα(t) | g(t). The latter is not possible
because deg fα(t) > deg g(t) = n − 1. So g(t) = 0 ∈ K[t], and all the λi must
then be zero.

Corollary. (1.10)
If K ≤ L is a field extension and α ∈ L, then α is algebraic over K ⇐⇒
K ≤ K(α) is finite.

Proof. The forward direction is given by (1.9), |K(α) : K| = deg fα(t) < ∞.
The backward is given by (1.5).

Corollary. (1.11)
Let K ≤ L be a field extension with |L : K| = n. Let α ∈ L. Then deg fα(t)|n.

Proof. Use the Tower Law (1.3) on K ≤ K(α) ≤ L, we deduce that |K(α) : K|
divdes |L : K|. (1.9) says that deg fα(t) = |K(α) : K|.
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1.2 Constructibility problems

Now let’s digress on some constructibility problems. Assume we’re given a set
P0 of points in R2. A ruler operation is to draw a straight line through any two
points in P0, and a compass operation is to draw a circle with a centre being a
point in P0 and radius equal to tidtance between a pair of points in P0.

Definition. (1.12)
The points of intersection of any two distinct lines or circles drawn using those
operations are constructible in one step from P0.

A point r ∈ R2 is constructible from P0 if there is a finite sequence r1, ..., rn = r
Such that ri is constructible in one step from P ∪ {r1, ..., ri−1}.

An easy exercise is to construct the midpoint of a line between two points.

Now let K0 be the subfield of R generated by Q and the coordinates of the points
in P0. Let ri = (xi, yi). Set Ki = Ki−1(xi, yi). Thus K0 ≤ K1 ≤ ... ≤ Km ≤ R.

Lemma. (1.13)
xi, yi are both roots in Ki of quadratic polynomials in Ki−1[t].

Proof. We have 3 cases of intersections: line meets line, line meets circle, circle
meets circle. We can just consider the equations of lines/circles and solve a
system of equation for each case of intersection, which in all three cases are at
most quadratic equations.

Theorem. (1.14)
If r = (x, y) is a constructible point from set P0 of points in R2, and if K0 is the
subfield of R generated by Q and the coordinates of the points in P0, then the
degrees |K0(x) : K0| and |K0(y) : K0| are both powers of 2.

Proof. We continue with the previous notation, Ki = Ki−1(xi, yi). By tower
law,

|Ki : Ki−1| = |Ki−1(x, y) : Ki−1(x)||Ki−1(x) : Ki−1|

But (1.13) tells us that |Ki−1(x) : Ki−1| is 1 or 2 using degree of extension =
degree of minimal polynomial of x over Ki−1. Similarly y satisfies a quadratic
polynomial over Ki−1 and hence over Ki−1(x). So |Ki−1(x, y) : Ki−1(x)| is 1 or
2.

So |Ki : Ki−1| is 1,2 or 4 (but 4 doesn’t happen – that doesn’t matter anyway
in this proof). Then we just use tower law recursively. Now if r = (x, y) is
constructible from P0 then we can write x, y ∈ Kn and K0 ≤ K0(x) ≤ Kn and
K0 ≤ K0(y) ≤ Kn. Then again by tower law we know the two indexes must be
some powers of 2.

That is a nice theorem to determine constructibility, but to actually use it we
need to be reasonable expert at working out minimal polynomials. Recall from
GRM that
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Theorem. (1.15, Gauss’ lemma)
Let f(t) be a primitive integral polynomial. Then f(t) is irreducible in Q[t] iff
f(t) is irreducible in Z[t].

Another useful tool is

Theorem. (1.16, Eisenstein’s criterion)
Let f(t) = ant

n + an−1t
n−1 + ... + a0 ∈ Z[t]. Suppose there is a prime p such

that
(1) p - an;
(2) p | ai for i = 0, ..., n− 1;
(3) p2 - a0. Then f(t) is irreducible in Z[t].

Another method is to consider an integral polynomial f(t) (mod p). If f(t) is
reducible in Z[t] then it is reducible in Z/pZ. So if we find a prime p such that
f(t) (mod p) is irreducible, then f(t) must be irreducible in Z[t].

To see how this work, we prove that t3 + t+ 1 is irreducible. Consider Z/2Z, if
it were irreducible it would have a linear factor and the polynomial would have
a root; but neither 0 nor 1 is a root. So t3 + t+ 1 is not reducible mod 2, so not
reducible in Z[t] (and Q[t]) either.

However, on later example we’ll see an example that is irreducible in Z[t] but is
reducible mod p for all primes p. So this method is not sufficient in all cases.

Theorem. (1.17)
The cube cannot be duplicated by ruler and compasses.

Proof. The problem amounts to whether given a unit distance, one can construct
points distanced α = 3

√
2 apart, i.e. starting with P0 = {(0, 0), (1, 0)}, can we

produce (α, 0)? The answer is NO – if we could then we need |Q(α) : Q| to be a
power of 2, but |Q(α) : Q| = deg fα(t) = 3 as fα(t) = t3 − 2 and we know that
that is not reducible (using Eisenstein’s with p = 2).

Theorem. (1.18)
The circle cannot be squared using ruler and compasses.

Proof. Similarly, the problem becomes starting with (0, 0) and (1, 0), can we
construct (

√
π, 0). But we know π is transcendental over Q (by Lindermann –

not proved here).

1.3 Field extensions

Now we return to our theory development.

Lemma. (1.19)
Let K ≤ L be a field extension. Then
(i) α1, ..., αn ∈ L are algebraic over K if and only if K ≤ K(α1, ..., αn) is a finite



1 FIELD EXTENSIONS 10

extension.
(ii) If K ≤ M ≤ L such that K ≤ M is finite, then there exists α1, ..., αn ∈ L
such that K(α1, ..., αn) = M .
Note that L isn’t really relevant in the second part.

Proof. (i) By (1.10), α is algebraic over K if and only if K ≤ K(α) is a finite
field extension. αi is algebraic over K, hence algebraic over K(α1, ..., αi−1). So
|K(α1, ..., αi) : K(α1, ..., αi−1)| is finite. By tower law applied to K ≤ K(α1) ≤
K(α1, α2) ≤ ... ≤ K(α1, ..., αn), we get |K(α1, ..., αn) : K| is finite.

Conversely, consider K ≤ K(α1) ≤ K(α1, ..., αn). Then the tower law says that
if |K(α1, ..., αn) : K| is finite then |K(αi) : K| is also finite for any i, i.e. αi is
algebraic.

(ii) If |M : K| = n, then M is an n-dimensional K-vector space by definition.
So there exists a K-basis α1, ..., αn of M . Then K(α1, ..., αn) ≤ M . However,
element of M is a K-linear combination of α1, ..., αn, so we also have M ≤
K(α1, ..., αn). So they are equal.

Definition. (1.20)
Suppose K ≤ L, K ≤ L′ are fields extensions. A K-homomorphism: φ : L→ L′

is a ring homomorphism such that φ|K = id.

We’ll occasionally use the notation HomK(L,L′) = {K-homomorphisms L→
L′}.

A K-homomorphism φ : L→ L′ is a K-isomorphism if it is a ring isomorphism.

We have another notation, AutK(L) = {K−isomorphisms L → L} which is a
group.

Lemma. (1.21)
Suppose K ≤ L, K ≤ L′ are field extensions. Then
(i) Any K-homomorphism φ : L → L′ is injective, and K ≤ φ(L) is a field
extension;
(ii) If |L : K| = |L′ : K| is finite, then any K-homomorphism is actually a
K-isomorphism.

Proof. (i) L is a field, so ker(φ) is an ideal of L. Note that 1→ 1 by φ, so kerφ
can’t be the whole of L. So kerφ = {0}, i.e. φ(L) is a field and K ≤ φ(L) is a
field extension.

(ii) φ is an injective K-linear map, and so |φ(L) : K| = |L : K| considering
dimensions of K-vector spaces. As a result, φ(L) = L′, i.e. φ is an isomorphism.
In particular, if L = L′, then φ is an K-automorphism of L.

We introduce another notation: If K ≤ L is a field extension, and if f(t) ∈ K[t],
we denote the set of roots of f in L by Rootf (L).
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Definition. (1.22)
Let K ≤ L be a field extension, and f(t) ∈ K[t]. We say f splits over L if
f(t) = a(t− α1)...(t− αn), where a ∈ K, α1, ..., αn ∈ L. We say L is a spltting
field for f over K if L = K(α1, ..., αn).

Remark. This is equivalent to saying that L is a splitting field for f over K if
and only if:
(i) f splits over K;
(ii) if K ≤M ≤ L and f splits over M then M = L (minimality).

Example. (1) f(t) = t3 − 2 over Q. Q( 3
√

2) is not a splitting field for f over Q,
but Q( 3

√
2, ω 3
√

2, ω2 3
√

2) is a splitting field over Q, where ω is the primitive cube
root of unity. Note that the above field is equal to Q( 3

√
2, ω).

Note that Q( 3
√

2) is degree 3 over Q, but Q(ω) is only degree 2. Also |Q( 3
√

2, ω) :
Q(ω)| ≤ 3 and |Q( 3

√
2, ω) : Q( 3

√
2)| ≤ 2. Then use the tower law and we get

2 | |Q( 3
√

2, ω) : Q|, and 3 also divides it. So Q( 3
√

2, ω) must be at least degree 6.
So the two previous inequalities actually have their equal signs hold.

(2) f(t) = (t2 − 3)(t3 − 1). Splitting field for f over Q is Q(
√

3,−
√

3, ω, ω2, 1) =

Q(
√

3, ω) = Q(
√

3, i) since we know ω = −1+
√
3i

2 .

(3) t2 − 3 and t2 − 2t− 2 both have the same splitting field Q(
√

3) over Q.

(4) f(t) = t2 + t+ 1 in F2[t] (where F2 = field of 2 elements 0, 1 = Z/2Z). f(t) is
irreducible over F2 since it has no roots in F2 and hence no linear factors F2[t].
So F2[t]/(t2 + t+ 1) is a field.

Now set α = t+ (t2 + t+ 1) ∈ F2[t]/(t2 + t+ 1). Then F2[t]/(t2 + t+ 1) = F2(α).
The elements are 0, 1, α, α+ 1. f(t) = t2 + t+ 1 splits over F2(α) noting that
α2 = α+ 1. Now f(t) = (t− α)(t− 1− α). Thus F2(α) is splitting field for f
over F2.

We use this construction to produce splitting field in general.

Theorem. (1.23, Existence of splitting fields)
Let K be a field, and f(t) ∈ K[t]. Then there exists a splitting field for f over
K.

Proof. If deg f = 0, then K itself is the splitting field.
Now let deg f > 0 and pick an irreducible factor g(t) of f(t) in K[t]. Note
K ≤ K[t]/(g(t)) is a field extension.
Now take α1 = t+(g(t)) ∈ K[t]/(g(t)). Then K[t]/(g(t)) = K(α1) and g(α1) = 0
in K(α1); therefore f(α1) = 0 in K(α1), and we can write f(t) = (t−α1)h(t) in
K(α1)[t]. Repeat, noting that deg h(t) < deg f(t), and we get f(t) = a(t−α1)(t−
α2)...(t− αn) where a is a constant, which is in K (consider top coefficient).
Thus we have a factorization of f(t) in K(α1, ..., αn)[t], i.e. K(α1, ..., αn) is a
splitting field for f over K.

Theorem. (1.24, Uniqueness of splitting fields)
If K is a field and f(t) ∈ K[t], then the splitting field for f over K is unique up
to K-isomorphisms.
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Proof. Suppose L and L′ are both splitting fields for polynomial f(t) ∈ K[t]
over K. We need to show that there is a K-isomorphism L → L′. Suppose
K ≤ M ≤ L and ∃K ≤ M ′ ≤ L′ and a K-isomorphism ψ : M → M ′; clearly
we can always take M = K, so such M always exists. Now we pick M so that
|M : K| is maximal among all such M,M ′, ψ. We must show M = L and
M ′ = L′. Note that if M = L, then f(t) splits over L then f(t) splits over
M , i.e. f(t) = a(t − α1)...(t − αm) in M [t]. Now apply ψ, we got an induced
map M [t]→M ′[t], and f(t)→ ψf(t) = ψ(a)(t−ψ(α1))...(t−ψ(αm)), thus f(t)
splits over ψ(M) = M ′. But L′ is a splitting field, and M ′ ≤ L′; but a splitting
field is the minimal field extension that f splits; so M ′ = L′.

Otherwise, if M 6= L, we want to get a contradiction of maximality of M .
Since M < L, there is a root α of f(t) ∈ L that is not in M . Now factorize
f(t) = g(t)h(t) in M [t] so that g(t) is irreducible in M [t] and g(α) = 0 in L.
Then there exists a K-homomorphism M [t]/(g(t))→ L by t+ (g(t))→ α. The
image of this is M(α), the K-isomorphism M [t] → M ′[t] induced by ψ maps
g(t) ∈ M [t] to some γ(t) ∈ M ′[t]. Now f(t) = g(t)h(t) in M [t] is mapped to
f(t) = γ(t)δ(t) in M ′[t]. We now have a field extension M ′ ≤M ′[t]/(γ(t)), and
there exists a M ′-homomorphism M ′[t]/(γ(t)) ∈ L′ by picking a root α′ of γ(t)
in L′, sending t+ (γ(t))→ α′. However γ(t)|f(t) in M ′[t], hence in L′[t]. As a
result, this root α′ is also a root of f(t) in L′. The M ′-homomorphism gives
a K-isomorphism M ′[t]/(γ(t)) → M ′(α′), and so we have a K-isomorphism
M(α)→M ′(α′). This contradicts the maximality of M and M ′.

Definition. (1.25)
An algebraic field extension K ≤ L is normal if for every α ∈ L, the minimal
polynomial fα(t) of α over K splits over L.

Theorem. (1.26)
Let K ≤ L be a finite field extension. Then K ≤ L is normal ⇐⇒ L is the
splitting field for some f(t) ∈ K[t].

Proof. This proof will be presented later.

Example. (1.27)
Let F be a finite field, with |F| = m. We know F has characteristic p for some
prime p, and Fp ≤ F. Therefore m = pr for some r. The non-zero elements
from the multiplicative group, of order m− 1 = n, say. Also they satisfy tn − 1,
i.e. they are roots of tn − 1. So tn − 1 = (t− α1)...(t− αn) where α1, ..., αn are
the non-zero elements of F. Thus F is the splitting field for tn − 1 over Fp. By
(1.24) we have uniqueness of splitting fields, so any other field with m elements
is Fp-isomorphic to F. (Note that we haven’t shown that there exists such a F).

Theorem. (1.28)
Let G be a finite subgroup of the multiplicative group of a field K. Then G is
cyclic. In particular, the multiplicative group of a finite field is cyclic.

Proof. Let |G| = n. By structure theorem of finite abelian groups, we have

G ∼= Cqm1
1
× Cqm2

2
× ...× Cqmr

r
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with qi prime, but not necessarily distinct. However, if we have q = qi = qj
for some i 6= j, there are at least q2 distinct solutions of tq − 1 = 0 in K, since
Cq×Cq is isomorphic to a subgroup of G. However in a field (even in an integral
domain), we know a polynomial of degree q has at most q roots. So the qi must
be distinct and hence G is actually cyclic, generated by (g1, ..., gr) where gi
generates Cqmi

i
.
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2 Separable, Normal and Galois Extensions

2.1 Separable extensions

Definition. (2.1)
Let K be a field and f(t) ∈ K[t]. Suppose f(t) is irreducible in K[t], and L is
a splitting field of f(t) over K. Then f(t) is separable over K if f(t) has no
repeated roots in L. For general f(t), we say f(t) is separable over K if every
irreducible factor in K[t] is separable over K. All constant polynomials are
deemed to be separable.

Definition. (2.2)
If K is a field, then formal differentiation D : K[t] → K[t] is a K-linear map
with D(tn) = ntn−1. We denote D(f(t)) by f ′(t).

Lemma. (2.3)
Let K be a field, f(t), g(t) ∈ K[t]. Then

D(f(t)g(t)) = f ′(t)g(t) + f(t)g′(t)

and if f(t) 6= 0, then f(t) has a repeated root in a splitting field if and only if
f(t) and f ′(t) have a common irreducible factor in K[t].

Proof. (a) D is a K-linear map and so we only need to check for f(t) = tn and
g(t) = tm. (check)

(b) Let α be a repeated root in a splitting field L. Then f(t) = (t − α)2g(t)
in L[t], hence f ′(t) = (t− α)2g′(t) + 2(t− α)g(t) and so f ′(α) = 0. Therefore
the minimal polynomial fα(t) of α in K[t] divides both f(t) and f ′(t), and
thus fα(t) is a common irreducible factor of f(t) and f ′(t). Conversely, let
h(t) be a common irreducible factor of f(t) and f ′(t) in K[t]. Pick a root
α in L of h(t), so f(α) = 0 = f ′(α). Thus f(t) = (t − α)g(t) in L[t], and
f ′(t) = (t− α)g′(t) + g(t). Since f ′(α) = 0, we have (t− α)|f ′(t), so (t− α)|g(t).
Hence we have (t− α)2|f(t).

Corollary. (2.4)
If K is a field and f(t) ∈ K[t] is irreducible,
(i) If char(K) = 0 then f(t) is separable over K;
(ii) If char(K) = p > 0 then f(t) is not separable if and only if f(t) ∈ K[tp].

Proof. By (2.3), f(t) is not separable if and only if f(t) and f ′(t) has a common
irreducible factor. But f(t) is not irreducible, the only possible factor is f(t)
itself, i.e. f(t)|f ′(t), i.e. f ′(t) = 0 since it has a smaller degree. But then if
f(t) = ant

n + ...+ a0, then f ′(t) = nant
n−1 + ...+ a1, thus f ′(t) = 0 ⇐⇒ iai =

0∀i ≥ 1. So
(i) char(K) = 0, so f ′(t) 6= 0 for non-constant polynomial f(t). So f(t) is
separable over K.
(ii) If char(K) = p > 0, then if f ′(t) = 0 we have iai = 0∀i > 0, i.e. f(t) is not
separable ⇐⇒ f(t) ∈ K[tp].
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Definition. (2.5)
If K ≤ L is a field extension, we say α ∈ L is separable over K if its minimal
polynomial is separable over K. L is separable over K if all elements of L are
separable over K. If the minimal polynomial of α is fα(t) = (t− α)n = tn − αn
where n is a power of p (= char(K)), we say α is purely inseparable over K.

Example. (2.6)
(1) Let Q ⊆ L be an algebraic field extension. Then L is separable over Q.
(2) Let L = Fp(X), the rational functions in X over Fp, and K = Fp(Xp) be a
subfield. Then K ≤ L is not separable: observe that if f(t) = tp −Xp ∈ K[t].
Then f ′(t) = 0. But tp −Xp = (t−X)p in L[t]. However, f(t) is irreducible in
K[t]: suppose we have a factorization f(t) = g(t)h(t) in K[t] and hence in L[t], so
we get g(t) = (t−X)r for some 0 ≤ r < p if the factorisation is non-trivial. But
this would mean Xr was in K. However (again), ∃ integers a, b s.t. ar+bp = 1, so
(Xr)a(Xp)b ∈ K, i.e. X ∈ K. Thus we’d have X = u(Xp)/v(Xp), contradiction.
Thus f(t) = tp −Xp is the minimal polynomial of X over K. Thus X is purely
inseparable over K, and K ≤ l is not separable.
(3) Let F be a finite field with |F| = m, a power of p = char(F), and f(t) = tn−1
where n = m− 1. We know this is separable over Fp since we saw that f(t) has
distinct linear factors in F [t].

Remark. It’s useful to have an alternative approach to separability of field
extensions without having to check separability of minimal polynomials for
all elements of the larger field. This is where we start thinking about K-
homomorphisms.

Lemma. (2.6)
Let M = K(α) for α algebraic over K, and let fα(t) be the minimal polynomial
of α over K. For any field extension K ≤ L, the number of K-homomorphisms
of M to L is equal to the number of distinct roots of fα(t) in L. Thus this
number ≤ deg fα(t) = |K(α) : K| = |M : K|.

Proof. We saw in (1.21) that any K-homomorphism M to L is injective, K(α) ∼=
K[t]/(fα(t)). For any root β of fα(t) in L, we can define a K-homomorphism
K[t]/(fα(t))→ L that sends t+ (fα(t))→ β. Thus we get a K-homomorphism
M → L. Conversely, for any K-homomorphism φ : M → L, the image φ(α)
must satisfy fα(φ(α)) = 0. These processes are inverse to each other,

Corollary. (2.7)
In (2.6), the number of K-homomorphisms K(α)→ L = deg fα(t) if and only if
L is large enough, i.e. L contains a splitting field for fα(t) and α is separable
over K.

Lemma. (2.8)
Let K ≤ M be a field extension and M1 = M(α1) where α1 is algebraic over
M . Let f(t) be the minimal polynomial of α over M and let K ≤ L. Let
φ : M → L be a K-homomorphism. Then there is a 1-1 correspondence between
the extensions φ1 : M1 → L of φ and the roots of φ(f(t)) in L.

Note that (2.6) is a special case M = K and φ=inclusion of K in L.
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Proof. f(t) is irreducible in M [t] implies that φ(f(t)) is irreducible in φ(M)[t].
Any extension φ1 : M1 → L of φ produces a root φ1(α1) of φ(f(t)). Conevrsely,
given a root γ of φ(f(t)) in L, we have M1 = M(α1) ∼= M [t]/(f(t)) ∼=
φ(M)[t]/φ(f(t)) ∼= φ(M)(γ) ≤ L Thus we get an extension φ1 of φ as re-
quired.

Corollary. (2.9)
If L is large enough, the number of φ1 which extend φ is equal to the number of
distinct roots of f(t) in L. This is equal to |M1 : M | if and only if α is separable
over M .

Corollary. (2.10)
Let K ≤ M ≤ N be finite field extensions, K ≤ L. Let φ : M → L be a
K-homomorphism. Then the number of extensions of φ to maps θ : N → L
≤ |N : M |. Moreover, such a θ exists if L is large enough.

Proof. Pick α1, ..., αn so that N = M(α1, ..., αr) and set Mi = M(α1, ..., αi).
Thus we’ve got M ≤M1 ≤M2 ≤ ... ≤Mn = N . Consider extension to each Mi

and by tower law we get the required inequality. The last bit comes from the
proof of (2.8), i.e. we need L to contain the roots.

Remark. (2.11)
The profo and (2.9) shows that number of extensions θ of φ is |N : M | if and
only if L is large enough and αi is separable over M(α, ..., αi−1) for each i.

Theorem. (2.12)
Let K ≤ N be a field extension with |N : K| = n and N = K(α1, ..., αn), say.
Then the following are equivalent:
(1) N is separable over K;
(2) each αi is separable over K(α1, ..., αi−1);
(3) if K ≤ L is large enough, there are exactly n distinct K-homomorphisms
N → L.

Proof. (1)→ (2): N separable over K =⇒ αi is separable over K. The minimal
polynomial of αi over K(α1, ..., αi−1) divides minimal polynomial of αi over K
(in K(α1, ..., αi−1)[t]). So if the latter has distinct roots in a splitting field then
the former does. So αi separable over K =⇒ αi separable over K(α1, ..., αi−1).

(2) → (3) is (2.11).

(3)→ (1): Assume (3) is true but (1) is false. So ∃β ∈ N that is not separable over
K. So there are strictly less than |K(β) : K| K-homomorphisms φ : K(β)→ L
by (2.7). By (2.10), φ extends to at most that number of extensions θ : N → L.
So there are strictly less than | : K(β)||K(β) : K| K−homomorphisms N → L.
Contradiction.

Definition. (2.13)
We say M = K(α1, ..., αr) is separably generated by α1, ..., αr over K if each αi
is separable over K.

Corollary. (2.14)
A finite extension is separable if and only if it is separably generated.
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Lemma. (2.15)
If K ≤M ≤ L are finite extensions. Then M ≤ L, K ≤M are both separable
if and only if K ≤ L is separable. See example sheet.

Example. (2.16)
Let F be a finite field, |F | = m. The multiplicative group of order n = m− 1
is cyclic. Take a generator α, then F = Fp(α). The minimal polynomial of α
divides tn − 1 since αn = 1. We saw that this polynomial has distinct roots (all
non-zero elements in F ), so the minimal polynomial of α is separable. Hence
F = Fp(α) is separable over Fp.

Theorem. (2.17, Theorem of the primitive element)
Any finite separable extension K ≤M is a simple extension, i.e. M = K(α) for
some α, called the primitive element.

Proof. If K is a finite field, then M is also finite. So we can take K to be a
generator of the multiplicative group of M (which is cyclic).

Now assume K is an infinite field. Since K ≤ M is a finite extension, M =
K(α1, ..., αn) for some αi. It’s enough to show that any field M = K(α, β) with
β separable over K is of the form K(γ). Take f(t) and g(t) to be the minimal
polynomials of α and β over K. Let L be the splitting field for f(t)g(t) over
K(α, beta). The distinct zeros of f(t) in L are α = α1, ..., αa, and of g(t) are
β = β1, ..., βb. By separability we know b = deg g(t). Choose λ ∈ K such that all
αi + λβj are distinct (this is possible since K is infinite). Now we set γ = αλβ
(remember α is α1 and β is β1). Let F (t) = f(γ − λt) ∈ K(γ)[t]. We have
g(β) = 0. We have g(β) = 0 and F (β) = f(α) = 0. Thus F (t) and g(t) have a
common zero. Any other common zero would have to be βj for some j > 1. Bu
then F (βj) = f(α+ λ(β − βj)). By assumption, α+ λ(β − βj) is never an αi,
and so F (βj) 6= 0.

Now separability of g(t) says that the linear factors are all distinct. So (t− β)
is a highest common factor of F (t) and g(t) in L[t]. However, the minimal
polynomial h(t) of β over K(γ) then divides F (t) and g(t) in K(γ)[t], and hence
in L[t]. This implies h(t) = t − β, and so β ∈ K(γ). Therefore α = γ − λβ is
also in K(γ). So K(α, β) ≤ K(γ). The other direction is trivial.

Example. In our example in Chapter 1 we have Q ≤ Q(
√

2, i). We had
intermediate subfields Q(

√
2), Q(i) and Q(i

√
2). If we follow the procedure of

the proof of (2.17), α =
√

2, β = i, f(t) = t2 − 2, and g(t) = t2 + 1, we consider
some

√
2 + λi where ±

√
2± λi are all distinct, e.g. λ = 1. The proof shows that

Q(
√

2, i) = Q(
√

2 + i).

2.2 Trace and Norm

This will also be used in number fields next term.

Definition. (2.18)
Let K ≤M be a finite field extension, and α ∈M . Multiplication by α gives a



2 SEPARABLE, NORMAL AND GALOIS EXTENSIONS 18

K-linear map θα : M → M . The trace of α over K, denoted trM/K(α) is the
trace of θα. The norm of α over K, denoted NM/K(α) is the determinant of θα.

Note; these are dependent on the field extension.

Theorem. (2.19)
With the above notation, suppose fα(t) = ts + as−1t

s−1 + ...+ a0 is the minimal
polynomial for α overK. Let r = |M : K(α)|. Then the characteristic polynomial
of θα is (fα(t))r. (Note: |M : K| = |M : K(α)||K(α) : K| = rs), and
trM/K(α) = −ras−1, NM/K(α) = ((−1)sa0)r.

Proof. Regard M as K(α)-vector space with basis 1 = β1, ..., βr. Now take the K-
vector space basis 1, α, α2, ..., αs−1 ofK(α). So 1, α, α2, ..., αs−1, β2, β2α, ..., β2α

s−1, ...
is K-vector space basis for M . Multiplication by α in K(α) is represented by
matrix

A =


0 ... −a0
1 0 ... −a1
0 1 ... −a2
.. . 1 ... ....
.. . . 1 −as−1


Multiplication by α in M is represented by the rs × rs matrix with blocks of
A on its diagonal and 0 elsewhere, whose characteristic polynomial is (fα(t))r.
Look at terms of this characteristic polynomial to get trace and norm.

Theorem. (2.20)
Let K ≤ M be a finite separable field extension, and |M : K| = n, α ∈ M .
Let K ≤ L be large enough so that there are n distinct K-homomorphisms
(why?) σ1, ..., σn : M → L, then the characteristic polynomial of θα : M →M
(multiplication by α) is

n∏
i=1

(t− σi(α))

so trM/K(α) =
∑n
i=1 σi(α) and NM/K =

∏n
i=1 σi(α).

Proof.
fα(t) = (t− α1)...(t− αs)

= ts + as−1t
s−1 + ...+ a0

is the minimal polynomial of α over K in L[t], where L is large enough that
fα(t) splits in L (???). There are s K-homomorphisms K[α]→ L, corresponding
to maps sending α to αi. Each of those extends in |M : K(α)| ways to give K-
homomorphisms M → L (separability and (2.9)). However, each such extension
of a map sending α→ αi still sends α→ αi. Set r = |L : K(α)|. Thus there are r
maps sending α→ αi for each i. Thus if the n(= rs) distinct K-homomorphisms
M → L are σ1, ..., σn, then

n∑
i=1

σi(α) = r(α1 + ...+ αs) = −ras−1 = trM/K(α)
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since the sum of roots of fα(t) is −as−1, and

n∏
i=1

σi(α) = ((−1)sa0)r = NM/K(α)

— lecture 10—

From (2.19), the characteristic polynomial of θα is (fα(t))r. fα(t) is the minimal
polynomial of α over K, r = |M : K(α)|. Characteristic polynomial is (t −
α1)r...(t− αs)r where α1, ..., αs are the roots of fα(t) in L if L is large enough.
And we saw that those roots are σ1(α), ..., σn(α), so characteristic polynomial is

n∏
i=1

(t− σi(α))

Theorem. (2.21)
Let K ≤M be a finite separable extension. Then we define a K-bilinear form
T : M ×M → K by (x, y)→ trM/K(xy), where xy is the product in M . Then
this is non-degenerate. In particular, the K-linear map trM/K : M → K is
non-zero. So it’s surjective.

Remark. If K ≤M is a finite extension which is not separable, then trM/K :
M → K is always zero. And so T : M ×M → K is degenerate (see example
sheet).

Proof. By theorem (2.17), separability implies that M = K(α) for some α. We
have a K-basis 1, α, α2, ..., αn−1 of K(α) wher n = |M : K|. The K-bilinear
form T is represented by matrix

A =

trM/K(1) trM/K(α) ...
trM/K(α) trM/K(α2) ...

... ... ...


Let L be a splitting field of the minimal polynomial f(t) of α over K. Then
fα(t) = (t− α1)...(t− αn), with α1, ..., αn ∈ L. The entries in A are of the form
trM/K(αl) which is αl1 + ...+ αln by (2.20).

Now consider 4 =
∏
i<j(αi − αj), the Van der Monde determinant, is∣∣∣∣∣∣∣∣∣∣

1 1 1 ... 1
α1 α2 ... ... ...
α2
1 α2

2 ... ... ...
... ... ... ... ...

αn−11 αn−12 ... ... ...

∣∣∣∣∣∣∣∣∣∣
Now consider V V T and observe that it is A. Thus 0 6= D = 42 = |V V T | = |A|.
Thus A is non-singular, and therefore the bilinear form T is non-degenerate.

Remark. We’ll meet D again shortly. It is the discriminant of the polynomial
fα(t).
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2.3 Normal extensions

We met the definition in chapter 1: recall

Definition. (1.25)
An extension K ≤ L is normal if for every α ∈ L, the minimal polynomial fn(t)
of α over K splits over L.

Also, we stated a theorem, which we’ll now prove:

Theorem. (1.26)
Let K ≤M be a field extension. Then K ≤M is normal iff M is the splitting
field for some f(t) ∈ K[t], not necessarily irreducible.

Proof. AssumeK ≤M is normal. Pick α1, ..., αr ∈M so thatM = K(α1, ..., αr).
Let fαi

(t) be the minimal polynomial for αi over K. Let f(t) =
∏r
i=1 fαi

(t).
By normality, each fαi

(t) splits over M . Therefore their product does. Now M
is the splitting field of f(t) over K, since if β,..., βm are the roots of f(t) Then
M = K(β1, ..., βm).

Conversely, supposeM is a splitting field for f(t) overK. ThusM = K(β1, ..., βm)
where βj are the roots of f(t) in M . Take α ∈ M . Let fα(t) be the minimal
polynomial of α over K. Now take M ≤ L be large enough so that fα(t) splits in
L, and consider K-homomorphisms φ : M → L with φ(βj) is also a root of f(t),
and is therefore one of the βj . Injectivity of K-homomorphisms ((1.21)) implies
that φ permutes the βj ’s. However, M = K(β1, ..., βm) and so φ is determined
by the images of the βj ’s. Thus φ(M) = M . However if αi is a root of fα(t) in
L, there is a K-homomorphism K(α) → K(αi) ≤ L by sending α → αi. This
extends (eg (2.10)) to a K-homomorphism φ : M → L with φ(α) = αi. But
φ(M) = M . So αi ∈M . Thus M is normal over K.

Remark. As for separability, the property of ’normality’ is equivalent to
’normally generated’, i.e. we have f ≤ L a finite extension is normal iff
L = K(α1, ..., αr) with fαi

(t) splitting over L (see example sheet).

Definition. (2.22)
Let K ≤M be a finite field extension. Its K−automorphism group AutK(M) is
{φ : φ K-homomorphism M →M}.

From (1.22), we know that such K-homomorphisms are isomorphisms, of thus
have inverses. Composition gives a group operation as a result.

Lemma. (2.23)
AutK(M) ≤ |M : K|. The proof is in (2.10).

Theorem. (2.24)
Let K ≤M be a finite field extension. |AutK(M)| = |M : K| iff the extension
is both normal and separable.

Definition. (2.25)
A finite field extension that is normal and separable is a Galois extension.
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Definition. (2.26)
Let K ≤ M be a Galois extension. Then the K-automorphism group of M is
the Galois group of M over K, denoted by Gal(M/K).

Remark. Some authors use ’Galois group’ for the automorphism group even
when the field extension is not Galois.

Proof. (of 2.24)
Suppose |AutK(M)| = |M : K| = n. Let L be large enough, containing M . Then
n distinct K-homomorphisms φ : M → M ≤ L give us n K−homomorphisms
φ : M → L. And (2.12) says that M is separable over K. For normality, pick
α ∈M with minimal polynomial fα(t) over K. Take M = K(α1, ..., αm) as in
the proof of (2.10), with α = α1 and L = M . We only get |M : K| extensions of
the inclusion K →M if each inequality is an equality.

In particular, we need the number of K-homomorphisms K(α1) → M to be
|K(α1) : K|. But then (2.6) says we have |K(α) : K| distinct roots of fα(t) in
M . Thus fα(t) splits over M .

Conversely, suppose K ≤ m is separable and normal. Then for K ≤ M ≤ L,
with L large enough, separability implies there are |M : K| K−homomorphisms
φ : M → L by (2.12). However, K ≤M is normal implies it is the splitting field
for some polynomial f(t) ∈ K[t] by (1.26), and thus M = K(α1, ..., αn), where
f(t) = (t− α1)...(t− αn). Note that φ(αj) is also a root of φ(f(t)) = f(t), and
is therefore one of the αj (this also explains a similar deduction for 2.23 I think).
Thus φ(M) = M . Thus we have |M : K| K-homomorphisms φ : M →M .

Remark. (2.27)
In the previous proof we have shown that if K ≤M ≤ L, and φ : M → L is a
K-homomorphism, and K ≤M is normal, then φ(M) = M .

Example. • Consider Q ≤ Q(
√

2, i), which is Galois. Gal(Q(
√

2, i/Q) has 4
elements : σ :

√
2to ±

√
2, i → ±i ∼= C2 × C2. All non-identity elements have

order 2.

• f(t) = t3 − 2. The splitting field over Q is Q( 3
√

2, ω, where ω is primitive cube
roof of 1. Thus Q ≤ Q( 3

√
2ω is Galois, and |Q( 3

√
2, ω) : Q| = 6. The Galois group

contains σ1 : 3
√

2 → 3
√

2, ω → ω, the identity, and 3
√

2 → ω 3
√

2, ω → ω of order
3, 3
√

2→ 3
√

2, ω → ω2 (complex conjugation, order 2), and some composition of
those. We check that this is actually the Dihedral group D6

∼= S3.
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3 Fundamental Theorem of Galois Theory, Artin’s
Theorem, and Galois Theory of Polynomials
and of Finite Fields

Definition. (3.1)
Let K ≤ L be a field extension, H ≤ AutK(L). The fixed field of H

LH = {α ∈ L, σ(α) = α for all σ ∈ H}

Check: it is a field, and K ≤ LH ≤ L.

Definition. (3.2, Fundamental Theorem of Galois Theory)
Let K ≤ L be a finite Galois extension. Then
• There is a 1-1 correspondence between intermediate subfields K ≤ M ≤ L
and subgroups H of the Galois group Gal(L/K), by sending M to AutM (L), or
sending H to LH backwards. This is known as the Galois correspondence.
• H is a normal subgroup of Gal(L/K) iff K ≤ LH is normal iff K ≤ LH is
Galois.
• If H/Gal(L/K) then the map θ : Gal(L/K)→ Gal(LH/K) given by restriction
to LH is a surjective group homomorphism with kernel H.

Remark. Observe that M ≤ L is Galois and so we could have written Gal(L/M)
instead of AutM (L) in the first part of the theorem. To see this, separability
follows from (2.15); for normality, if α ∈ L, the minimal polynomial of α over
M divides the minimal polynomial of α over K. But the latter splits over L.

If K ≤M is normal, then remark (2.27) says that if σ : L→ L then σ(M) = M
and so we can talk about the restriction of α to M , giving an automorphism of
M .

Example. Q ≤ Q(
√

2, i). We saw in chapter 1 that the lattices of intermediate
fields and subgroups Gal(Q(

√
2, i)/Q) ∼= C2 ×C2 are abelian. All subgroups are

normal and intermediate subfields are also normal extensions of Q.

Example. Q ≤ Q( 3
√

2, ω). The intermediate subfields areQ(ω),Q( 3
√

2), Q(ω 3
√

2),
Q(ω2 3

√
2). Consider their corresponding subgroups of Gal(Q( 3

√
2, ω)/Q) ∼= D6

which is not abelian, and has a non-abelian subgroup. The subgroup H of order
3 is normal, but those of order 2 are not. So we get Q ≤ Q(ω) is normal ↔ H
of order 3, and we get a homomorphism Gal(Q( 3

√
2, ω)/Q)→ Gal(Q(ω)/Q), i.e.

D6 → C2, generated by conjugation, which has kernel H.

Theorem. (3.3, Artin’s Theorem)
Let K ≤ l be a field extension and H is a finite subgroup of AutK(L). Let
M = LH . Then M ≤ L is a finite Galois extension, and H = Gal(L/M).

This is a more general theorem, and implies some of the Galois correspondence:
by H → LH → GGal(L/LH) we get back to H.

Proof. Take α ∈ L. The first step is to show that |M(α) : M | ≤ |H|.
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Let {α1, ..., αn} = {φ(α) : φ ∈ H} all distinct. Define g(t) =
∏n
i=1(t − αi).

Each φ induces a homomorphism L[t]→ L[t] that sends g(t) to itself, since φ is
permuting the αi. So the coefficients of g(t) are fixed by all φ ∈ H, and thus they
lie in LH = M . Thus g(t) ∈M [t]. By definition, g(α) = 0 since α is one of the
roots αi. Hence the minimal polynomial fα(t) of α over M divides g(t). Thus
|M(α) : M | = deg fα(t) ≤ deg g(t) ≤ |H|. We’ve shown that α is algebraic over
M , and fα(t) is separable since g(t) is. Hence M ≤ L is a separable extension.

The next step is to show that M ≤ L is a simple extension.

Pick α ∈ L with |M(α) : M | maximal. We’ll show that L = M(α). Suppose
β ∈ L is another element. Then M ≤ M(α, β) is finite and is generated
separabaly, and hence is a finite separable extension. (2.12). By the primitive
element theorem (2.17), M(α, β) = M(γ) for some γ. But M ≤M(α) ≤M(γ).
By maximality we know |M(α) : M | ≥ |M(γ) : M |, i.e. M(α) = M(γ). Thus
β ∈M(γ) = M(α), i.e. L = M(α).

Finally, |L : M | = |M(α) : M | ≤ |H|| ≤ |AutM (L)| ≤ |L : M | by (2.23). We
must have equality throughout, and hence |L : M | = |AutM (L)| = |H|. Hence
by (2.24) we have M ≤ L is a finite Galois extension, and H = Gal(L/M).

Theorem. (3.4)
Let K ≤ L be a finite field extension. Then the following are equivalent:
(i) K ≤ L is Galois;
(ii) LH = K when H = AutK(L).

Remark. The theorem allows some authors yet another alternative for the
definition of a Galois extension.

Proof. (i) =⇒ (ii): Let M = LH where H = AutK(L). By (3.3) (Artin),
M ≤ L is a Galois extension, and |L : M | = |Gal(L/M)| and H = Gal(L/M).
However if K ≤ L is Galois then |H| = |AutK(L)| = |L : K| by (2.24). Thus
|L : M | = |L : K| and so M = K.

For the other direction just apply (3.3).

Proof. (of 3.2, the fundamental theorem)
(i) Composing the maps H → LH and M → Gal(L/M) gives H → H by (3.3),
M → Gal(L/M) → LH where H = Gal(L/M) yields M since M ≤ LH here
H = Gal(L/M) and |L : LH | = |H| = |Gal(L/M)| = |L : M | by (3.3) and
(2.24). So M = LH .

(ii) Take H ≤ Gal(L/K). Then LφHφ
−1

= φ(LH) (think about this) when
φ ∈ Gal(L/K). So by (i), H is normal if and only if φ(LH) = LH . Set M = LH .
We’ll show that K ≤M is normal iff φ(M) = M for all φ ∈ Gal(L/K). K ≤M
is normal =⇒ φ(M) = M is Remark 2 after the statement of (3.2).

Conversely, if φ(M) = M for all φ ∈ Gal(L/K), we pick α ∈ M and fα(t)
be its minimal polynomial over K. We take β as a root for fα(t) in L
(which is possible by normality). Then there is a K-homomorphism K(α) ∼=
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K[t]/(fα(t)) → K(β) ∼= K[t]/(fα(t)) ≤ L, by sending α → β. This extends to
a K-homomorphism φ : L→ L. However we are assuming φ(M) = M , and so
φ(α) = β ∈M . Thus K ≤M is normal.

Note that K ≤ LH is separable since K ≤ LH ≤ L and K ≤ L is separable.

(iii) By remark 2 after the statement of (3.2), the restriction map θ : Gal(L/K)→
Gal(LH/K) is defined. Surjectivity follows from being able to extend a K-
homomorphism LH → LH ≤ L to a K-homomorphism L → L. Clearly
H ≤ ker θ. However |L : K|/| ker θ| = |Gal(L/K)|/| ker θ| = |Gal(LH/K)|
by surjectivity of θ, which is then equal to |LH : K| since K ≤ LH is Galois,
and is then equal to |L : K|/|L : LH | by tower law. So | ker θ| = |L : LH | =
|Gal(L/LH)| = |H| by (3.3). So H = ker θ.

3.1 Galois Groups of polynomials

Definition. Let f(t) be a separable polynomial ∈ K[t], and let K ≤ L with L a
splitting field for f(t). Then the Galois group of f(t) over K Gal(f) := Gal(L/K).

Since L is a splitting field for f(t), L = K(α1, ..., αn), where α1, ..., αn are the
roots of f(t) in L. Observe that if φ ∈ Gal(L/K) then it maps the set of roots of
f(t) to itself, i.e. φ permutes the αi. If φ fixes each αi, then it fixes K, therefore
fixes every element in L. Thus Gal(f) may be regarded as a permutation group
of the roots, or as a subgroup of Sn.

Lemma. (3.6)
Suppose separable f(t) = g1(t)...gs(t) with gi(t) irreducible in K[t] is a factori-
sation in K[t]. Then the orbits of Gal(f) on the roots of f(t) correspond to the
factors gj(t): two roots are in the same orbit iff they are roots of the same gj(t).

In particular, if f is irreducible in K[t], there is only one orbit, i.e. Gal(f) acts
transitively on the roots of f(t).

Proof. Let αk, αl be in the same orbit under Gal(f). Then there is φ ∈ Gal(f)
with αl = φ(αk). But if αk is a root of gj(t), then αl = φ(α(k)) is also a
root of gj(t) (coefficients are in K, so are fixed by φ – this argument has
been used many times before). Conversely, if αk, αl are roots of gj(t), then
K(αk) ∼= K[t]/gj(t) ∼= K(αl) ≤ L. Let φ0 takes K(αk) to K(αl). Then φ0
extends to a φ : L→ L ∈ Gal(L/K), whereas φ0(αk) = αl. Thus αk, αl are in
the same orbit.

Lemma. (3.7)
The transitive subgroups of Xn for n ≤ 5 are
n = 2: S2

∼= C2;
n = 3: A3

∼= C3, S3;
n = 4: C4, V4, D8, A4, S4;
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n = 5: C5, D10, H20, A5, S5 where H20 is the group generated by a 5-cycle and a
4-cycle.

The proof is an exercise.

Lemma. (3.8)
Let p be a prime, and f(t) irreducible in Q[t] of degree p. Suppose f(t) has
exactly 2 non-real roots (one conjugate pair) in C. Then Gal(f) over Q ∼= Sp.

Proof. Gal(f) acts on the p distinct roots of f(t) in a splitting field L of f(t) (in
C). By (3.6), the irreducibility of f(t) tells us that Gal(f) acts transitively on
the p roots. By Orbit-Stabilizer theorem, p | |Gal(f)|. But |Gal(f)| ≤ |Sp| = p!.
So Gal(f) has a Sylow p-subgroup of order p (by Lagrance |Gal(f)| | p!, so
p2 - |Gal(f)|), necessarily cyclic, i.e .Gal(f) contains a p-cycle. We’ve got exactly
2 non-real roots, so complex conjugation yields a transposition in Gal(f). But
from GRM we know the p-cycle and transposition generate the whole of Sp.

Example. (3.9)
Let f(t) = t5 − 6t+ 3 ∈ Q[t]. Then we claim that Gal(f) ∼= S5.

Proof. First f is irreducible by Eisenstein with p = 3. We want to show that
f(t) has 3 real roots and 2 non-real roots, then we can apply (3.8).

We check f(−2) = −17, f(−1) = 8, f(1) = −2, f(2) = 23. So we have at least 3
real roots. Also, f ′(t) = 5t4 − 6 which has two real roots. So by Rolle’s theorem
f(t) has at most 3 real roots. So f(t) has exactly 3 real roots.

Definition. (3.10)
Let f(t) ∈ K[t] with distinct roots α1, ..., αn (in a spitting field (note that f(t)
is not necessarily irreducible). We set

∆ =
∏
i≤j

(αi − αj)

Then the discriminantD = D(f) of f is ∆2 =
∏
i<j(αi−αj)2 = (−1)n(n−1)/2

∏
i 6=j(αi−

αj).

Note that we’ve already met the above in the proof of (2.21).

Lemma. (3.11)
Let f(t) be separable in K[t] of degree n with charK 6= 2. Then Gal(f) ≤ An if
and only if D(f) is a square in K.

Proof. Let L be a splitting field of f(t) over K. Then D(f) 6= 0 and is fixed by
all elements of G = Gal(L/K) as the latter permutes the roots.

Thus D ∈ K, since LG = K (by Galois correspondence).

On the other hand, if σ ∈ G then σ(∆) = (sgnσ)∆, where we regard G as a
subgroup of Sn, and the signature of σ = ±1 if σ is even/odd (this is where
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we need charK 6= 2). If G ≤ An we get that ∆ is fixed by all σ ∈ G. Thus
∆ ∈ K = LG. Otherwise, we get σ(∆) = −∆ if σ is odd. So ∆ 6∈ K = LG.

Note that if D does have square roots, they must be ±∆.

Example. (3.12)
n = 2: f(t) = t2 + bt + c = (t − α1)(t − α2), and D(f) = (α1 − α2)2 =
(α1 + α2)2 − 4α1α2 = b2 − 4c.
n = 3: f(t) = t3 + ct+ d, D(f) = −4c3 − 27d2 (without proof here).

Note that any general monic cubic g(t) can be put into this form by a suitable
subtitution f(t) = g(t1 + λ). Note that D(f) = D(g).

Now consider f(t) = t3 − t − 1 ∈ Q[t], which is irreducible in Z[t] (as it’s not
reducible mod 2). Now D(f) = −23 is not a square in Q, so Gal(f) ∼= S3.

Now let f(t) = t3 − 3t− 1 ∈ Q[t], which is also irreducible by the same reason.
Now D(f) = 81 is a square. So Gal(f) ∼= A3

∼= C3.

Irreducible quartics: we saw that the possible Galois groups are C4, V4, D8, A4

or S4. Those that are subgroups of A4 are V4 and A4. From looking at the
discriminant one gets information as to whether the group is one of those two or
the other three.

We need further methods to pin down which group we are dealing with.

Theorem. (3.13, mod p reduction)
Let f(t) ∈ Z[t] be monic of degree n with n distinct roots in a splitting field.
Let p be a prime such that f̄(t), the reduction of f(t) mod p, also has n distinct
roots in a splitting field (of char p).
Let f̄(t) = ḡ1(t)...ḡs(t) be the factorisation into irreducible in Fp[t], with nj =
deg ḡj(t). Then Gal(f̄) ↪→ Gal(f) (embeds into), and has an element of cycle
type (n1, ..., ns).

Remark. Proof. I’ll talk about last line once we’ve thought about Galois groups
of finite fields. The foil that Gal(f̄) ↪→ Gal(f) is from Number Fields (Look at
Tony Scholl’s teaching page on Galois).

Example. Let f(t) = t4 + dt + e. Now D(f) = −27d4 + 256e3 (not proved
here). If f(t) = t4 − t − 1 irreducible (since it’s irreducible mod 2), then
D(f) = −283 is not a square in Q. Now if we consider mod 7, f̄(t) = t4− t−1 =
(t+ 4)(t3 + 3t2 + 2t+ 5) (mod 7), and the second factor is irreducible mod 7 (no
roots). By (3.13), Gal(f) contains an element of cycle type (1, 3), i.e. a 3-cycle.
We deduce that Gal(f) ∼= S4 as the other 2 possibilities that contain an odd
permutation do not contain 3-cycles.

3.2 Galois Theory of Finite Fields

Recall what we already know from chapter 1.
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From (1.27), a finite field F is of characteristic p > 0, p necessarily prime, and
|F| = pr for some r. Also, the multiplicative group of F is cyclic (1.28). It is a
splitting field for tn− 1 over Fp where n = pr − 1. By the uniqueness of splitting
fields (1.24), this is unique up to isomorphism. Note that we could also describe
F as the splitting field of tp

r − 1 over Fp.

What we haven’t shown yet is that for any pr there is a field F with |F| = pr.

Definition. (3.15)
Let F be a finite field of characteristic p. Then the Frobenius automorphism of
F is φ : F→ F by α→ αp (some authors use Φ).

Remark. (α + β)p = αp + βp since all other terms in binomial expansion is
divisible by p. Fp is fixed under this, and this is a Fp automorphism.

Since tp
r − t splits as a product of distinct linear factors (t− x) in F we have

that Fp ≤ F is a Galois extension. And so we consider Gal(F/Fp) = G. It is of
order r since |F : Fp| = r.

Theorem. (3.16, Galois groups of finite fields)
Let F be a finite field with |F| = pr. Then Fp ≤ F is a Galois extension, with
Gal(F/Fp) = Cr cyclic group with the Frobenius automorphism φ as generator.

Proof. It remains to show that the order of Frobenius automorphism is r. Suppose
φs = e the identity. Then αp

s

= α for all α ∈ F. But tp
s − t has at most ps roots

in F, so we deduce that s ≥ r. Also note that φr is the identity, since αp
r

= α
for all α ∈ F. So s = r.

Now apply the fundamental theorem (3.2), we have correspondence between
intermediate fields Fp ≤M ≤ F and subgroups H ≤ G, where G = Gal(F/Fp)
is cyclic. But we know all about subgroups of a cyclic group with generator φ
and order r: there is exactly one subgroup of order s for each factor s of r, and
is generated by φr/s. The corresponding intermediate fields are the fixed fields

F<φr/s> and |F : F<φr/s>| = s. By Tower law, |F<φr/s> : Fp| = r/s.

Observe that all subgroups of cyclic groups are normal, and therefore all inter-
mediate fields are normal extensions of Fp (3.2(ii)).

(3.2)(iii) then shows that Gal(F<φr/s>/Fp) ∼= Gal(F/Fp)/H where H =< φr/s >.

Corollary. (3.17)
Let Fp ≤ M ≤ F be finite fields. Then Gal(F/M) is cyclic, generated by φu

where φ is Frobenius map, and |M | = pu and M is the fixed field of < φu >.

Proof. Set u = r/s.

Theorem. (3.18,Existence of finite fields)
Let p be a prime, u ≥ 1. Then there is a field of order pi, unique up to
isomorphism.
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Proof. Consider the splitting field of L of f(t) = tp
u − t over Fp. It is a finite

Galois extension Fp ≤ L, however the roots of f(t) form a field, and is the fixed
field of φu. Thus set L = F, and |F : Fp| = u.

Remark about mod p reduction (3.13): You’ll discover in number fields that
Gal(f̄) ↪→ Gal(f) if f(t) ∈ Z[t]. We factorised f̄(t) = ḡ1(t)...ḡs(t) as product of
irreducibles. We know from (3.6) that the orbits of Gal(f̄) correspond to the
factorisation. We know Gal(f̄) is cyclic generated by the Frobenius map, which
must have cyclic type (n1, ..., ns) where nj = deg ḡj(t).



4 CYCLOTOMIC ANDKUMMER EXTENSIONS, CUBIS ANDQUARTICS, SOLUTION BY RADICALS29

4 Cyclotomic and Kummer extensions, cubis and
quartics, solution by radicals

4.1 Cyclotomic extensions

Definition. (4.1)
Suppose Chark = 0 or p prime where p - m. The mth cyclotomic extension of
K is the splitting field L of tm − 1.

Remark. If we take f ′(t) we’ll find that f ′(t) = mtm−1 so they do not have
common zeros, so f(t) is separable. So f(t) has distinct roots, the mth roots of
unity, which form a finite subgroup µm of L∗. Hence by (1.28) a cyclic group
< ξ >. Thus L = K(ξ) is a simple extension.

Definition. (4.2)
An element ξ ∈ µmM is a primitive mth root of unity if µm =< ξ >. Choosing
a positive mth root of unity determines µm → Z/mZ an isomorphism.

Note that ξ is a generator of µm iff (i,m) = 1, and so the primitive mth roots of
unity correspond to elements of (Z/mZ)∗, the unit group of Z/mZ.

Now consider Galois groups of cyclotomic extensions. We’ll see they must be
abelian. Observe f(t) = t−1 is separable and so the extension K ≤ L is Galois.
Let G = Gal(L/K). An element σ ∈ G sends a primitive mth root of unity ξ
to a primitive with root of unity where (i,m) = 1. Then ξ → ξi determines
a K-homomoprhism K(ξ) → K(ξ), or L → L, by ξ → ξi. Thus we’ve go an
injective map.

Definition. (4.3)(??)
Let θ : G→ (Z/mZ)∗. This is a group homomorphism: if σ(ξ) = ξi, φ(ξ) = ξj ,
then (σφ)(ξ) = σ(ξj) = ξij . Thus G is abelian. Thus we may regard G as a
subgroup of (Z/mZ)∗ by this embedding.

Definition. (4.4)
The mth cyclotomic polynomial is

Φm(t) =
∏

i∈(Z/mZ)∗
(t− ξi)

the polynomial of the linear factors of tm− 1 corresponding to the primitive mth
roots of unity.

Remark. f(t) = tm − 1 =
∏
i∈Z/mZ(t− ξi) =

∏
d|m Φd(t).

For example, take K = Q, we have Φ1(t) = t−1, Φ2(t) = t+1, Φ3(t) = t2 + t+1,
Φ4(t) = t2 + 1, Φ8(t) = t4 + 1. since t8 − 1 = (t− 1)(t+ 1)(t2 + 1)(t4 + 1).

Lemma. (4.5)
Φm(t) ∈ Z[t] if CharK = 0 (with Q ↪→ K a prime subfield), Φm(t) ∈ Fp[t] if
CharK = p (with Fp ↪→ K a prime subfield).
If CharK = p > 0 we deduce by division that Φm(t) ∈ Fp[t].
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Lemma. (4.6)
The homomorphism, θ : G→ (Z/mZ)∗ defined in (4.3) is an isomorphism if and
only if Φm(t) is irreducible.

Proof. We know from (3.6), that the orbit of G = Gal(L/K) correspond to the
factorisation of f(t) in K[t]. In particular, the primitive mth root of unity form
one orbit if and only if Φn(t) is irreducible. In particular, the primitive mth
roots of unity form one orbit iff Φm(t) is irreducible. Then θ is surjective iff
Φm(t) is irreducible.

Theorem. (4.7)
Let L be the mth cyclotomic extension of finite field F = Fq, where q = pu.
Then the Galois group G = Gal(L/F) is isomorphic to the cyclic subgroup of
(Z/mZ)∗ genrated by q.

Proof. We now from (3.17) that G is generated by α→ αp
u

= αq. So θ(G) =<
q >≤ (Z/mZ)∗.

Remark. Thus if (Z/mZ)∗ is not cyclic then θ is not surjective for any finite
field F and Φm(t) is reducible over F.

Example. Consider F = F3, Φ8(t) = t4 + 1 = (t2 + t − 1)(t2 − t − 1). So
t8 − 1 factorises as a product of linear and quadratic polynomials mod 3. So the
splitting field L = F9 is the unique field of order 9 whose multiplicative group is
cyclic C8.
Note (Z/8Z)∗ = {1, 3, 5, 7} ∼= C2 × C2.

Note that Gal(L/F3) is cyclic of order 2, so the map θ : Gal(L/K) ↪→ (Z/mZ)∗

is definitely not surjective, and we saw that Φ8(t) is reducible.

Theorem. (4.8)
For all m > 0, Φm(t) is irreducible in Z[t] and hence in Q[t]. Thus θ in (4.2) is
an isomorphism and thus Gal(Q(ξ)/Q) ∼= (Z/mZ)∗ where ξ is the primitive mth
root of unity.

Remark. We already know this when m = p by substitution and Eisenstein.

Proof. (4.5) implies irreducibility corresponds to surjectivity of θ. So it’s left to
show that Φm(t) is irreducible in Z[t]. Suppose otherwise, that Φm(t) = g(t)h(t)
in Z[t], with g(t) irreducible, monic and deg g(t) � deg Φm(t). Let Q ≤ L be the
mth cyclotomic extension, and ξ be a root of g(t), ξ primitive mth root of 1.

We claim that if p - m, p is prime, then ξp is also a root of g(t) in L.
• Proof of claim: suppose not. Then ξp is also a primitive mth root of 1, since
p - m, is a root of Φm(t). Our supposition implies that ξp is actually a root of
h(t). Define r(t) = h(tp). Then r(ξ) = 0. But g(t) is the minimal polynomial
of ξ over Q, and so g(t) | r(t) in Q[t]. By Gauss’ lemma, r(t) = g(t)s(t) with
s(t) ∈ Z[t]. Now reduce mod p: F (t) = ḡ(t)s̄(t). But then F (t) = h̄(tp) = (h̄(t))p.
If ā(t) is any irreducible factor of ḡ(t) in Fp[t] then ā(t)|(h̄(t))p. As a result
ā(t)|h̄(t). But then (ā(t))2|ḡ(t)h̄(t) = Φ̄m(t). Hence Φ̄m(t) has a repeated root
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and thus tm − 1 has repeated root mod p, contradiction since p - m. So our
claim is true.

Now consider a root γ of h(t). Then it is also a primitive roof of 1 and so γ = ξi

for some i with (i,m) = 1. Write i = p1...pk factorization with pj prime, not
necessarily distinct. Apply the claim repeatedly, we get that γ is a root of g(t),
and so Φm(t) has a repeated root which is impossible. Hence Φm(t) is irreducible
over Q.

Definition. (4.9)
An extension K ≤ L is cyclic if the extension is Galois and Gal(L/K) is cyclic.
Note that this is not the same as a primitive/simple extension. Say the extension
is abelian if it is Galois and Gal(L/K) is abelian.

Example. In (3.17) we say that for finite fields, F ≤ L is cyclic. And fomr (4.3)
cyclotomic extensions are abelian. However, (4.8) says Gal(Q(ξ)/Q) ∼= (Z/mZ)∗

and so if m = 8, Q ≤ Q(ξ) is abelian, non-cyclic extension, where ξ primitive
8th root of unity.

4.2 Kummer Theory

We consider Galois extensions K ≤ L wher L is splitting field of a polynomial of
the form tm − λ with λ ∈ K.

Theorem. (4.10)
Let f(t) = tm − λ ∈ K[t] and charK - m. Then the splitting field L of f(t) over
K contains a primitive mth root of unity ξ, and Gal(L/K(ξ)) is cyclic of order
dividing m.
Moreover, f(t) is irreducible over K(ξ) if and only if |L : K(ξ)| = m.

Remark. We consider the correspondence between L − −K(ξ) − −K and
{e} − −Gal(L/K(ξ)) − −Gal(L/K) ,where the first is cyclic and the sec-
ond is abelian: we know for cyclic Gal(L/K(ξ)) / Gal(L/K), by (3.2)(iii)
Gal(L/K)/Gal(L/K(ξ)) ∼= Gal(K(ξ)/K) is abelian.

Proof. Since tm − λ and mtm−1 are coprime, we know that tm − λ has distinct
roots α1, ..., αm in the splitting field L. Thus K ≤ L is Galois. Since (αiα

−1
j )m =

λλ−1 = 1, the elements 1 = α1α
−1
1 , α2α

−1
1 , ..., αmα

−1
1 are m distinct mth roots

of unity in L, and so

tm − λ = (t− β)(t− ξβ)(t− ξ2β)...(t− ξm−1β)

in L[t], where β = α1, and ξ is a primitive mth root of unity. So L = K(ξ, β).
Let σ ∈ Gal(L/K(ξ)). It’s determined by its action on β. Note that σ(β) is
another root of tm − λ and so σ(β) = ξj(σ)β, where 0 ≤ j(σ) < m. Also if
σ, τ ∈ Gal(L/K(ξ)) then

τσ(β) = τ(ξj(σ)β) = ξj(σ)τ(β) = ξj(σ)ξj(τ)β

as ξ is fixed by τ . Thus σ → j(σ) gives a group homomorphism

θ : Gal(L/K(ξ))→ Z/mZ
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where Z/mZ is referring to the additive group. Note that j(σ) = 1 if and only
if σ is the identity and so θ is injective. Gal(L/K(ξ)) ∼=subgroup of Z/mZ, is
therefore cyclic since it’s a subgroup of a cyclic group, and its order will divide
m.

Finally, since we are in a Galois extension, |L : K(ξ)| = |Gal(L/K(ξ)| ≤ m,
with equality hold precisely when the action of Gal(L/K(ξ)) is transitive on
the roots, and that is when the polynomial tn − λ is irreducible over K(ξ) by
(3.6).

Example. Consider f(t) = t6 + 3, ξ the primitive 6th root of unity. Note that
ξ = −ω where ω is the primitive cube root of 1. Now Q(ξ) = Q(ω) = Q(

√
−3).

Note that f(t) is irreducible over Q by Eisenstein with p = 3. However over
Q(ξ) = Q(

√
−3), f(t) factorizes as f(t) = (t3 −

√
−3)(t3 +

√
−3). Let L be the

splitting field of f(t). Now Gal(L/Q(ξ)) � Z/6Z. Consider the correspondence

L
3−→ Q(ξ)

2−→ Q with {e} 3−→ Gal(L/Q(ξ))
2−→ Gal(L/Q). Gal(L/Q) is dihedral

of order 6. So we have Gal(L/Q(ξ)) ↪→ Z/6Z and is cyclic of order 3. Complex
conjugation is an element of order 2. Let β be a root of f(t). Then the roots are
β, ξβ = −ωβ, ξ2β = ω2β, ξ3β = −β, ξ4β = ωβ, ξ5β = −ω2β. We have a 3-cycle
generated by permuting β, ω2β, ωβ. There’s a dihedral relation – conjugating
the 3-cycle by complex conjugation yields the inverse of 3-cycle.

Example. Let f(t) = t5 − 2 over Q. Let L be the splitting field of f(t) over
Q, and ξ be the 5th root of unity. f is similar irreducible over Q. Now we

have correspondence L
5−→ Q(ξ)

4−→ Q with {e} 5−→ Gal(L/Q(ξ))
4−→ Gal(L/Q),

as from our theorem Gal(L/Q(ξ)) is embedded in the additive group Z/5Z.
The extension degree 5 is because, is we adjoint any root β of f(t) to Q, then
Q(β) − −Q is a degree 5 extension, while Q(β) is also an intermediate field
between Q and L. So we actually get Gal(L/Q(ξ)) ∼= Z/5Z. Note that we’ve
deduced that f(t) remains irreducible over Q(ξ). So |Gal(L/Q(ξ))| = 5. So
|Gal(L/Q)| = 20. Irreducibility of f(t) over Q implies that Gal(L/Q) is a
transitive subgroup of S5. By the list of transitive subgroups of S5 in (3.7), we
know H20 is of order 20, generated by a 5-cycle and a 4-cycle. We’ve already
got 5-cycles. Gal(L/Q)/Gal(L/Q(ξ)) ∼= Gal(Q(ξ)/Q) by fundamental theorem
(3.2) (iii). However RHS ∼= (Z/5Z)∗ which is the multiplicative group of a finite
field, therefore cyclic. So we deduce that our subgroups of S5 contains a 4-cycle.

Now we look at the converse of (4.10).

Theorem. (4.11)
Suppose K ≤ L is a cyclic extension with |L : K| = m where charK - m and
that K contains a primitive mth root of unity. Then there exists λ ∈ K such
that tm − λ is irreducible over K, and L is the splitting field of tm − λ over K.

If β is a root of tm − λ in L, then L = K(β).

Definition. (4.12)
A cyclic extension K ≤ L with |L : K| = m where charK - m and K contains a
primitive mth root of unity is a Kummer extension.

To prove (4.11), we need a lemma, which is in the previous example sheet (Sheet2
Q10):
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Lemma. (4.13)
Let φ1, ..., φn be embeddings of a field K into a field L. Then there do not exist
λ1, ..., λm, not all zero, such that λ1φ1(x) + ...+ λnφn(x) = 0 for all x ∈ K.

Proof. (proof of theorem)
Let Gal(L/K) =< σ > of order m. Observe that 1, σ, σ2, ..., σm−1 are distinct
and map L→ L. We can apply (4.13), there exists α ∈ L s.t. β = α+ ξσ(α) +
...+ ξm−1σm−1(α) 6= 0, where ξ is a primitive mth root of unity. Observe that
σ(β) = ξ−1β 6= β, and so β 6∈ K, the fixed field of Gal(L/K). Then σ(βn) =
(σ(β))m = βm. Let λ = βm ∈ K. But tm−λ = (t−β(t−ξβ)...(t−ξm−1β) in L[t],
ans do K(β) is the splitting field of tm − λ over K (recall ξ ∈ K). Observe that
1, σ, ..., σm−1 are distinct K-automorphisms of K(β), and so |K(β) : K| ≥ m.
So by size L = K(β) = K(ξβ) since ξ ∈ K. However, tm − λ is the minimal
polynomial of β over K, and hence is irreducible.

Definition. (4.14)
A field extension K ≤ L is an extension by radicals if there exists K = L0 ≤
L1 ≤ ... ≤ Ln = L, such that each extension Li ≤ Li+1 is either cyclotmic, or
Kummer. A polynomial f(t) ∈ K[t] is soluble by radicals if its splitting field lies
in an extension by radicals.

4.3 Cubics

We’ve already seen that if f(t) is a monic irreducible cubic in K[t] with L
its splitting field over K, then Gal(f) = Gal(L/K) = G is A3 or S3, since
irreducibility implies action on roots is transitive, and transitive subgroups of

S3 are A3 and S3. Consider the correspondence L − −K(∆)
1or2−−−→ K with

{e} − −G ∪ A3
1or2−−−→ G, where ∆2 = D(f) the discriminant of f . But to see

that we can solve f by radicals we want to make use of (4.11), and so we need
to adjoin the approximate roots of unity.

Now we get a bigger picture, where ω is the primitive cube root of 1:



4 CYCLOTOMIC ANDKUMMER EXTENSIONS, CUBIS ANDQUARTICS, SOLUTION BY RADICALS34

From the tower law, L(ω) : K(∆, ω)| = 3. Hence Gal(L(ω)/K(∆, ω)) ∼= C3.
We can apply (4.11) to see that L(ω) = K(∆, ω)(β), where β is a root of an
irreducible polynomial t3 − λ ∈ K(∆, ω)[t]. In fact, from the proof of (4.11) we
see that β = α1 + ωα2 + ω2α3 where α1, α2, α3 are roots of f(t). Now all the
extensions K ≤ K(∆) ≤ K(∆, ω) ≤ L(ω) are cyclotomic or Kummer. So f(t) is
soluble by radicals.

In practice, Given irreducible cubic f(t) = t3+at2+bt+c = (t−α1)(t−α2)(t−α3),
we have α1+α2+α3 = −a. Replace αi’s by α′i = αi+a/3, so that α′1+α′2+α′3 = 0
and they are roots of a polynomial g(t) = t3 + pt + q, and K(α1, α2, α3) =
K(α′1, α

′
2, α
′
3. Recall that the discriminant is D(g) = −4p3 − 27q2.

Set β = α′1 + ωα′2 + ω2α′3, γ = α′1 + ω2α′2 + ωα′3. Then

βγ = α′
2
1 + α′

2
2 + α′

2
3 + (ω + ω2)(α′1α

′
2 + α′1α

′
3 + α′2α

′
3)

= (α′1 + α′2 + α′3)2 − 3(α′1α
′
2 + α′1α

′
3 + α′2α

′
3)

= −3p

and so β3γ3 = −27p3. Now

β3 + γ3 = (α1 + ωα′2 + ω2α′3)3 + (α′1 + ω2α′2 + ωα′3)3 + (α′1 + α′2 + α′3)

= 3(α′
3
1 + α′

3
2 + α′

3
3) + 18α′1α

′
2α
′
3

= −27q

since α′
3
1 = −pα′1 − q, and so α′

3
1 + α′

3
2 + α′

3
3 = −3q. So β3 and γ3 are roots of

a quadratic t2 + 27qt− 27p3 and so are

−27

2
q ± 3

√
−3

2

√
−27q2 − 4p3 = −27

2
q ± 3

√
−3

2

√
D

We can solve for β3 +γ3 in K(
√
−3,
√
D) = K(ω,∆). We can get β by adjoining
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a cube root of β3, and then set γ = − 3p
β . Finally we solve in L(ω) for α′i to get

α′1 =
1

3
(β + γ),

α′2 =
1

3
(ω2β + ωγ),

α′3 =
1

3
(ωβ + ω2γ)

(remember that α′1 + α′2 + α′3 = 0.)

4.4 Quartics

As with the cubics case, by making a substitution of the form α′i = αi + a/4, we
may assume that the sum of the roots is zero, and so the t3 term is zero. Then
we have

f(t) = t4 + bt2 + ct+ d = (t− α1)(t− α2)(t− α3)(t− α4)

monic irreducible. Let L = K(α1, ..., α4) be the splitting field for f(t) over K. We
have correspondence L−−M = LG∩V4 , normal extension of K −−K(∆)−−K
and {e} − −G ∩ V4 / G − −G ∩ A4 − −G = Gal(L/K) ≤ S4. By fundamental
theorem Gal(M/K) ∼= G/G ∩ V4 by θ : S4 → S3, ker θ = V4, S4/V4 ∼= S3.
θ|G : G→ S3 satisfies ker θ|G = G ∩ V4, G/G ∩ V4 ∼= imθ|G ≤ S3. We therefore
go looking for a cubic for which M is the splitting field, called the resolvent
cubic.

Now set x = α1 + α2, y = α1 + α3, z = α1 + α4. We see that α1 = 1
2 (x+ y + z),

α2 = 1
2 (x−y−z), α3 = 1

2 (−x+y−z), α4 = 1
2 (−x−y+z). Thus K(α1, ..., α4) =

K(x, y, z),
x2 = (α1 + α2)2 = −(α1 + α2)(α3 + α4)

y2 = (α1 + α3)2 = −(α1 + α3)(α2 + α4)

z2 = (α1 + α4)2 = −(α1 + α4)(α2 + α3)

These are distinct e.g. if y2 = z2 then y = ±z, and so either α3 = α4 or α1 = α2.
The x2, y2, z2 are permuted by G and are fixed by G ∩ V4. So K(x2, y2, z2) ≤
M = LG∩V4 . We claim that we have equality here, M = K(x2, y2, z2). Now
consider the resolvent cubic g(t) = (t− x2)(t− y2)(t− z2) ∈ K[t]. Note that its
coefficients are fixed by G and so lie in K.

To prove the claim, Observe that D(f) = D(g) (example sheet), so K(∆) ≤
K(x2, y2, z2). Now observe that Gal(L/K(x2, y2, z2)) = Gal(K(x, y, z)/K(x2, y2, z2)),
K(x2, y2, z2) ≤ K(x, y2, z2) ≤ K(x, y, z2) ≤ K(x, y, z), where each extension
is of degree 1 or 2. So |K(x, y, z) : K(x2, y2, z2)| divides 8. So elements of
Gal(L/K(x2, y2, z2)) have order dividing 8. But Gal(L/K(x2, y2, z2)) ≤ G∩A4,
so Gal(L/K(x2, y2, z2)) ≤ G ∩ V4. Then by fundamental theorem we get
M = K(x2, y2, z2).

Now consider the coefficients of g(t): x2, y2, z2 are permuted by G and so the g(t)
are fixed by G and therefore in K. x2+y2+z2 = −2b, x2y2+x2z2+y2z2 = b2−4d,
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xyz = −c i.e. x2y2z2 = c2. So

g(t) = t3 + 2bt2 + (b2 − 4d)t− c2

We know how to solve cubics, so we can solve for x2, y2, z2. Therefore we can
solve for x, y, z. Then use our formulae from last time α1 = 1

2 (x+ y + z) etc.

Remark. Consider the map θ : S4 → S3, we have ker θ = V4, θ|A4 : A4 → A3
∼=

C3, θ|G∩A4
: G∩A4 → A3, this has kernel G∩V4, so G∩A4/G∩V4 ∼= subgroup

of A3. So we know G ∩ A4 has index 1 or 3 in G ∩ V4. So by correspondence,
LG∩V4 is an extension of order 1 or 3 over K(∆). It is 3 if the resolvent cubic is
irreducible, and is 1 if the cubic is reducible.

For example, let f(t) = t4 + 4t2 + 2. We have g(t) = t3 + 8t2 + 8t is reducible.

We are assuming charK 6= 2 from discussion about discriminants, and charK 6= 3
for cubic Kummer extensions.

4.5 Solubility by radicals

Now suppose we have a Galois extension K ≤ L, with K = L0 ≤ L1 ≤ ... ≤
Lm = L, such that Li ≤ Li+1 is either cyclotomic or Kummer extension. Let
G = Gal(L/K). There is a corresponding chain of subgroups of G, G = G0 ≥
G1 ≥ ... ≥ Gm = {e}, with Gi = Gal(L/Ki), Li = LGi from Fundamental
theorem. However, each extension Li ≤ Li+1 is Galois, and we know Gi+1 =
Gal(Li/Li+1) / Gal(L/Li) = Gi, and we know that the factor Gi/Gi+1

∼=
Gal(Li+1/Li), and RHS is abelian if Li ≤ Li+1 is cyclotomic, and is cyclic if it’s
Kummer.

Definition. (4.15)
A group is soluble if there is a chain of subgroups {e} = Gm/Gm−1/.../G1/G0 =
G (*), with Gi/Gi+1 abelian.

Example. S3 is soluble as {e}/ < (123) > /S3;
S4 is soluble as {e} / V4 / A4 / S4, and A4/V4 ∼= C3, S4/A4

∼= C2.

Also, we know that A5 is simple, and therefore any normal subgroup is either {e}
or A5. As a result, any chain as in (*) in definition (4.15) would have non-abelian
quotients. So A5 is not soluble.

Lemma. (4.16)
A finite groupG is soluble if and only if we have {e} = Gm/Gm−1/.../G1/G0 = G
(**), with Gi/Gi+1 cyclic.

Proof. Backwards is definition. To show forward, we know about the structure of
finite abelian groups. If A abelian then there is a chain {e} = A4/Ar−1/.../A0 =
A with Ar/Ar+1 cyclic. Thus we have a chain (*) with abelian factors Gi/Gi+1.
But we can refine it (adding terms in between), to one of the form (**).
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Definition. (4.17)
The derived subgroup G′ of a group G is the subgroup generated by all the
commutators g1g2g

−1
1 g−12 for g1, g2 ∈ G.

Note that this is not necessarily a subgroup, so we’ll have to check that.

Lemma. (4.18)
Let K / G. Then G/K abelian ⇐⇒ G′ ≤ K.

Proof. G/K abelian ⇐⇒ Kg1Kg2Kg
−1
1 Kg−12 = K for all g1, g2 ∈ G ⇐⇒

g1g2g
−1
1 g−12 ∈ K ⇐⇒ G′ ≤ K.

Remark. • Next etrm in representation theory we’ll prove Burnside’s theorem:
If |G| = paqb, p, q distinct primes, then G is soluble.
• Also Feit-Thompson theorem: if |G| is odd, then G is soluble.
• There’s an analogue of Sylow’s theorems due to Philip Hall: for all |G| = mn,
with (m,n) coprime, there is a subgroup of order m if and only if G is soluble.

Definition. (4.19)
The derived series {G(m)} of G is defined inductively: G(0) = G,G(1) =
G′, G(2) = (G′)′,...

Thus we have

G = G(0) . G(1) . ...

with G(j)/G(j+1) abelian.

Lemma. (4.20, for G finite)
G is soluble iff G(m) = {e} for some m.

Proof. If G(m) = {e}, then the derived series gives a chain of the form (*) (in
4.15) in the definition of solubility.

Conversely, if there is a chain of the form (*), G . G1 . G2 . ... . Gm = {e},
with Gi/Gi+1 abelian, then an easy induction shows that G(j) ≤ Gj , and so
G(m) = {e}.

Remark. The derived series is the fastest descending chain with abelian factors.

Lemma. (4.21)
(i) Let H ≤ G, G soluble, then H is soluble.
(ii) Let H / G, then G soluble ⇐⇒ H and G/H are both soluble.

Proof. (i) G soluble =⇒ G(m) = {e} by (4.20). But H(m) ≤ G(m), so H is
soluble by 4.20.
(ii) Let H / G. Then G soluble =⇒ H soluble by (i).
G soluble =⇒ G(m) = {e} say. Observer that (G/H)′ = G′H/H ≤ GH,
similarly (G/H)(j) = G(j)H/H ≤ G/H, thus (G/H)(m) = H/H trivial subgroup
of G/H, and so G/H is soluble.
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Now consider the converse. Suppose that H and G/H are soluble. Then
H(r) = {e} and (G/H)(s) = H/H for some r, s. But then (G/H)(s) = G(s)H/H,
so G(s)H ∼= H and thus G(s) ≤ H. Hence G(r+s) ≤ H(r) = {e}. Thus G is
soluble.

Example. S5 is not soluble, since its subgroup A5 is not soluble.

Theorem. (4.22)
Let K be a field, and f(t) ∈ K[t]. Assume charK = 0. Then f(t) is soluble by
radicals over K ⇐⇒ Gal(f) over K is soluble.

Remark. We don’t need to restrict to charK = 0. What we need to do
for a particular f(t) is to avoid a finite number of bad characteristics (avoid
characteristics ≤ deg f(t)).

Corollary. (4.23)
If f(t) is a monic irreducible polynomial in K[t] with Gal(f) ∼= A5 or S5, then
f(t) is not soluble by radicals (with charK = 0).

Example. In example 3.9(i), we had f(t) = tt − 6t+ 3 ∈ Q[t], and we’ve seen
that Gal(f) over Q is S5 (recall we had 3 real roots and complex conjugation
gives a transposition, f(t) is irreducible and so 5|Gal(f), so we’ve also got a
5-cycle and these generate S5). So f(t) is not soluble by radicals.

Proof. (of 4.22)
Suppose f(t) is soluble by radicals. Thus if L is the splitting field of f(t) over
K, then L lies in an extension of K by radicals K = L0 ≤ L1 ≤ ... ≤ Lm with
each Li ≤ Li+1 is cyclotomic or Kummer. At this stage we don’t know that Lm
is Galois over K. At this stage, we don’t know that Lm is Galois over K. So
we’ll need something else first:

Lemma. (4.24)
If K ≤ N is an extension by radicals, then ∃N ′ with N ≤ N ′, K ≤ N ′ is an
extension of radicals, and K ≤ N ′ being a Galois extension.

Assuming this lemma, and so we may assume that Lm is Galois over K. Then
by Fundamental theorem of Galois Theory (3.2), there is a corresponding chain
of subgroups of Gal(Lm/K). Our previous discussion at the beginning of this
section (before (4.13)) we know that Gal(Lm/K) is soluble, because our chain
has abelian factors. But K ≤ L ≤ Lm with K ≤ L Galois, by the Fundamental
theorem (3.2(iii)), the Galois group Gal(L/K) ∼= Gal(Lm/K)/Gal(Lm/L). But
quotients of soluble groups are soluble. So Gal(L/K) is soluble.

Proof. (of 4.24)
We have K = L0 ≤ L1 ≤ ... ≤ Lm, with each Li ≤ Li+1 cyclotomic or Kummer,
and we want to embed this into a Galois extension of the same form. Assume
charK = 0. By the primitive elemnt theorem, Lm = K(α1) for some α1.
Let g(t) be the minimal polynomial of α1 over K, with splitting field M . Thus
M = K(α1, ..., αn) where αi are roots of g(t). There are K-homomorphisms φ1 :
M →M by α1 → αi, extending the K-homomorphisms K(α1)→ K(αi) ≤M .
The tower K ≤ φi(K) ≤ φi(L1) ≤ ... ≤ φi(Lm) = K(αi), with cyclotomic or
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Kummer extensions as before.
Consider

Lm = K(α1) ≤ φ2(L1)(α1) ≤ φ2(L2)(α1) ≤ ... ≤ φ2(Lm)(α1) = K(α1, α2)

Consider the extension φ2(Lj)(α1) ≤ φ2(Lj+1)(α1): if Lj ≤ Lj+1 cyclotomic,
then all the roots of unity adjoined are now in Lm = K(α1) and so φ2(Lj)(α1) =
φ2(Lj+1)(α1). If Lj ≤ Lj+1 then we obtain Lj+1 by adjoining roots of an
element of Lj , and so we obtain φ2(Lj+1) by adjoining roots of an element in
φ2(Lj). Hence we get from φ2(Lj)(α1) to φ2(Lj+1)(α1) by adjoining roots of an
element of φ2(Lj). So it’s a Kummer extension.
Now continue to get a suitable chain K(α1, α2) ≤ ... ≤ K(α1, α2, α3) etc. Thus
we get a suitable chain from K to K(α1, ..., αn) = M . Observe that K ≤M is
Galois.

Converse of (4.22): Suppose G = Gal(f) over K is soluble. Let L be the splitting
field of f(t) over K and so |G| = |L : k| = n. Set m = n!, and let ξ be a primitive
mth root of unity and consider L(ξ). Our proof is similar to that used for cubics.
Observe that |L(ξ) : K(ξ)| ≤ n: by primitive element theorem L = K(α)
for some α with minimal polynomial g(t) say of degree n. Then L(ξ) =
K(ξ)(α), and the minimal polynomial of α over K(ξ) divides g(t), so is of
degree ≤ n. Note that Gal(L(ξ)/L) is abelian, since the extension is cyclo-
tomic. Then Gal(L(ξ)/K) is soluble since Gal(L(ξ)/L) soluble and Gal(L/K) ∼=
Gal(L(ξ)/K)/Gal(L(ξ)/L) soluble by Fundamental theorem and (4.21). Then
the subgroup Gal(L(ξ)/K(ξ)) ≤ Gal(L(ξ)/K) is soluble by (4.21). Thus there is
a chain of subgroups Gal(L(ξ)/K(ξ)) = G0 . G1 . ... . Gm = {e}, with Gi/Gi+1

cyclic (using (4.16)). Now use the Fundamental theorem to get a corresponding
chain of fields K(ξ) ≤ K1 ≤ ... ≤ Km = L(ξ) with each Ki ≤ Ki+1 Galois, with
cyclic Galois group.
Theorem (4.11) now says that all those extensions are Kummer (note all the
extensions are of degree ≤ n, and so we have the appropriate roots of unity).
Thus we’ve embedded L in an extension of K by radicals.

Example. f(t) = t4+4t2+2. This is irreducible over Q by Eisenstein. Resolvent
cubic g(t) = t3 + 8t2 + 8t, its roots are 0 and −4 ± 2

√
2, so its splitting field

L has degree 8 over K = Q, and is degree 4 over K(
√

2). The Galois group is
transitive of degree 8 in S4, so must be D8.

Example. f(t) = t4 + 2t + 2 over Q, which is irreducible by Eisenstein. Its
discriminant is 101·42 which is not a square. The resolvent cubic g(t) = t3−8t−4
is irreducible (as it’s irreducible mod 5). So Gal(f) is transitive, but not in A4,
and has a 3-cycle. So Gal(f) = S4.

Example. f(t) = t5 − t − 1 is also irreducible over Q since it’s irreducible
mod 5. So its Galois group contains a 5-cycle and is transitive. Consider
mod 2, f factorises as a product of irreducible cubic and irreducible quadratic
(t3 + t2 + 1)(t2 + t+ 1). So Gal(f̄) generated by an element of cycle type 3,2. So
Gal(f) also contains an element of cycle type 3,2. Then g3 is a transposition.
Therefore Gal(f) = S5 Then g3 is a transposition. Therefore Gal(f) = S5 over
Q.
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5 Final Thoguhts

5.1 Algebraic Closure

Definition. (5.1)
A field L is algebraically closed if any f(t) ∈ L[t] splits into a product of linear
factors in L[t].

Remark. This is equivalent to saying that any f(t) ∈ L[t] has a root in L or
that any algebraic extension of L is L itself.

Definition. (5.2)
An extension K ≤ L is an algebraic closure of K if K ≤ L is algebraic and L is
algebraically closed.

Lemma. (5.3)
If K ≤ L is algebraic and every polynomial in K[t] splits completely over L then
L is an algebraic closure of K.

Proof. We need to show L is algebraically closed. Suppose L ≤ L(x) is a finite
extension, and fα(t) = tn + an−1t

n−1 + ...+ a0 is the minimal polynomial of α
over L. Let M = K(α0, ..., αn−1. Then M ≤ M(α) is a finite extension. But
each ai is algebraic over K and so |M : K| < ∞. Hence |M(α) : K| < ∞ by
Tower Law, and so α is algebraic over K.

The minimal polynomial of α over K must split over L, and so α ∈ L. Thus any
algebraic extension of L is L itself.

Example. A = {α ∈ C : α algebraic over Q}. It is a subfield of C: if α, β are
algebraic over Q, then |Q(α, β) : Q| <∞, so if γ = α+ β, α− β, αβ or α/β 6= 0,
we get Q(γ) ≤ Q(α, β) and so |Q(γ) : Q| <∞. So γ is algebraic over Q, and so
γ ∈ A. Therefore A = Q̄ is an algebraic closure of Q.

However, if we want to prove existence and uniqueness of algebraic closures in
general, then we need to appeal to Zorn’s lemma (see Logic and Set Theory),
and it’s equivalent to the Axiom of Choice and the Well-Ordering Principle.

Definition. (S,≤) is a partial order on S if:
(i) x ≤ x ∀x ∈ S;
(ii) x ≤ y and y ≤ z =⇒ x ≤ z;
(iii) if x ≤ y and y ≤ x then x = y.

S is totally ordered if for any x, y ∈ S, either x ≤ y or y ≤ x.

A chain in a partially ordered set (S,≤) is a totally ordered subset.

Lemma. (5.5, Zorn’s Lemma (actually an axiom))
If (S,≤) be a non-empty partially ordered set. Suppose that any chain has an
upper bound in S(?). Then S has a maximal element.
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Lemma. (5.6)
Let R be a non-trivial ring with multiplicative unity. Then R has a maximal
ideal.

Proof. Let S be the set of proper ideals of R, so this is non-empty since (0) is
proper as R is non-trivial. We partially order S by inclusion. We know any ideal
I is proper ⇐⇒ 1 6∈ I. Any chain of proper ideals has an upper bound in S,
namely the union of chain. Then apply Zorn’s lemma we know S has a maximal
element, i.e. a maximal ideal of R.

Theorem. (5.7, existence of algebraic closures)
For any field K, there is an algebraic closure.

Proof. Let S = {(f(t), j) f(t) irreducible monic in K[t], 1 ≤ j ≤ deg f}. For
each pair s = (f(t), j), we introduce an indeterminate Xs = Xf,j . Consider

the polynomial ring K[Xs, s ∈ S], and set f̃(t) = f(t) −
∏deg f
i=1 (t − Xf,j) ∈

K[Xs, s ∈ S][t]. Let I / K[Xs, s ∈ S] generated by all the coefficients of all the
f̃(t). Denote the coefficients of f̃(t) by af,l for 0 ≤ l ≤ deg f . We claim that
I 6= K[Xs, s ∈ S].
To prove that, suppose 1 ∈ I and we try to get a contradiction. We have
b1af1,l1 + ...+ bnafN ,lN = 1 in K[Xs, s ∈ S] (+). Let L be a splitting field for

f1(t)...fN (t) (product). For each i, fi splits over L. So fi(t) =
∏deg fi
j=1 (t− αij .

Define aK-linear ring homomorphism, which is identity onK: θ: K[Xs, s ∈ S]→
L by Xfi,j → αi,j , Xs → 0 otherwise. This induces a map K[Xs, s ∈ S]→ L[t].

Then θ(f̃i(t)) = θ(fi(t)) −
∏deg fi
j=1 θ(t − Xfi,j) = fi(t) −

∏deg fi
j=1 (t − αi,j) = 0.

But then θ(afi,j) = 0 since afi,j are the coefficients of f̃i(t). But applying θ
to (+) we get 0 = 1. Contradiction. Then I is a proper ideal of K[Xs, s ∈ S].
By Zorn’s lemma there is a maximal ideal P of K[Xs, s ∈ S] containing I. set
L1 = K[Xs, s ∈ S]/P a field. Thus we have a field extension K ≤ L1. We claim
that L1 is an algebraic closure of K.
We now prove that K ≤ L1 is algebraic. L1 is generated by the images xf,j of

the Xf,j . However f̃(j) has coefficients in I and so its image in L1[t] is the zero
polynomial. Thus in L1[t], f(t) =

∏
(t− xf,j) (*), and so f(xf,j) = 0. Thus the

xf,j are algebraic. Any element of L1 involves only finitely many of the xf,j , and
so is algebraic over K. Moreover, from (*), any f(t) ∈ K[t] splits completely
over L1. The theorem follows from (5.3).

Theorem. (5.8)
Suppose θ : K → L is a ring homomorphism and L is algebraically closed.
Suppose K ≤ M is an algebraic extension. Then θ can be extended to a
homomorphism φ : M → L (i.e. φ|K = θ).

Proof. Let S = {(N,φ) : K ≤ N ≤ M,φ homomorphism N → L extending
θ}. Partially order S by (N1, φ1) ≤ (N2, φ2) if N1 ≤ N2 and φ2|N1

= φ1. S
is non-empty since (K, θ) ∈ S. Now if there is a chain (N1, φ1) ≤ ... then set
N =

⋂
Nλ. This is a subfield of M , and we can define χ : N → L as follows:

if α ∈ N then α ∈ Nλ for some λ and we set ψ(α) = φλ(α). This is well
defined. Thus (N,ψ) is an upper bound for our chain in S. Zorn applies to
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give a maximal element of S (N,φ). We now show N = M . Given α ∈M , it’s
algebraic over K, and hence over N . Let Fα(t) be its minimal polynomial over
N . But φf(t) is in L[t] and so splits completely over L, since L algebraically
closed. So φf(t) = (t − β1)...(t − βr) say. Since φf(βj) = 0, there is a map
N(α) ∼= N [t]/(fα(t))→ L by α→ β1 extending φ. Maximality of (N,φ) implies
that N(α) = N . So α ∈ N . Thus N = M .

Theorem. (5.9, uniqueness of algebraic closure)
If K ≤ L1, K ≤ L2 are two algebraic closures of K, then there exists an
isomorphism φ:L1 → L2.

Proof. By (5.8) there is a homomorphism φ : L1 → L2 extending the embedding
K in L2. Since K ≤ L2 is algebraic, so also is K ≤ φ(L1). But L1 is algebraically
closed and so φ(L1) is algebraicaly closed. So L2 = φ(L1) and φ is an isomorphism.

5.2 Symmetric polynomials and invariant theory

In the build up of the Fundamental Theorem we met Artin’s Theorem (3.3). Let
K ≤ L and H finite subgroup of AutK(L). Let M = LH . Then M ≤ L is a
Galois extension and H = Gal(L/M).

Example. L = K(X1, ..., Xn). Let Sn permute the variables. These permu-
tations induce K-automorphisms of L. By Artin’s theorem, if M = LSn ≤ L
then it is Galois and Gal(L/M) = Sn. Thus Sn is aGalois group of some field
extension. We know that we can regard any finite group G as a subgroup of
some Sn and so we see that any finite group is a Galois group of some field
extension (using Fundamental Theorem).

Now consider f(t) = (t−X1)...(t−Xn) ∈ M [t] = tn − s1tn−1 + ...+ (−1)nsn.
Thus s1 = X1 + ...+Xn, ..., sn = X1...Xn.

Definition. (5.10)
These si are the elementary symmetric polynomials.

Theorem. (5.11)
The fixed field M = LSn = K(s1, ..., sn) and the s1, ..., sn are algebraically
indepndent over K (in L).

Definition. (5.12)
α1, ..., αn are algebraically independent over K if the ring homomorphism
K[Y1, ..., Yn] → K[α1, ..., αn] ≤ L is an isomorphism, where K[Y1, ..., Yn] is
the polynomial ring in Y1, ..., Yn.

Recall Sn acts on K(X1, ..., Xn) by permuting the variables, and we defined
elementary symmetric polynomials last time.

Proof. (of (5.11))
Certainly the si are fixed under Sn. SoM1 = K(s1, ..., sn) ≤M = K(X1, ..., Xn)Sn .
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Observe that L = K(X1, ..., Xn) is the splitting field for f(t) over M1, f(t) =
(t−X1)...(t−Xn), but f(t) has degree n and so the degree of the splitting field
over M1 ≤ n! (extension by adjoining one root is of degree ≤ n, the second
is ≤ n(n − 1), etc). However, Artin’s theorem gives |L : M | = n! = |Sn| and
so M1 = M . For the algebraic independence of s1, ..., sn we make use of the
idea of transcendence bases and transcendence degree: we may consider the
algebraically independent subsets of L and partially order them by inclusion.
Note that the union of a chain is algebraically independent and so an upper
bound Zorn applies to give a maximal algebraically independent subset – tran-
scendence basis. A version of the Exchange lemma implies that these all have
the same cardinality, which is called the transcendence degree, trdegK(L) of
L over K. Note that in our example X1, ..., Xn is a transcendence basis for
L over K, trdegK(L) = n. However L is algebraic over a fixed field M and
so trdegK(L) = trdegK(M). If s1, ..., sn were algebraically independent then
trdegK(M) < n, as M would be algebraic over a subfield generated by fewer
elemnts (using a general lemma trdegK(K(α1, ..., αn) ≤ n). Therefore s1, ..., sn
are algebraically independent.

5.3 Polynomial invariant theory

We study K[X1, ..., XN ]H for a finite group and rather than confining ourselves
to permutations of the variables, we also consider H ≤ GL(V ) where V =
span(X1, ..., Xn).

Questions: (1) Is K[X1, ..., Xn]H finitely generated?
(2) Is K[X1, ..., Xn]H ∼= a polynomial algebra(?)?

Theorem. (5.13)
K[X1, ..., Xn]Sn = K[s1, ..., sn] (we’ve already seen that RHS is∼= to a polynomial
algebra.

Definition. (5.14)
The elements of K[s1, ..., sn] are the symmetric polynomials.

Proof. (of (5.13))
Let f(X1, ..., Xn) ∈ K[X1, ..., Xn]Sn . The proof is by induction on the total
degree of f . If total degree is 0, then f is a constant polynomial, hence in K,
and in K[s1, ..., sn]. Suppose now the total degree > 0. Let θ : K[X1, ..., Xn]→
K[X1, ..., Xn−1] by g(X1, ..., Xn)→ g(X1, ..., Xn−1, 0, so ker θ = ideal generated
by Xn. Since f(X1, ..., Xn) is fixed by Sn, θ(f(X1, ..., Xn)) = f(X1, ..., Xn−1, 0)
is fixed under the subgroup Sn−1 that fixes n. Note that θ(sj(X1, ..., Xn)) =
sj(X1, ..., Xn−1)(elementaray symmetric polynomials) for j ≤ n−1. Application
induction, θ(f(X1, ..., Xn)) = P (S1(X1, ..., Xn−1), ..., sn−1(X1, ..., Xn−1)) where
P denotes the polynomial. So θ(f(X1, ..., Xn)−P (s1(X1, ..., Xn), ..., sn−1(X1, ..., Xn)) =
0, so Xn divides f(X1, ..., Xn)−P (s1(X1, ..., Xn), ..., sn−1(X1, ..., Xn)) (+). But
(+) is a symmetric polynomial so it’s fixed by Sn. Then Xl divides (+) for
lal l. But K[Xl, ..., Xn] has unique factorisation and the Xl are coprime. So
X1...Xn (product) divides (+). So f(X1, ..., Xn) = g(X1, ..., Xn)X1...Xn +
P (s1(X1, ..., Xn), ..., sn−1(X1, ..., Xn)). Observe that the total degree of g <
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total degree of f(X1, ..., Xn), and that g(X1, ..., Xn) is fixed under Sn. Ap-
ply induction to g(X1, ..., Xn) and so it’s a polynomial in the si’s. Thus
f(X1, ..., Xn) ∈ K[s1, ..., sn].

Example. K[X1, ..., Xn]An is generated by s1, ..., sn and

∆(X1, ..., Xn) =
∏
i<j

(Xi −Xj)

Emmy Noether(1920s) considered other subgroups of Sn and showed the invari-
ant rings were Noetherian.
Chevalley-Shepherd-Todd (1954/5): C[X1, ..., Xn]H , H ≤ GL(V ) finite, is iso-
morphic to a polynomial algebrad ⇐⇒ H is generated by pseudoreflections
(1-eigenspace has codimension 1).

—end of course—
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