GRM

Lent 2016/2017

Contents

1	Groups		
	1.1	1.2	3
	1.2	Actions and Permutations	5
	1.3	Conjugacy classes, centralisers and normalisers	5
	1.4	<i>p</i> -groups	7
	1.5	Finite abelian groups	8
	1.6	Sylow's Theorems	8
2	2 Rings		
	2.1	Definitions	13
	2.2	Homomorphisms, ideals, quotients, and isomorphisms	15
	2.3	Integral domains, field of fractions, maximal and prime ideal	19
	2.4	Factorisation in integral domains	21
	2.5	Factorisation in polynomial rings	24
	2.6	Gaussian integers	28
	2.7	Algebraic integers	30
	2.8	Hilbert basis theorem	31
3	Mo	dules	34
	3.1	Definitions and examples	34
	3.2	Direct sums and free modules	37
	3.3	Matrices over Euclidean domains	39
		3.3.1 Structure theorem for finitely-generated abelian groups .	43
		3.3.2 Primary decomposition theorem	44
	3.4	Modules over $F[X]$, and normal forms for matrices $\ldots \ldots$	44
		3.4.1 Rational canonical form theorem	45

1 Groups

$1.1 \quad 1.2$

Definition. A homomorphism is called an *isomorphism* if it is a bijection. Say groups G and H are isomorphic if there exists an isomorphism $\phi : G \to H$ between them, write $G \cong H$.

Exercise: If ϕ is an isomorphism, then the inverse function $\phi^{-1}: H \to G$ is also a homomorphism (so an isomorphism).

Theorem. (First isomorphism theorem) Let $\phi : G \to H$ be a homomorphism. Then $\ker(\phi) \triangleleft G$, $\operatorname{im}(\phi) \leq H$, and $G/\ker(\phi) \cong \operatorname{im}(\phi)$.

Proof. We've done the first two parts. Let $f: G/\ker(\phi) \to \operatorname{im}(\phi)$ by $g \ker(\phi) \to \phi(g)$. f is well-defined: if $g \ker(\phi) = g' \ker(\phi)$ then $g^{-1}g' \in \ker(\phi)$. So $e_H = \phi(g^{-1}g') = \phi(g^{-1}) \cdot \phi(g') = \phi(g)^{-1}\phi(g')$. So $\phi(g) = \phi(g')$. So we have $f(g \ker(\phi)) = f(g' \ker(\phi))$.

f is a homomorphism: $f(g \ker(\phi) \cdot g' \ker(\phi)) = f(gg' \ker(\phi)) = \phi(gg') = \phi(g)\phi(g') = f(g \ker(\phi)) \cdot f(g' \ker(\phi)).$

f is surjective: Let $h \in im(\phi)$, i.e. $h = \phi(g)$ for some g. So $h = f(g \ker(\phi))$.

f is injective: Suppose $f(g \ker(\phi)) = e_H$, i.e. $\phi(g) = e_H$. Then $g \in \ker(\phi)$. So $g \ker(\phi) = e_G \ker(\phi)$.

Example. Consider $\phi : \mathbb{C} \to \mathbb{C} \setminus \{0\}$ by $z \to e^z$. Then ϕ is a homomorphism from $(\mathbb{C}, +, 0)$ to $(\mathbb{C} \setminus \{0\}, \times, 1)$. ϕ is onto because log exists (principal value). We have

 $\ker(\phi) = \{z \in \mathbb{C} | e^z = 1\} = \{2\pi i k \in \mathbb{C} | k \in \mathbb{Z}\} = 2\pi i \mathbb{Z}$

So from first isomorphism theorem we get $(\mathbb{C}/2\pi i\mathbb{Z}, +, 0) \cong (\mathbb{C}\setminus\{0\}, \times, 1).$

Theorem. (Second isomorphism theorem) Let $H \leq G$, $K \triangleleft G$. Then

$$HK = \{x = hk \in G | h \in H, k \in K\}$$

is a subgroup of $G, H \cap K \triangleleft H$, and

$$HK/K \cong H/H \cap K$$

Proof. Let $hk, h'k' \in HK$. Then

$$h'k'(hk)^{-1} = h'k'k^{-1}h^{-1} = h'h^{-1}hk'k^{-1}h^{-1}$$

 $h'h^{-1} \in H$, and $hk'k^{-1}h^{-1} \in K$ since $K \triangleleft G$. So $h'k'(hk)^{-1} \in HK$. So $HK \leq G$.

Then consider $\phi: H \to G/K$ by $h \to hK$. This is a homomorphism (composition of $H \to G \to G/K$). Then

$$\ker(\phi) = \{h \in H | hK = eK\} = H \cap K$$

so $H \cap K$ is normal in H by first isomorphism theorem. Also

$$\operatorname{im}(\phi) = \{gK \in G/K | gK = hK \text{ for some } h \in H\} = HK/K$$

So by first isomorphism theorem, $H/H \cap K \cong HK/K$ as required.

Theorem. (Subgroup correspondence) Let $K \triangleleft G$. There is a bijection between subgroups of G/K and subgroups of G that contain K by: $\leftarrow: L/K \leq G/K \leftarrow K \triangleleft L \leq G$ and $\rightarrow: U \leq G/K \rightarrow \{g \in G | gK \in U\}.$

The same maps give a bijection between normal subgroups of G/K and normal subgroups of G that contain K.

Theorem. (Third isomorphism theorem) Let $K \triangleleft L$, $L \triangleleft G$. Then $(G/K)/(L/K) \cong G/L$.

Proof. Let $\phi: G/K \to G/L$ by $gK \to gL$.

 ϕ is well-defined: if gK = g'K then $g^{-1}g' \in K \leq L$. So $gL = g(g^{-1}g')L = g'L$. ϕ is clearly surjective, and $\ker(\phi) = \{gK \in G/K | gL = eL \iff g \in L\} = L/K$. So by first isomorphism theorem, $(G/K)/(L/K) \cong G/L$.

Definition. A group G is *simple* if its only normal subgroups are $\{e\}$ and G.

Lemma. An abelian group is simple iff it is isomorphic to C_p for prime p.

Proof. In an abelian group, every subgroup is normal. Now let $g \in G$ be non-trivial and consider $H = \{..., g^{-1}, e, g, ...\}$. This is a subgroup of G, so a normal subgroup of G. If G is simple, then since g is non-trivial, this must be equal to G. So G is a cyclic group.

If G is infinite, then it is isomorphic to $(\mathbb{Z}, +, 0)$. But $2\mathbb{Z} \triangleleft \mathbb{Z}$. So this is not simple.

So $G \cong C_n$ for some n. If $n = a \cdot b$ for some $a, b \in \mathbb{Z}$ and $a, b \neq 1$, then G contains $\langle ..., g^{-a}, e, g^a, ... \rangle \cong C_b$ as a proper subgroup. Contradiction.

So n must be a prime number.

Finally, note that C_p for prime p is indeed simple: by Lagrange theorem any subgroup of C_p must have order 1 or p.

1 GROUPS

1.2 Actions and Permutations

Theorem. Let G be a non-abelian simple group, and $H \leq G$ a subgroup of index n > 1. Then G is isomorphic to a subgroup of A_n for $n \geq 5$.

Proof. We let G act on X = G/H, giving $\phi : G \to \text{Sym}(G/H)$. Then $\ker(\phi) \triangleleft G$, so as G is simple, either $\ker(\phi) = G$ or $\ker(\phi) = \{e\}$. But

$$\ker(\phi) = \bigcap_{g \in G} g^{-1} H g \le H$$

a proper subgroup of G; so the first case cannot occur. So $ker(\phi) = \{e\}$.

By 1st isomorphism theorem,

$$G \cong G/\{e\} \cong \operatorname{im}(\phi) = G^X \le \operatorname{Sym}(G/H) \cong S_n$$

Apply 2nd isomorphism theorem to $A_n \triangleleft S_n$, $G^X \leq S_n$. Then $G^X \cap A_n \triangleleft G^X$, $G^X/G^X \cap A_n = G^X A_n/A_n$. As $G^X \cong G$ is simple, $G^X \cap A_n \triangleleft G^X$, so $G^X \cap A_n = \{e\}$ or $G^X \cap A_n = \{e\}$. But if the first case holds, then $G^X \cong G^X A_n/A_n \leq S_n/A_n \cong C_2$, contradicting $G^X \cong G$ being non-abelian. Hence $G^X \cap A_n = G^X$, i.e. $G^X \leq A_n$.

 $n \geq 5$ because A_2, A_3, A_4 have no non-abelian simple subgroups.

Corollary. If G is non-abelian simple, $H \leq G$ is of index n, then $|G| \mid \frac{n!}{2}$. **Definition.** If G acts on X, the *orbit* of $x \in X$ is

$$G \cdot x = \{ y = g * x \in X | g \in G \}$$

and the *stabiliser* of $x \in X$ is

$$G_x = \{g \in G | g \ast x = x\} \le G.$$

Theorem. (Orbit-stabiliser).

If G acts on X, then for any $x \in X$, there is a bijection between $G \cdot x$ and G/G_x by $g * x \to gG_x$, $gG_x \leftarrow y = g * x$.

1.3 Conjugacy classes, centralisers and normalisers

There is an action of G on the set X = G via $g * x := g \cdot x \cdot g^{-1}$.

This gives a map $\phi: G \to \text{Sym}(G)$. Note $\phi(g)(x \cdot t) = g \cdot x \cdot t \cdot g^{-1} = gxg^{-1}gtg^{-1} = \phi(g)(x) \cdot \phi(g)(t)$, i.e. $\phi(g)$ is a group homomorphism. Also it's a bijection (in Sym(G)), so it is an isomorphism.

Let $\operatorname{Aut}(G) = \{f : G \to G | f \text{ is a group isomorphism } \} \leq \operatorname{Sym}(G)$, called the automorphisms of G.

1 GROUPS

We have shown that $\phi: G \to \text{Sym}(G)$ has image in $\text{Aut}(G) \leq \text{Sym}(G)$.

Definition. The conjugacy class of $x \in G$ is $G \cdot x = Cl_G(x) = \{gxg^{-1}|g \in G\}$. The centraliser of $x \in G$ is $G_x = C_G(x) = \{g \in G | gxg^{-1} = x \iff gx = xg\}$. The centre of G is $Z(G) = G_X = \ker(\phi) = \{g \in G | gxg^{-1} = x \forall x \in G\}$. The normaliser of $H \leq G$ is $N_G(H) = \{g \in G | gHg^{-1} = H\}$.

By Orbit-stabiliser theorem, there is a bijection between $Cl_G(x)$ and $G/C_G(x)$. So if G is finite, then $|Cl_G(x)|$ equals the index of $C_G(x) \leq G$ which divides |G|.

Recall (from IA groups) that in S_n ,

(i) everything can be written as a product of disjoint cycles;

(ii) permutations are conjugate iff they have the same cycle type.

Theorem. A_n is simple for $n \ge 5$.

Proof. First, claim A_n is generated by 3-cycles.

Need to show that a product of two transposition is a product of 3-cycles. We have (ab)(bc) = (abc), (ab)(cd) = (acb)(acd).

Let $H \triangleleft A_n$. If H contains a 3-cycle, say (abc).

In S_n , there is a σ so that $(abc) = \sigma^{-1}(123)\sigma$. If $\sigma \in A_n$, then $(123) \in H$. Otherwise, let $\sigma' = (45)\sigma \in A_n$. Then $\sigma(123)\sigma = (abc)$.

So all 3-cycles are in H if one of them is in H. In that case we know $H = A_n$.

So it is enough to show that any $\{e\} \neq H \triangleleft A_n$ contains a 3-cycle.

Case 1: *H* contains $\sigma = (123...r)\tau$ in disjoint cycle notation for some $r \ge 4$. Let $\delta = (123)$ and consider $\sigma^{-1}\delta^{-1}\sigma\delta$. This is in *H*. Evaluate it and we get

$$\sigma^{-1}\delta^{-1}\sigma\delta = \tau^{-1}(r...21)(132)(12...r)\tau(123)$$

= (r...21)(132)(12...r)(123)
= (23r) \in H

is a 3-cycle.

Case 2: *H* contains $\sigma = (123)(456)\tau$ in disjoint cycle notation. Let $\delta = (124)$ and calculate

$$\sigma^{-1}\delta^{-1}\sigma\delta = (132)(465)(142)(123)(456)(124) = (12436)$$

So we've reduced to the first case.

Case 3: *H* contains $\sigma = (123)\tau$, and τ is a product of 2-cycles. Then $\sigma^2 = (132) \in H$.

Case 4: *H* contains $\sigma = (12)(34)\tau$, and τ is a product of 2-cycles. Let $\delta = (123)$, then

$$u = \sigma^{-1} \delta^{-1} \sigma \delta = (12)(34)(132)(12)(34)(123) = (14)(23)$$

Now let v = (152)u(125) = (13)(45). We have $u \cdot v = (14)(23)(13)(45) = (12345)$. So we've reduced to the first case.

So H contains a 3-cycle.

1.4 *p*-groups

A finite group G is a p-group if $|G| = p^n$ for some prime number p.

Theorem. If G is a finite p-group, then $Z(G) \neq \{e\}$.

Proof. The conjugacy classes partition G, and

 $|Cl(x)| = |G/C_G(x)| ||G|$

by Orbit-Stabilizer and Lagrange's Theorem. So |Cl(x)| is a power of p.

We know |G| is the sum of sizes of conjugacy classes. We can write |G| = number of conjugacy classes of size 1 + size of all other conjugacy classes (which is divisible by p). Since p ||G|, the number of conjugacy classes of size 1 is divisible by p. In particular, |Cl(e)| = 1, so there is at least p of such conjugacy classes.

Now note that Z(G) consider all the elements that commutes with all the elements in the group, i.e. they have conjugacy classes of size 1. So $|Z(G)| \ge p$.

Corollary. A group of order p^n , n > 1, is *never* simple.

Lemma. For any group G, if G/Z(G) is cyclic, then G is abelian.

Proof. Let the coset gZ(G) generate the cyclic group G/Z(G). Then every coset is a of the form $g^rZ(G)$, $r \in \mathbb{Z}$. So every element of G is of the form $g^r \cdot z$ for $z \in Z(G)$. Now take

$$(g^{r}z) \cdot (g^{r'}z') = g^{r}g^{r'}zz' = g^{r'}g^{r}z'z = g^{r'}z'g^{r}z$$

So G is abelian.

Corollary. If $|G| = p^2$, p is prime, then G is abelian.

Proof. We know $\{e\} \leq Z(G) \leq G$, so |Z(G)| = p or p^2 . If it's p^2 then G = Z(G) is abelian.

If |Z(G)| = p, then |G/Z(G)| = p. So G/Z(G) is cyclic. So G is abelian.

Theorem. If $|G| = p^a$, then G has a subgroup of order p^b for any $0 \le b \le a$.

1 GROUPS

Proof. Prove by induction on *a*. If a = 1 then done. For a > 1, have $\{e\} \leq Z(G)$. Let $e \neq x \in Z(G)$. Then *x* has order a power of *p*, so we can take some power of *p* that has order *p*, say *z*. Let $C = \langle z \rangle$, a normal subgroup of *G* (since this is inside centre). Now G/C has order p^{a-1} . By induction hypothesis, we may find a subgroup $H \leq G/C$ of order p^{b-1} . Now by subgroup correspondence, this *H* gives some $L \leq G$ that contains *C* (by H = L/C), and $|L| = p^b$.

1.5 Finite abelian groups

Theorem. If G is a finite abelian group, then

$$G \cong C_{d_1} \times c_{d_2} \times \ldots \times C_{d_k}$$

with $d_{i+1}|d_i$ for all i.

We will prove this later, by considering an abelian group as a Z-module.

Example. If |G| = 8 and G is abelian, then G is either C_8 , or $C_4 \times C_2$, or $C_2 \times C_2 \times C_2$.

Lemma. (Chinese Remainder Theorem) If n, m are coprime, then $C_{nm} \cong C_n \times C_m$.

Proof. Let $g \in C_n$ have order $n, h \in C_m$ has order m. Consider x = (g, h) in $C_n \times C_m$. Clearly $x^{nm} = (e, e)$.

Now if $(e, e) = x^r = (g^r, h^r)$, then $n \mid r$ and $m \mid r$. So $nm \mid r$. So the order of x is nm. So $\langle x \rangle \cong C_{nm}$. Then by size we get the desired result.

Corollary. If G is a finite abelian group, then

$$G \cong C_{n_1} \times C_{n_2} \times \dots \times C_{n_l}$$

with each n_i a power of a prime number.

Proof. If $d = p_1 a^1 \dots p_r a^r$ for distinct prime p_i , the lemma shows

$$C_d \cong C_{p_1a^1} \times C_{p_2a^2} \times \ldots \times C_{p_ra^r}$$

Apply this to the theorem.

1.6 Sylow's Theorems

Theorem. (Sylow's) Let $|G| = p^a \cdot m$, with (p, m) = 1, where p is prime. Then (i) The set $Syl_p(G) = \{P \leq G \mid |P| = p^a\}$ of Sylow p-subgroup is not empty. (ii) All elements inf $Syl_p(G)$ are conjugate in G. (iii) The number $n_p = |Syl_p(G)|$ satisfies $n + p \equiv 1 \pmod{p}$ and $n_p \mid |G|$ (i.e. $n_p \mid m$).

Lemma. If $n_p = 1$, then the unique Sylow *p*-subgroup is normal in *G*.

Proof. If $g \in G$, $P \leq G$ the Sylow subgroup, then $g^{-1}Pg$ is a subgroup of order p^a . But P is the only such subgroup.

Note that this tells that, if G is simple, then $n_p \neq 1$; or conversely, if $n_p = 1$ for some p, then G is not simple.

Example. Let $|G| = 96 = 2^5 \cdot 3$. So $n_2 \equiv 1 \pmod{2}$ and $n_2 \mid 3$. So $n_2 = 1$ or 3. Also, $n_3 \equiv 1 \pmod{3}$ and $n_3 \mid 32$. So $n_3 = 1, 4, 16$.

G acts on the set $Syl_p(G)$ by conjugation. So (ii) of the theorem says that this action has 1 orbit. The stabilizer of $P \in Syl_p(G)$, i.e. the normalizer $N_G(P) \leq G$, is of index $n_p = |Syl_p(G)|$.

Corollary. If G is non-abelian simple, then

$$|G| \mid \frac{(n_p)!}{2}.$$

and $n_p \geq 5$.

Proof. $N_G(P)$ has index n_p . So apply the general result about subgroups of non-abelian simple groups (see section 1.2).

Now in the above example, $|G| \nmid \frac{3!}{2}$, so the group G cannot be non-abelian simple. Also it cannot be abelian simple as 96 is not a prime.

Example. Suppose G is a simple group of order $132 = 2^2 \times 3 \times 11$.

We know $n_{11} = 1 \pmod{11}$ and $n_{11}|12$. As G is simple we can't have $n_{11} = 1$, so $n_{11} = 12$.

Each Sylow 11-subgroup has order 11, so is isomorphic to C_{11} , so contains 10 = (11 - 1) elements of order 11. Such subgroups can only intersect in the identity element, so we have 12+10 = 120 elements of order 11. We know $n_3 \equiv 1 \pmod{3}$ and $n_3|44$, so $n_3 = 1, 4$ or 22 but similarly $n_3 \neq 1$. If $n_3 = 4$ then we need $|G| |\frac{4!}{2}|$ which is impossible. So $n_3 = 22$. But then by counting the number of elements we get a contradiction.

Proof of Sylow's Theorems. Let $|G| = p^n \cdot m$. i) Let Ω be the set of subsets of G of order p^n , and let G act on Ω via $g * \{g_1, ..., g_{p^n}\} = \{gg_1, ..., gg_{p^n}\}$. Let $\varepsilon \subset \Omega$ be an orbit for this action. If $\{g_1, ..., g_{p^n}\} = \varepsilon$, then

$$(gg_1^{-1})*\{g_1,...,g_{p^n}\}=\varepsilon=\{g,gg_1^{-1}g_2,...,gg_1^{-1}g_{p^n}\}$$

So for any $g \in G$, there is an element of ε which contains g. So $|\varepsilon| \geq \frac{|G|}{p^n} = m$.

1 GROUPS

If there is some orbit ε with $|\varepsilon| = m$, then the stabilizer G_{ε} has order $\frac{|G|}{|\varepsilon|} = \frac{p^n m}{m} = p^n$, so G_{ε} is a Sylow *p*-subgroup. To show this happens, we must show that it is not possible for *every* orbit of *G* acting on Ω to have size > m.

By orbit-stabilizer, for any orbit ε , $|\varepsilon||p^n \cdot m$, so if $|\varepsilon| > m$, then $p||\varepsilon|$. So if all orbits of G acting on Ω has size > m, then p divides all of them, so $p||\Omega|$.

Let's calculate $|\Omega|$. We have

$$|\Omega| = \binom{p^n m}{p^n} = \prod_{j=0}^{p^n - 1} \frac{p^n m \dots j}{p^n \dots j} (???)$$

The largest power of p dividing $p^n m = j$ is the same as the largest power of p dividing j, which is the same as the largest power of p dividing $p^n = j$. So $|\Omega|$ is not divisible by p.

ii)Let's show something stronger: if $p \in Syl_p(G)$ and Q is a p-subgroup, then there is a $g \in G$ s.t. $g^{-1}Qg \in P$.

Let G act on G/P by $q * g^p = qg^p$. By orbit-stabilizer, the size of an orbit divides $|Q| = p^n$, so is either 1 or divisible by p.

On the other hand, $|G/P| = \frac{|G|}{|P|} = m$ is not divisible by p. So ther must be an orbit of size 1, say $\{g^p\}$, i.e. for every $q \in Q$, $qg^p = g^p$ i.e. $g^{-1}qg \in P \ \forall q \in Q$, i.e. $g^{-1}Qg \leq P$.

(iii) By (ii), G acts on $Syl_p(G)$ by conjugation with one orbit, so by orbitstabilizer, $n_p \equiv |Syl_p(G)| \mid |G|$, which is the second part of (ii).

Example. Consider $GL_2(\mathbb{Z}/p)$. It has order $(p^2 - 1)(p^2 - p) = p(p+1)(p-1)^2$. Let l be an odd prime dividing p-1 once only. Then $l \nmid p$. But also $l \nmid p+1$. So l^2 is the largest power of l dividing $|GL_2(\mathbb{Z}/p)|$, i.e. there is at least a subgroup of order l^2 . We have

$$(\mathbb{Z}/p)^X = \{ x \in \mathbb{Z}/p | \exists g \in \mathbb{Z}/p \text{ s.t. } xy = 1 \in \mathbb{Z}/p \}$$
$$= \{ x \in \mathbb{Z}/p | x \neq 0 \}$$

has size p-1. As a group under *multiplication*, $(\mathbb{Z}/p)^X \cong C_{p-1}$. So there is a subgroup $C_l \leq C_{p-1}$, i.e. we can find a $1 \neq x \in (\mathbb{Z}/p)^X$ so that $x^l = 1$.

Now let

$$H = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in (\mathbb{Z}/p)^X \text{ has order } l \right\} \cong C_l \times C_l$$
$$\leq GL_2(\mathbb{Z}/p)$$

is a Sylow l-subgroup (order l^2).

Example. Consider

$$SL_2(\mathbb{Z}/p) = \ker(\det : GL_2(\mathbb{Z}/p) \to (\mathbb{Z}_p)^X)$$

1 GROUPS

The determinant homomorphism is onto, so $SL_2(\mathbb{Z}/p) \leq GL_2(\mathbb{Z}/p)$ has index (p-1). So $|SL_2(\mathbb{Z}/p)| = (p-1)p(p+1)$.

Now consider

$$PSL_2(\mathbb{Z}/p) := SL_2(\mathbb{Z}/p) / \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \in SL_2(\mathbb{Z}/p) \right\}$$

If $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \in SL_2(\mathbb{Z}/p)$ then $\lambda^2 = 1 \in (\mathbb{Z}/p)^X \cong C_{p-1}$. As long as $p \ge 3$, there are two such λ , +1 and -1. So $|PSL_2(\mathbb{Z}/p)| = \frac{1}{2}(p-1)p(p+1)$.

Let $(\mathbb{Z}/p)_{\infty} = \mathbb{Z}/p \cup \{\infty\}$. Then $PSL_2(\mathbb{Z}/p)$ acts on $(\mathbb{Z}/p)_{\infty}$ by Möbius maps:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * z := \frac{az+b}{cz+d}$$

with the usual convention that if cz + d = 0 then we get ∞ .

Example. Let p = 5, then this action gives a homomorphism $\phi : PSL_2(\mathbb{Z}/p) \to$ Sym $((\mathbb{Z}/5)_{\infty}) \cong S_6$.

We have $|PSL_2(\mathbb{Z}/5)| = \frac{1}{2} \cdot 4 \cdot 5 \cdot 6 = 60.$

Claim. ϕ is injective.

Proof. If $\frac{az+b}{cz+d} = z \ \forall z \in (\mathbb{Z}/p)_{\infty}$, set z = 0 we get b = 0. Set $z = \infty$ we get c = 0. Set z = 1 we get a = d. So $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in PSL_2(\mathbb{Z}/p)$.

Claim. ϕ lands in $A_6 \leq S_6$.

Proof. Consider the composition

$$\psi: PSL_2(\mathbb{Z}/5) \to Sym((\mathbb{Z}/5)_\infty) \cong S_6 \to \{\pm 1\}$$

by ϕ and sgn respectively. We need to show that $\psi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = +1$.

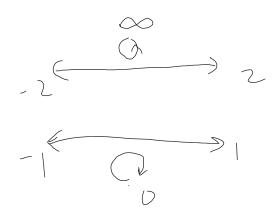
We know that elements of odd order in $PSL_2(\mathbb{Z}/5)$ have to be sent to +1.

Note that $H = \left\{ \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix}, \begin{bmatrix} 0 & \lambda \\ -\lambda^{-1} & 0 \end{bmatrix} \in PSL_2(\mathbb{Z}/5) \mid \lambda \in (\mathbb{Z}/5)^X \right\}$ has order 4 (note that λ and $-\lambda$ represent the same equivalence class as we are in PSL, so there are 2 of each kind), so is a Sylow 2–subgroup of $PSL_2(\mathbb{Z}/5)$. Any element of order 2 or 4 is conjugate to an element in H. We'll show that $\psi(H) = \{+1\}$.

H is generated by $\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Now consider $\begin{bmatrix} 2 & 0 \end{bmatrix}$

$$\begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

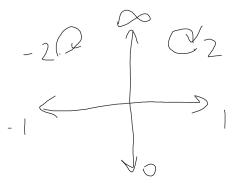
acting on $(\mathbb{Z}/5)_{\infty}$. This sends



so is an even permutation. Then

 $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

sends



is also even. So they are both in A_6 .

2 Rings

In this course we only consider commutative rings with a multiplicative identity. Many of the things we are going to prove in this course will not hold without these two properties.

2.1 Definitions

Definition. A ring is a quintuple $(R, +, \cdot, 0_R, 1_R)$ s.t. (R1) $(R, +, 0_R)$ is an abelian group; (R2) The operation $-\cdot -: R \times R \to R$ is associative, and satisfies $1_R \cdot r = r = r \cdot 1_R$. (R3) $r \cdot (r_1 + r_2) = r \cdot r_1 + r \cdot r_2$, and $(r_1 + r_2) \cdot r = r_1 \cdot r + r_2 \cdot r$ (Distributivity).

A ring is *commutative* if in addition $a \cdot b = b \cdot a \ \forall a, b \in R$.

From now on every ring we discuss will by default be commutative and has a multiplicative identity.

Definition. If $(R, +, \cdot, 0_R, 1_R)$ is a ring ans $S \subset R$ is a subset, then it is called a *subring* if $0_R, 1_R \in S$ and $+, \cdot$ make S into a ring in its own right.

Example. We have $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ as rings with the usual $0, 1, +, \cdot$.

Example. $\mathbb{Z}[i] = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z}\} \leq \mathbb{C}$ is the subring called *Gaussian integers*.

Example. $\mathbb{Q}[\sqrt{2}] = \{a + \sqrt{2} \cdot b \in \mathbb{R} \mid a, b \in \mathbb{Q}\} \leq \mathbb{R}$ is a subring.

Definition. An element $r \in R$ is a *unit* if there is a $s \in R$ s.t. $sr = 1_R$.

Note that this depends not only on the element but only on which ring we are talking about: $2 \in \mathbb{Z}$ is not a unit, but $2 \in \mathbb{Q}$ is.

If every $r \in R$ with $r \neq 0_R$ is a unit, then R is called a field.

Notation. If $x \in R$, write $-x \in R$ for the inverse of x in $(R, +, 0_R)$. We will write y - x = y + (-x).

Example. $0_R + 0_R = 0_R$, so $r \cdot (0_R + 0_R) = r \cdot 0_R$, i.e. $r \cdot 0_R + r \cdot 0_R = r \cdot 0_R$, so $r \cdot 0_R = 0_R$. So if $R \neq \{0\}$, then $0_R \neq 1_R$, and 0_R is never a unit.

However, $(\{0\}, +, \cdot, 0, 0)$ is a valid ring.

Example. If R, S are rings, then $R \times S$ has the state of a ring via componentwise addition and multiplication, with $1 = (1_R, 1_S), 0 = (0_R, 0_S)$.

Note that in this ring, $e_1 = (1_R, 0_S)$, $e_2 = (0_R, 1_S)$, then $e_1^2 = e_1$ and $e_2^2 = e_2$, and $e_1 + e_2 = 1$.

Example. Let R be a ring. A *polynomial* f over R is an expression

$$f = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$

with $a_i \in R$. X^i is just a symbol.

We will consider f and

$$a_0 + a_1 X + \dots + a_n X^n + 0_R \cdot X^{n+1}$$

as equal. The *degree* of f is the largest n s.t. $a_n \neq 0$.

If in addition, $a_n = 1_R$, then we say f is *monic*.

We write R[X] for the set of all polynomials over R.

If $g = b_0 + \ldots + b_m X^m$, then we define addition and multiplication by the usual way:

$$f + g = \sum_{i=0}^{i} (a_i + b_i) X^i$$
$$f \cdot g = \sum_i \left(\sum_{i=0}^{i} a_i b_{i-j} \right) X^i$$

Now consider R as a subring of R[X], given by the polynomials of degree 0. In particular, $1_R \in R$ gives the multiplicative identity element of R[X].

Example. Write R[[x]] for the ring of *formal power series*, i.e.

$$f = a_0 + a_1 X + a_2 X^2 + \dots$$

with the same addition and multiplication.

Consider $\mathbb{Z}/2[X]$ and an element $f = X + X^2$. Then

$$f(0) = 0 + 0 = 0, f(1) = 1 + 1 = 0$$

But definitely $f \neq 0$. So we see the reason why we don't think f as functions despite that they do give functions. They are just elements in a particular ring.

Example. The Laurent polynomials $R[X, X^{-1}]$ is the set of

$$f = \sum_{i \in \mathbb{Z}} a_i X^i$$

s.t. only finitely many a_i are non-zero.

Example. The ring of *Laurent series* are those expressions

$$f = \sum_{i \in \mathbb{Z}} a_i X_i$$

with only finitely many i < 0 s.t. $a_i \neq 0$ (i.e. formal power series in the positive part and polynomial in the negative part). This is to make the sum in each coefficient a finite sum, as we didn't even define infinite sums in rings.

Example. If R is a ring and X is a set, the set R^X of all functions $f: X \to \mathbb{R}$ is a ring, with operations

$$(f+g)(X) = f(X) + g(X),$$

$$(fg)(X) = f(X) \cdot g(X).$$

The multiplicative identity element is the function $1(X) = 1_R$ for all X, and the same for the zero element.

Observe $\mathbb{R}^{\mathbb{R}} \supseteq$ set of continuous $f : \mathbb{R} \to \mathbb{R} \supset$ polynomials $\mathbb{R} \to \mathbb{R} = \mathbb{R}[X]$. So $\mathbb{R}[X] \subseteq \mathbb{R}^{\mathbb{R}}$.

2.2 Homomorphisms, ideals, quotients, and isomorphisms

Definition. A function $\phi: R \to S$ between rings is a homomorphism if (H1) $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$, i.e. ϕ is a group homomorphism between the additive groups of R and S; (H2) $\phi(r_1r_2)\phi(r_1)\phi(r_2)$; (H3) $\phi(1_R) = 1_S$.

If in addition, ϕ is a bijection, then we say it is an *isomorphism*.

The kernel of $\phi: R \to S$ is

$$\ker(\phi) = \{r \in R | \phi(r) = 0\}$$

Lemma. $\phi : R \to S$ is injective if and only if ker $(\phi) = \{0\}$.

Proof. Note that $\phi : (R, +, 0_R) \to (S, +, 0_S)$ is a group homomorphism, and its kernel as a group homomorphism is also ker (ϕ) . So by theorems in groups we get the desired result.

Definition. A subset $I \subset R$ is an *ideal*, written $I \triangleleft R$, if (I1) I is a subgroup of (R, +); (I2) If $x \in I$, $r \in R$, then $x \cdot r \in I$ (strong multiplicative closure).

We say $I \triangleleft R$ is proper if $I \neq R$.

Lemma. If $\phi : R \to S$ is a homomorphism, then $\ker(\phi) \triangleleft R$.

Proof. (I1) holds for ker(ϕ) since ϕ is a group homomorphism.

Now let $x \in \ker(\phi), r \in R$. Then

$$\phi(r \cdot x) = \phi(r) \cdot \phi(x) = \phi(r) \cdot 0_S = 0_S$$

So $r \cdot x \in \ker(\phi)$.

Example. If $I \triangleleft R$ and $1_R \in I$, then for any $r \in R$, we have

 $r = r \cdot 1 \in I,$

so I = R. In short, proper ideals never include 1, so are never subrings.

Example. If R is a field, then $\{0\}$ and R are the only ideals. This is reversible: If $\{0\}$ and R are the only ideals, then R is a field.

Example. In the ring \mathbb{Z} , all ideals are of the form $n\mathbb{Z}$ for some $n \in \mathbb{Z}$, where

$$n\mathbb{Z} = \{..., -2n, -n, 0, n, 2n, ...\}$$

Proof. $n\mathbb{Z}$ is certainly an ideal. Let $I \triangleleft \mathbb{Z}$ be an ideal. Let $n \in I$ be the smallest positive element. Then $n\mathbb{Z} \subset I$. If this is not an equality, choose $m \in I \setminus n\mathbb{Z}$. Then $m = n \cdot q + r$ for some $0 \le r \le n - 1$. If r = 0 then $m \in I$, a contradiction. So

$$r = m - n \cdot q < n$$

is in the ideal I. Contradiction.

Definition. For an element $a \in R$, write

$$(a) = \{a \cdot r | r \in R\}$$

the *ideal generated by a*. More generally, for a list $a_1, ..., a_s$, write

$$(a_1,...,a_s) = \left\{ \sum_i a_i r_i | r_i \in R \right\}$$

which somewhat resembles the linear combinations in a vector space.

Even more generally, if $A \subseteq R$ is a subset, then the ideal generated by A is

$$(A) = \left\{ \sum_{a \in A} a \cdot r_a | r_a \in R, \text{only finitely many } r_a \neq 0 \right\}.$$

since we have no definition of infinite sums in rings.

If an ideal $I \triangleleft R$ is of the form (a), then we say that I is a principal ideal.

Example. In \mathbb{Z} we have

 $n\mathbb{Z} = (n) \triangleleft \mathbb{Z}$

is principal.

Example. In $\mathbb{C}[X]$, the polynomials with constant coefficient 0 forms an ideal, which is just (X) (check). This is also principal.

Proposition. Let $I \triangleleft R$ be an ideal. Define the *quotient ring* R/I to be the set of cosets r + I (i.e. (R, +, 0)/normal subgroup I), with addition and multiplication given by

• $(r_1 + I) + (r_2 + I) = r_1 + r_2 + I$, • $(r_1 + I) + (r_2 + I) = r_1 r_2 + I$, and $0_{R/I} = 0_R + I$, $1_{R/I} = 1_R + I$.

This is a ring, and the quotient map $R \to R/I$ by $r \to r+I$ is a ring homomorphism.

Proof. We already know that (R/I, +, 0) is an abelian group. And addition as described above is well-defined. If $r_1 + I = r'_1 + I$, $r_2 + I = r'_2 + I$, then $r'_1 - r_1 = a_1 \in I$, $r'_2 - r_2 = a_2 \in I$. So

$$r_1'r_2' = (r_1 + a_1)(r_2 + a_2) = r_1r_2 + r_1a_2 + a_1r_2 + a_1a_2 = r_1r_2 + a$$

for some $a \in I$, i.e. $r'_1r'_2 + I = r_1r_2 + I$. So multiplication is well-defined. The ring axioms for R/I then follow from those of R.

Example. $n\mathbb{Z} \triangleleft \mathbb{Z}$, so have a ring $\mathbb{Z}/n\mathbb{Z}$. This has elements $0 + n\mathbb{Z}, 1 + n\mathbb{Z}, 2 + n\mathbb{Z}, ..., (n-1) + n\mathbb{Z}$, and addition and multiplication are modular arithmetic (mod n).

Example. $(X) \triangleleft \mathbb{C}[X]$, so we have a ring $\mathbb{C}[X]/(X)$. Then

 $a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n + (X) = a_0 + (X).$

If $a_0 + (X) = b_0 + (X)$, then $a_0 - b_0 \in (X)$. So $X | a_0 - b_0$, i.e. $a_0 = b_0$.

So consider

$$\phi: \mathbb{C}[X]/(X) \longleftarrow \quad \mathbb{C}$$
$$a + (X) \longleftarrow \quad a$$

is surjective and injective. So ϕ is a bijection.

Observe that ϕ is a ring homomorphism. The inverse is $f + (X) \to f(0)$.

Proposition. (Euclidean algorithm for polynomials) Let F be a field and $f, g \in F[X]$, then we may write

$$f = g \cdot q + r$$

with $\deg(r) < \deg(g)$.

Proof. Let $\deg(f) = n$, so $f = a_0 + a_1X + \dots + a_nX^n$ with $a_n \neq 0$; $\deg(g) = m$, so $g = b_0 + b_1X + \dots + b_mX^m$ with $b_m \neq 0$.

If n < m, let q = 0 and r = f.

Suppose $n \ge m$, and proceed by induction on n, Let

$$f_1 = f - g \cdot X^{n-m} \cdot a_n b_m^{-1}$$

we can do this because F is a field, so b_m has an inverse.

This has degree smaller than n.

If n = m, then $f = gX^{n-m}a_nb_m^{-1} + f_1$ where $\deg(f_1) < n = m$.

If n > m, by induction on degree, we have $f_1 = g \cdot q_1 + r$ with $\deg(r) < \deg(g)$. So $f = gX^{n-m}a_n + b_m^{-1} + g \cdot q_1 + r = g(X^{n-m}b_m^{-1} + q_1) + r$ as required. \Box

Example. Consider $(X^2 + 1) \triangleleft \mathbb{R}[X]$, and $R = \mathbb{R}[X]/(X^2 + 1)$. Elements of R are of the form $f + (X^2 + 1)$. By Euclidean algorithm we have $f = q \cdot (X^2 + 1) + r$ with deg(r) < 2. So $f + (X^2 + 1) = r + (X^2 + 1)$. So every coset is represented by a polynomial r of degree at most 1.

If
$$a_1 + b_1 X + (X^2 + 1) = a_2 + b_2 X + (X^2 + 1)$$
, then
 $X^2 + 1|(a_1 + b_1 X) - (a_2 + b_2 X)$

But by degree we know that $(a_1 + b_1X) - (a_2 + b_2X) = 0$. So take

$$\phi : \mathbb{R}[x]/(X^2 + 1) \to \mathbb{C}$$
$$a + bX + (X^2 + 1) \to a + bi$$

This is a bijection. It sends addition to addition, and multiplication satisfies

$$\begin{split} \phi((a + bX + (X^2 + 1)) \cdot (c + dX + (X^2 + 1))) \\ &= \phi(ac + (bc + ad)X + bdX^2 + (X^2 + 1)) \\ &= \phi(ac + (bc + ad)X + bd(-1) + bd(X^2 + 1) + (X^2 + 1)) \\ &= \phi((ac - bd) + (bc + ad)X + (X^2 + 1)) \\ &= (ac - bd) + (bc + ad)i \\ &= (a + ib)(c + id) \end{split}$$

So ϕ is a homomorphism. So $\mathbb{R}[x]/(X^2+1) \cong \mathbb{C}$.

We also have $\mathbb{Q}[x]/(X^2-2) = \mathbb{Q}[\sqrt{2}] \subseteq \mathbb{R}$.

Theorem. (First isomorphism theorem) Let $\phi : R \to S$ be a ring homomorphism. Then $\ker(\phi) \triangleleft R$, $\operatorname{im}(\phi) \leq S$, and $R/\ker(\phi) \cong \operatorname{im}(\phi)$ by $r + \ker(\phi) \to \phi(r)$.

Theorem. (Second isomorphism theorem) Let $R \subset S$, $J \triangleleft S$. Then $R \cap J \triangleleft R$, $(R+J)/J = \{r+J | r \in R\} \leq S/J$, and $R/R \cap J = (R+J)/J$.

Theorem. (Subring correspondence)

We have a bijection between subrings of R/I and subrings of R containing I by: $S/I \le R/I \leftarrow I \triangleleft S \le R$

 $L \leq R/I \rightarrow \{r \in R | r + I \in L\}$, and the same map gives a bijection between ideals of R/I and ideals of R containing I by

$$J/I \triangleleft R/I \leftrightarrow I \triangleleft J \triangleleft R.$$

Theorem. (Third isomorphism theorem) Let $I, J \triangleleft R, I \subset J$. Then $J/I \triangleleft R/I$ and $(R/I)/(J/I) \cong R/J$.

Example. Consider the homomorphism $\phi : \mathbb{R}[X] \to \mathbb{C}$ by substituting in X = i, which is onto. We know

$$\ker(\phi) = \{ f \in \mathbb{R}[x] | f(i) = 0 \} = (X^2 + 1)$$

because real polynomials with i as a root also have -i as a root. So are divisible by $(X - i)(X + i) = (X^2 + 1)$. Then by first isomorphism theorem,

$$\mathbb{R}[X]/(X^2+1) \cong \mathbb{C}$$

(Compare with the previous proof).

Definition. For any ring R, there is a unique homomorphism

$$\iota: \mathbb{Z} \to \mathbb{R}$$

$$1 \to 1_R$$

$$n > 0 \to 1_R + 1_R + \dots + 1_R \text{ (n times)}$$

$$n < 0 \to -(1_R + 1_R + \dots + 1_R) \text{ ($-n$ times)}$$

Note that $\ker(\iota) \triangleleft \mathbb{Z}$, so $\ker(i) = n\mathbb{Z}$ for some $n \ge 0$. This $n \ge 0$ is called the *characteristic* of the ring R.

Example. $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$ all have characteristic 0, while \mathbb{Z}/n has characteristic n.

2.3 Integral domains, field of fractions, maximal and prime ideal

One thing to remember:

$$Field \implies ED \implies PID \implies UFD \implies ID.$$

The interesting bits start here.

Definition. A non-zero ring R is called an *integral domain (ID)* if for all $a, b \in R$, $a \cdot b = 0 \implies a = 0$ or b = 0.

We call x a zero divisor in R if $x \neq 0$ but $\exists y \neq 0$ s.t. xy = 0.

Example. All fields are integral domains. If xy = 0 with $y \neq 0$, then $xyy^{-1} = 0$ i.e. x = 0.

A subring of an integral domain is an integral domain, so $\mathbb{Z} \leq \mathbb{Q}$ and $\mathbb{Z}[i] \leq \mathbb{C}$ are integral domains.

Definition. A ring R is a *principal ideal domain (PID)* if it is an integral domain and every ideal is principal.

For example, \mathbb{Z} is a principal ideal domain.

Lemma. A finite integral domain is a field.

Proof. Let $a \neq 0 \in R$, and consider

$$\begin{array}{c} a \cdot - : R \to R \\ b \to ab \end{array}$$

This is a homomorphism of abelian groups and its kernel is $\{b \in R | ab = 0\} = \{0\}$. So $a \cdot -$ is injective. But R is finite. So $a \cdot -$ is bijective. In particular, $\exists b \in R$ s.t. ab = 1. So R is a field.

Lemma. Let R be an integral domain, then R[X] is also an integral domain.

Proof. Let $f = \sum_{i=0}^{n} a_i X^i$ and $a_n \neq 0$, $g = \sum_{i=0}^{m} b_i X^i$ and $b_m \neq 0$ be non-zero polynomials. Then the largest power of X in fg is X^{n+m} and its coefficient is $a_n b_m \neq 0$ as R is an ID. So $fg \neq 0$.

Iterating this, we have

$$R[X_1, ..., X_n] = (((R[X_1])[X_2])...[X_n])$$

is an integral domain.

Theorem. Let R be an ID. There is a *field of fractions* F of R with the following properties:

(i) F is a field;

(ii) $R \leq F$;

(iii) every element of F is of the form $a \cdot b^{-1}$ for $a, b \leq R \leq F$.

Proof. Consider

$$S = \{(a, b) \in R \times R | b \neq 0\}$$

with the equivalence relation $(a, b) \sim (c, d) \iff ad = bc \in R$. This is reflexive and symmetric. For transitivity, if

$$(c,d) \sim (e,f)$$

Then $(ad)f = (bc)f = b(cf) = b(ed) \implies d(af - be) = 0$. But $d \neq 0$. So af - be = 0.

Let $F = S / \sim$. Write $[(a, b)] = \frac{a}{b}$ and define

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ab}{cd}$$

and $0 = \frac{0}{1}, 1 = \frac{1}{1}$.

If $\frac{a}{b} \neq 0$ then $a \cdot 1 \neq 0 \cdot b$, i.e. $a \neq 0$. Then $\frac{b}{a} \in F$, so $\frac{a}{b} \cdot \frac{b}{a} = \frac{1}{1}$. So $\frac{a}{b}$ has an inverse, so F is a field.

We make $R \leq F$ by $\phi: R \to F$ by $r \to \frac{r}{1}$.

Example. The field of fractions of \mathbb{Z} is \mathbb{Q} , and that of $\mathbb{C}[z]$ is the rational polynomial fractions in z.

Note: the ring $\{0\}$ is *not* afield.

Lemma. A (non-zero) ring is a field iff its only ideals are $\{0\}$ and R.

Proof. If $I \triangleleft R$ is a non-zero ideal, then it contains $a \neq 0$. But an ideal containing a unit must be the whole ring. On the other hand, let $x \neq 0 \in R$, Then (x) must be R, as it is *not* the zero ideal. So $\exists y \in R$ s.t. $xy = 1_R$. So X is a unit. \Box

Definition. An ideal $I \triangleleft R$ is *maximal* if there is no proper ideal which properly contains I.

Lemma. An ideal I is maximal iff R/I is a field.

Proof. R/I is a field $\iff I/I$ and R/I are the only ideals in $R/I \iff I, R \ triangleleft$ are the only ideals containing I by ideal correspondence. \Box

Definition. An ideal $I \triangleleft R$ is *prime* if I is proper, and if $a, b \in R$ are s.t. $a \cdot b \in I$, then $a \in I$ or $b \in I$.

Example. The ideal $n\mathbb{Z} \triangleleft \mathbb{Z}$ is prime if and only if n is zero and a prime number: if p is prime and $a \cdot b \in p\mathbb{Z}$, then $p|a \cdot b$, so p|a or p|b, i.e. $a \in p\mathbb{Z}$ or $b \in p\mathbb{Z}$.

Conversely, if n = uv is composite, $u \cdot v \in n\mathbb{Z}$ but $u, v \notin n\mathbb{Z}$.

Lemma. $I \triangleleft R$ is prime iff R/I is an integral domain. Note that this shows that every maximal ideal is prime since fields are integral domains.

Proof. Suppose I is prime. Let $a + I, b + I \in R/I$ be s.t. (a + I)(b + I) = 0, i.e. ab + I = 0, so $ab \in I$. But I is prime, so $a \in I$ or $b \in I$. So a + I = 0 + I or b + I = 0 + I is the zero element in R/I. So R/I is an integral domain.

For the other direction, suppose R/I is an integral domain. Let $ab \in I$. Then ab + I = 0, so (a + I)(b + I) = 0. So a + I = 0 + I or b + I = 0 + I, i.e. $a \in I$ or $b \in I$.

Lemma. If R is an integral domain, then its characteristic is 0 or a prime number.

Proof. Let $\iota : \mathbb{Z} \to R$ with $1 \to 1_R$. Consider ker $(\iota) = n\mathbb{Z}$. By 1st isomorphism theorem, $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{im}(\phi) \leq R$ as a subring of an integral domain is again an integral domain, $Z/n\mathbb{Z}$ is an integral domain, so $n\mathbb{Z} \triangleleft \mathbb{Z}$ is prime. So n is zero or a prime number. \Box

2.4 Factorisation in integral domains

Suppose throughout this section that R is an integral domain.

Definition. 1) An element $a \in R$ is a unit if there is $b \in R$ s.t. ab = 1. Equivalently, (a) = R.

2) a divides b if there is $c \in R$ s.t. $b = a \cdot c$. Equivalently, $(b) \subset (a)$.

3) $a, b \in R$ are associates if $a = b \cdot c$ with c a unit. Equivalently, (a) = (b), or a|b and b|a.

4) $a \in R$ is irreducible if it is not 0, not a unit, and if $a = x \cdot y$ then x or y is a unit.

5) $a \in R$ is prime if it is not 0, not a unit, and when $a|x \cdot y$ then a|x or a|y.

Note that $2 \in \mathbb{Z}$ is prime, but $2 \in \mathbb{Q}$ is not. $2x \in \mathbb{Q}[x]$ is irreducible, $2x \in \mathbb{Z}[x]$ is not irreducible.

Lemma. (a) is a prime ideal in $R \iff r = 0$ or r is prime in R.

Proof. 1) let (r) be a prime, $r \neq 0$. As $(r) \neq R$, r is not a unit. Suppose $r|a \cdot b$. Then $a \cdot b \in (r)$, but (r) is prime. So $a \in (r)$ or $b \in (r)$. So r|a or r|b. So r is prime in R. 2) if r = 0 then (0) is a prime ideal since R is an integral domain. Now let $r \neq 0$ and be prime in R.

Let $ab \in (r)$. Then r|ab. So r|a or r|b. So $a \in (r)$ or $b \in (r)$. So (r) is a prime ideal in R.

Lemma. if $r \in R$ is prime, then it is irreducible.

Proof. let $r \in R$ be prime, and suppose $r = a \cdot b$. As r is prime, r|a or r|b. Suppose r|a. So $a = r \cdot c$. Then $r = r \cdot c \cdot b$. As R is an integral domain, $r(c \cdot b - 1) = 0 \implies c \cdot b = 1$. So b is a unit. So r is irreducible.

Example. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} | a \cdot b \in \mathbb{Z}\} \subseteq \mathbb{C}$. \mathbb{C} is a field and R is a subring, so R is an integral domain. Consider the "norm":

$$\begin{split} N: R \to \mathbb{Z} &\geq 0\\ a + b\sqrt{-5} \to a^2 + 5b^2\\ z \to z\overline{z} &= |z|^2. \end{split}$$

This satisfies $N(zw) = N(z) \cdot N(w)$. If $r \cdot s = 1$ then $1 = N(1) = N(r \cdot s) = N(r) \cdot N(s)$. So N(s) = N(r) = 1. So any unit has normal 1. i.e. $a^2 + 5b^2 = 1$. Then $a = \pm 1, b = 0$: only $\pm 1 \in R$ are units. **Claim**: $2 \in R$ is irreducible: Suppose 2 = ab. Then 4 = N(a) N(b). Note that nothing in R has norm 2. So WLOG N(a) = 1, N(b) = 4. So a is a unit. So 2 is irreducible. Similarly $3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are irreducible (no r with N(r) = 3). Note that $(1 + \sqrt{-5}) (1 - \sqrt{-5}) = 6 = 2 \cdot 3$. **Claim**: 2 does not divide $1 \pm \sqrt{-5} \Longrightarrow 2$ is not prime: if $2|1 + \sqrt{-5}$, then $N(2)|N(1 + \sqrt{-5})$, i.e. 4|6, contradiction. **Lessons**: 1) irreducible doesn't imply prime in general. 2) $(1 + \sqrt{-5}) (1 - \sqrt{-5}) = 2 \cdot 3$. So factorisation into irreducibles might not be unique.

Definition. an integral domain R is a *Euclidean domain*(ED) if there is a function $\varphi : R \setminus \{0\} \to \mathbb{Z} \ge 0$, a "Euclidean function", such that: 1) $\varphi (a \cdot b) \ge \varphi (b)$ for all $a, b \ne 0$;

2) if $a, b \in R$ with $b \neq 0$, there are $q, r \in R$ s.t. $a = b \cdot q + r$, such that r = 0 or $\varphi(r) < \varphi(b)$ (r is "strictly smaller than" b).

Example. 1) \mathbb{Z} is a Euclidean domain with $\varphi(n) = |n|$. 2) F[x] with F a field is a Euclidean domain with $\varphi(f) = \deg(f)$. 3) $\mathbb{Z}[i] = R$ is Euclidean domain, with $\varphi(z) = N(z) = |z|^2 = z\overline{z}$: i) $\varphi(zw) = \varphi(z)\varphi(w) \ge \varphi(z)$, as $\varphi(w) \in \mathbb{Z}^+$ for $w \ne 0$;

ii) let $a, b \in \mathbb{Z}[i]$. Consider $\frac{a}{b} \in \mathbb{C}$. We know that $\exists q \in \mathbb{Z}[i]$ s.t. $|\frac{a}{b} - q| < 1$, i.e. $\frac{a}{b} = q + c$ with |c| < 1. Then take $r = b \cdot c$, so $a = b \cdot q + b \cdot c = b \cdot q + r$. r = a - bq, so r is in the ring $\mathbb{Z}[i]$; and $\varphi(r) = N(bc) = N(b) N(c) < N(b) = \varphi(b)$ since N(c) < 1.

Proposition. (ED \implies PID)

if R is a Euclidean domain, then it is a principal ideal domain.

Proof. Let R have Euclidean function $\varphi : R \setminus \{0\} \to \mathbb{Z} \ge 0$. Let $I \triangleleft R$ be non-zero. Let $b \in I \setminus \{0\}$ be an element with $\varphi(b)$ minimal. Then for $a \in I$, write a = bq + r with r = 0, or $\varphi(r) < \varphi(b)$. But $r = a - bq \in I$,

so we can't have $\varphi(r) < \varphi(b)$. So r = 0. Thus $a \in (b)$. Since a is arbitrary, $I \subset (b)$. But $(b) \in I$ as well, so I = (b). So R is a principal ideal domain.

Example. $\mathbb{Z}, F[X](F \text{ field})$ are Principal ideal domains.

 $\mathbb{Z}[i]$ is a PID. In $\mathbb{Z}[X]$, $(2, x) \triangleleft \mathbb{Z}[X]$ is not a principal ideal. Otherwise suppose (2, x) = (f), then $2 = f \cdot g$ for some g. Then f has to have degree zero, so a constant, so $f \pm 1$ or ± 2 . If $f = \pm 1$ a unit, then $(f) = \mathbb{Z}[x]$, but $1 \notin (2, x)$. Contradiction. If $f = \pm 2$, $x \in (2, x) = (f)$ so $\pm 2|x$, a contradiction.

Example. Let $A \in M_{n \times n}(F)$ be an $n \times n$ matrix over a field F. $I = \{f \in F[X] | f(A) = 0\}.$ If $f \cdot g \in I, (f + g)(A) = f(A) + g(A) = 0 + 0 = 0.$ If $f \in I, g \in F[X]$ then $(f \cdot g)(A) = f(A) \cdot g(A) = 0$ So I is an ideal. So F[X] is a PID, have I = (m) for some $m \in F[X].$ Suppose $f \in F[X]$ s.t. f(A) = 0. Then $f \in I$ so $f = m \cdot g$. So m is the minimal polynomial of A.

Definition. An integral domain is a unique factorization domain (UFD) if: 1) every non-unit may be written as a product of irreducible elements; 2) if $p_1p_2...p_n = q_1q_2...q_m$ with p_i, q_i irreducible, then n = m, and they can be reordered such that p_i is an associate of q_i . (they generate the same ideal)

Goal: want to show that PID \implies UFD.

Lemma. Let R be a PID. If $p \in R$ is irreducible, then it is prime. (prime \implies irreducible in any integral domain)

Proof. Let $p \in R$ be irreducible. Suppose $p | a \cdot b$. Suppose $p \nmid a$. Consider the ideal $(p, a) \triangleleft R$, a PID so (p, a) = (d) for some $d \in \mathbb{R}$. So d | p, so $p = q_1 \cdot d$ for some q_1 . We must have q_1 a unit or d a unit. If q_1 a unit then $d = q_1^{-1} \cdot p$ divides a. So $a = q_1 \cdot p \cdot x$, contradiction. Thus d is a unit, so (p, a) = (d) = R. So we have $1_R = v \cdot p + s \cdot a$ for some $r, s \in R$. So $b = r \cdot p \cdot b + s \cdot a \cdot b$. So p|b.

Lemma. Let R be a PID, let $I_1 \in I_2 \in ...$ be a chain of ideals. Then there is a $N \in \mathbb{N}$ s.t. $I_n = I_{n+1} \forall n \geq \mathbb{N}$.(this is called the ascending chain condition(ACC), a ring satisfying this condition is called *Noetherian*.)

Proof. Let $I = \bigcup_{n\geq 1}^{\infty} I_n$, again an ideal. As R is a PID, I = (a) for some $a \in R$. This $a \in I = \bigcup_{n=0}^{\infty} I_n$, so $a \in I_n$ for some n. Thus $(a) \leq I_n \leq I = (a)$. So they are all equal. So $I_n = (a) = I$, so $I_n = I_N \forall n \geq N$.

Proposition. PID \implies UFD.

Proof. 1) Need to show any $r \in R$ is a product of irreducibles. Let $r \in R$. If r is irreducible then we are done. Suppose not, then $r = r_1 s_1$ with r_1, s_1 both non-units. If both r_1, s_1 are reducible then we are done. Suppose not, WLOG write $r_1 = r_2 s_2$ with r_2, s_2 non-units. Continue in this way. If the process doesn't end, $(r) \leq (r_1) \leq \ldots \leq (r_n) \leq \ldots$ So by the ACC property, $(r_n) = (r_{n+1}) = \dots$ for some n. So $r_n = r_{n+1} \cdot s_{n+1}$, and $(r_n) = (r_{n+1}) \implies s_{n+1}$ is a unit. Contradiction. 2) Let $p_1p_2...p_n = q_1q_2...q_n$ with p_i, q_i irreducible. So $p_1|q_1...q_n$. In a PID, irreducible \iff prime. So p_1 divides some q_i , reorder to suppose $p_1|q_1$. So $q_1 = p_1 \cdot a$. But as q_1 is irreducible, a must be a unit. So $p_1 and q_1$ are associates. Cancelling p_1 gives: $p_2p_3...p_n = (aq_2)q_3...q_n$ and we continue. This also shows n = m, else if n = m + k then get $p_{k+1}...p_n = 1$ a contradiction.

Definition. d is a greatest common divisor of $a_1, a_2, ..., a_n$ if $d|a_i$ for all i, and if $d'|a_i$ for all i then d'|d.

Lemma. If *R* is a UFD then the gcd exists, and is unique up to associates.

Proof. Every a is a product of irreducibles, so let $p_1, p_2, ..., p_m$ be a list of all the irredcibles which are factors of a_i , none of them is associate of each other. Write $a_i = u_i \prod_{j=1}^m p_j^{n_{ij}}$ for u_i units and $n_{ij} \in \mathbb{N}$. Let $m)j = \min_i (n_{ij})$ and $d = \prod_{j=1}^m p_j^{m_j}$. As $m_j \leq n_{ij} \forall i, d | a_i$ for all i. If $d' | a_i \forall i$, let $d' = v \prod_{j=1}^m p_i^{t_j}$. Then we must have $t_j \leq n_{ij} \forall i$ so $t_j \leq m_j \forall j$. Then d' | d.

2.5 Factorisation in polynomial rings

For F a field, we know F[x] is a Euclidean Domain(ED), so a PID, so a UFD. So 1) $I \triangleleft F[x] \implies I = (f)$.

2) $f \in F[x]$ irreducible $\iff f$ prime. 3) Let $f \in F[x]$ be irreducible, and $(f) \leq J \leq F[x]$. Then J = (g) and $(f) \subset (g)$ so $f = g \cdot h$. But f is irreducible, so g or h is a unit. If g is a unit, then (g) = F[x]; If h is a unit, then (f) = (g). So (f) is a maximal ideal. 4) (f) prime ideal $\implies f$ prime *implies f* reducible $\implies (f)$ is maximal.

So in F[x], prime ideals are the same as maximal ideals.

5) f is irreducible if and only if F[x]/(f) is a field.

Definition. Let R be a UFD and $f = a_0 + a_1 X + ... + a_n X^n \in R[x]$ with $a_n \neq 0$. Let the *content* c(f) of f is the gcd of all the coefficients in R, unique up to associates. Say f is *primitive* if c(f) is a unit, i.e. the a_i are coprime.

Lemma. (Gauss') Let R be a UFD, $f \in R[x]$ be a primitive polynomial. Then f is irreducible in $R[x] \iff f$ is irreducible in F[x], where F is the field of fractions of R.

Example. Consider $f = x^3 + x + 1 \in \mathbb{Z}[x]$. This has content 1 so is primitive. Suppose f is reducible in $\mathbb{Q}[x]$. Then by Gauss' lemma f is reducible in $\mathbb{Z}[x]$ too, so $x^3 + x + 1 = g \cdot h$ for $g, h \in \mathbb{Z}[x]$, both g and h are not units. Neither g nor h can be constant, so they both have degree at least 1. So WLOG suppose g has degree 1 and h as degree 2.

So $g = b_0 + b_1 x$, $h = c_0 + c_1 x + c_1 x^2$.

Multiplying them gives $b_0c_0 = 1$, $c_2b_1 = 1$ so b_0 and b_1 are both ± 1 . So g is 1 + x or 1 - x or -1 + x or -1 - x, so has ± 1 as a root. But f doesn't have ± 1 as a root. Contradiction.

Note that from this we can know that f has not no root in \mathbb{Q} .

Lemma. Let R be a UFD. If $f, g \in R[x]$ are primitive, then $f \cdot g$ is primitive too (Note that we don't know whether R[x] is a UFD or not).

Proof. Let $f = a_0 + a_1x + ... + a_nx^n$ with $a_n \neq 0$, $g = b_0 + b_1x + ... + b_mx^m$ with $b_m \neq 0$ be both primitive. Suppose $f \cdot g$ is not primitive. Then c(fg) is not a unit, so let p be an irreducible which divides c(fg). By assumption c(f) and c(g) are units, so $p \nmid c(f)$ and $p \nmid c(g)$. Suppose $p|a_0, p|a_1, ..., p|a_{k-1}$, but $p \nmid a_k$; $p|b_0,...,p|b_{l-1}$, but $p \nmid b_l$. Look at coefficient of x^{k+l} in $f \cdot g$: $\dots + a_{k+1}b_{l-1} + a_kb_l + a_{k-1}b_{l+1} + \dots = \sum_{i+j=k+l} a_ib_j$. As p|c(fg), we have $p|\sum_{i+j=k+l} a_ib_j$. We see that the only term that might not be divisible by p is a_kb_l . So $p|a_kb_l$. p is irreducible (so prime), so $p|a_n$ or $p_b|l$. Contradiction.

Corollary. let R be a UFD. Then for $f, g \in R[x]$ we have that $c(f \cdot g)$ is an associate of c(f) c(g).

Proof. We can always write $f = c(f) f_1, g = c(g) g_1$ with f_1, g_1 being primitive. Then $f \cdot g = c(f) c(g) (f_1 \cdot g_1)$. So c(f) c(g) is a gcd of coefficients $f \cdot g$, so is c(fg) (up to associates).

Proof. (Gauss' lemma)

We will show that a primitive $f \in R[x]$ is reducible in $R[x] \iff$ it is reducible in F[x].

1) Let $f = g \cdot h$ be a product in R[x], g, h not units. As f is primitive, so are g and h. So both have degree at least 1.

So g, h are not units in F[x] either, so f is reducible in F[x].

2) Let $f = g \cdot h$ in F[x], g and h not units. So g and h have degree at least 1. We can find $a, b \in \mathbb{R}$ s.t. $a \cdot g \in \mathbb{R}[x]$ and $b \cdot h \in \mathbb{R}[x]$ (clear the denominators). Then $a \cdot b \cdot f = (a \cdot g) (b \cdot h)$ is a factorisation in $\mathbb{R}[x]$.

Let $(a \cdot g) = c (a \cdot g) \cdot g_1$ with g_1 primitive, $(b \cdot h) = c (b \cdot h) \cdot h_1$ with h_1 primitive. So $a \cdot b = c (a \cdot b \cdot f)$

$$a \cdot b = c (a \cdot b \cdot f)$$

= c ((a \cdot g) (b \cdot h))
= u \cdot c (a \cdot g) \cdot c (b \cdot h)

by the previous corollary, where $u \in R$ is a unit. But also $a \cdot b \cdot f = c (a \cdot g) \cdot c (b \cdot h) \cdot g_1 \cdot h_1$. So cancelling $a \cdot b$ gives $f = u^{-1}g_1h_1 \in R[x]$, so f is reducible in R[x].

Proposition. Let R be a UFD, $g \in R[x]$ be primitive. Let $J = (g) \triangleleft R[x], I = (g) \triangleleft F[x]$. Then $J = I \cap R[x]$. (More plainly, if $f = g \cdot h \in R[x]$ with $h \in F[x]$ then $f = g \cdot h'$ with $h' \in R[x]$.

Proof. Certainly $J \subseteq I \cap R[x]$. Let $f \in I \cap R[x]$, so $f = g \cdot h$ with $h \in F[x]$. Choose $b \in R$ s.t. $b \cdot h \in R[x]$ (clear denominators). Then $b \cdot f = g \cdot (bh) \in R[x]$. Let $(b \cdot h) = c (b \cdot h) \cdot h_1$ for h_1 primitive. Then $b \cdot f = c (b \cdot h) \cdot g \cdot h_1$. So $c (bf) = u \cdot c (bh)$ for u a unit since $g \cdot h_1$ is primitive. But $c (b \cdot f) = b \cdot c (f)$. So b|c (bh). $c (bh) = b \cdot c \in R$. So $b \cdot f = b \cdot cgh_1$, cancelling b gives $f = g (ch_1)$. So g divides f in R[x].

Theorem. If R is a UFD, then R[x] is a UFD.

Proof. Let $f \in R[x]$. We can write $f = c(f) \cdot f_1$ with f_1 primitive. Firstly, As R is a UFD, we may factor $c(f) = p_1 p_2 \dots p_n$ for $p_i \in R$ irreducible, (so also irreducible in R[x]).

If f_1 is not irreducible, write $f_1 = f_2 f_3$ with f_2 and f_3 both not units, so f_2 and f_3 must both have non-zero degree(since f_1 is primitive, they can't be constant). Also deg (f_2) , deg $(f_3) < \text{deg}(f_1)$.

If f_2, f_3 are irreducible then done. Else continue factoring. At each stage the degree of factors strictly decreases, so we must finish: $f_1 = q_1q_2...q_m$ with q_i irreducible.

So $f = p_1 p_2 \dots p_n q_1 q_2 \dots q_m$ is a product of irreducibles.

For uniqueness, first note that $c(f) = p_1 p_2 \dots p_n$ is a unique factorisation up to reordering and associates, as R is a UFD. So cancel this off to obtain $f_1 = q_1 \dots q_m$. So suppose $q_1 q_2 \dots q_m = r_1 r_2 \dots r_l$ is another factorisation of f_1 .

Note that each q_i and each r_i is a factor of the primitive polynomial f_1 , so each of them must be also primitive.

Let F be the field of fractions of R, and consider $q_i, r_i \in F[x]$ instead. Now F[x] is a ED, hence PID, hence UFD. By Gauss' lemma, the q_i and r_i are irreducible in F[x]. As F[x] is a UFD we find that l = m; and after reordering $r_i = u_i q_i$ with $u_i \in F[x]$ a unit.

Firstly $u_i \in F$ since it is a unit.

Clear denominators of u_i , we find that $a_i r_i = b_i q_i \in R[x]$.

So taking contents shows that a_i and b_i are associates. So $b_i = v_i a_i$ with $v_i \in R$ a unit.

Cancelling a_i gives $r_i = v_i q_i$ as required.

Example. $\mathbb{Z}[x]$ is a UFD. R is a UFD $\implies R[x_1, x_2, ..., x_n]$ is a UFD.

Theorem. (Eisenstein's criterion) Let R be a UFD, let

$$f = a_0 + a_1 x + \dots + a_n x^n \in R[x]$$

have $a_n \neq 0$ and f primitive. Let $p \in R$ be irreducible (=prime, since R is a UFD) such that:

p ∤ a_n;
 p |a_i for 0 ≤ i ≤ n − 1;
 p² ∤ a₀.
 Then f is irreducible in R[x], so also irreducible in F[x] by Gauss' lemma.

 $\begin{array}{l} Proof. \mbox{ Suppose } f=g \cdot h \mbox{ with } \\ g=r_0+r_1x+\ldots+r_kx^k \mbox{ with } r_k \neq 0, \\ h=s_0+s_1x+\ldots+s_lx^l \mbox{ with } s_l\neq 0. \\ \mbox{ Now } r_ks_l=a_n, \mbox{ and } p \nmid a_n \mbox{ so } p \nmid r_k \mbox{ and } p \nmid s_l. \\ \mbox{ Also } r_0s_0=a_0, \mbox{ and } p \mid a_0 \mbox{ but } p^2 \nmid a_0. \mbox{ So WLOG let } p \mid r_0 \mbox{ but } p \nmid s_0. \\ \mbox{ Let } j \mbox{ be such that } p \mid r_0, p \mid r_1, \ldots, p \mid r_{j-1}, p \nmid r_j. \\ \mbox{ Then } a_j=r_0s_j+r_1s_{j-1}+\ldots+r_{j-1}s_1+r_js_0. \mbox{ All but the last term are divisible } \\ \mbox{ by } p, \mbox{ and } r_js_0 \mbox{ is not divisible by } p \mbox{ since both } r_j \mbox{ and } s_0 \mbox{ are not divisible by } p. \\ \mbox{ So } p \nmid a_j. \mbox{ By condition (1) and (2) we must have } j=n. \mbox{ Also we have } j \leq k \leq n, \\ \mbox{ so } j=k=n. \mbox{ That means } l=n-k=0, \mbox{ so } h \mbox{ is a constant.} \end{array}$

But f is primitive, it follows that h must be a unit. So f is irreducible. \Box

Example. Consider $x^n - p \in \mathbb{Z}[x]$ for p prime. Apply Eisenstein's criterion with p, we find that all the conditions hold. So $x^n - p$ is irreducible in $\mathbb{Z}[x]$, and so in $\mathbb{Q}[x]$ as well by Gauss' lemma.

This implies that $x^n - p$ has no roots in \mathbb{Q} . So $\sqrt[n]{p} \notin \mathbb{Q}$.

Example. Consider $f = x^{p-1} + x^{p-2} + \ldots + x^2 + x + 1 \in \mathbb{Z}[x]$ with p a prime number.

Note $f = \frac{x^{p-1}}{x-1}$, so let y = x - 1. Then $\hat{f}(y) = \frac{(y+1)^{p-1}}{y} = y^{p-1} + {p \choose 1}y^{p-2} + \dots + {p \choose p-1}$. Now $p|{p \choose i}$ for $1 \le i \le p-1$, but $p^2 \nmid {p \choose p-1} = p$.

So by Eisenstein's criterion, \hat{f} is irreducible in $\mathbb{Z}[x]$. Now if $f(x) = g(x) \cdot h(x) \in \mathbb{Z}[x]$, then get $\hat{f}(y) = g(y+1) \cdot h(y+1)$ a factorisation in $\mathbb{Z}[y]$. So f is irreducible.

2.6Gaussian integers

Recall $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\} \leq \mathbb{C}$ is the swq Gaussian integers. The norm $N(a+ib) = a^2 + b^2$ serves as a Euclidean function for $\mathbb{Z}[i]$. So it is a ED, so a PID, so a UFD. The units are precisely ± 1 and $\pm i$.

Example. 1) 2 = (1 + i)(1 - i), so not irreducible, so not prime. 2) 3: N(3) = 9, so if $3 = u \cdot v$ with u, v not units, then 9 = N(u) N(v) with $N(u) \neq 1 \neq N(v)$. So N(u) = N(v) = 3. But $3 = u^2 + v^2$ has no solutions with $a, b \in \mathbb{Z}$. So 3 is irreducible, so a prime. 3) 5 = (1+2i)(1-2i) is not irreducible, so not prime.

Proposition. A prime number $p \in \mathbb{Z}$ is prime in $\mathbb{Z}[i] \iff p \neq a^2 + b^2$ for $a, b \in \mathbb{Z} \setminus \{0\}.$

Proof. If $p = a^2 + b^2 = (a + ib)(a - ib)$ then it is not irreducible, so not prime. If $p = u \cdot v$, then $p^2 = N(u) N(v)$. So if u, v are not units, then N(u) = N(v) = psince p is prime in \mathbb{Z} . Writing u = a + ib, this says $a^2 + b^2 = p$.

Lemma. Let p be a prime number, $F_p = \mathbb{Z}/p\mathbb{Z}$ a field with p elements. Let $F_p^*=F_p\backslash \{0\}$ be the group of invertible elements under multiplication. Then $F_p^*\cong C_{p-1}.$

Proof. Certainly F_p^* has order p-1, and is abelian. Know classification of finite abelian groups, it follows that if F_p^* is not cyclic, then it must contain a subgroup $C_m \times C_m$ for m > 1. Consider the polynomial $X^m - 1 \in F_p[x]$, a UFD. At best this factors into mlinear factors, so $X^m - 1$ has at most m distinct roots. If $C_m \times C_m \leq F_p^*$, then we have m^2 elements of F_p which are roots of $X^m - 1$. But $m^2 > m$, contradiction. So F_p^* is cyclic.

Proposition. The primes in $\mathbb{Z}[i]$ are, up to associates, 1) prime numbers $p \leq \mathbb{Z} \leq \mathbb{Z}[i]$ s.t. $p \equiv 3 \mod 4$; 2) $z \in \mathbb{Z}[i]$ with $N(z) = z\overline{z} = p$ for p prime, p = 2 or $p \equiv 1 \mod 4$.

Proof. 1) If $p \equiv 3 \mod 4$ then $p \neq a^2 + b^2$. By the previous proposition, $p \in \mathbb{Z}[i]$ is prime. 2) If N(z) = p and z = uv, then N(u) N(v) = p. So N(u) = 1 or N(v) = 1, so u or v is a unit.Let $z \in \mathbb{Z}[i]$ be irreducible (also prime). Then \overline{z} is irreducible, so $N(z) = z\overline{z}$ is a factorisation of N(z) into irreducibles.

• Case 1: $p \equiv 3 \mod 4$. Then $p \in \mathbb{Z}[i]$ is prime by the first part of the proof. $p|N(z) = z\overline{z}$ so p|z or $p|\overline{z}$. So perhaps conjugating, get p|z. But both are irreducible, so p and z are associates.

• Case 2: p = 2 or $p \equiv 1 \mod 4$. If $p \equiv 1 \mod 4$ then p - 1 = 4k for some k. As $F_p^* \cong C_{p-1} = C_{4k}$, there is a unique element of order 2, which must be $[-1] \in F_p$. Let $[a] \in F_p^*$ be an element of order 4. Then $[a^2] = [-1]$. So $a^2 + 1$ is divisible by p. So p|(a + i)(a - i). Also 2|(1 + i)(1 - i). So deduce that p (or 2) is not prime, so not irreducible, as it clearly does not divide a + i or a - i.

So $p = z_1 z_2$ for $z_1, z_2 \in \mathbb{Z}[i]$. So

$$p^{2} = N(p) = N(z_{1}) N(z_{2})$$

So as z_i are not units, $N(z_1) = N(z_2) = p$. So $p = z_1 \bar{z_2} (= z_2 \bar{z_1})$. So $\bar{z_1} = z_2$. So $p = z_1 \bar{z_1} | N(z) = z\bar{z}$. So z is an associate of z_1 or $\bar{z_1}$, as z and z_1 are irreducible.

Corollary. An integer $n \in \mathbb{Z}^+$ may be written as $x^2 + y^2$ (the sum of two squares) if and only if, when we write $n = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ as a product of distinct primes, if $p_i \equiv 3 \mod 4$ then n_i is even.

Proof. Let $n = x^2 + y^2 = (x + iy)(x - iy) = N(x + iy)$. Let z = x + iy, so $z = \alpha_1 \alpha_2 \dots \alpha_q$ a product of irreducibles in $\mathbb{Z}[i]$.

By the proposition, each α_i is either $\alpha_i = p$ prime number with $p \equiv 3 \mod 4$, or $N(\alpha_i) = p$ a prime number which is either 2 or $\equiv 1 \mod 4$.

$$n = x^{2} + y^{2} = N(z) = N(\alpha_{1}) N(\alpha_{2}) \dots N(\alpha_{q})$$

Each $N(\alpha_i)$ satisfies: either

• $N(\alpha_i) = p^2$ with $p \equiv 3 \mod 4$ prime, or • $N(\alpha_i) = p$ with p = 2 or $p \equiv 1 \mod 4$ prime. So if p^m is the largest power of p dividing n, we find that m must be even if $p \equiv 3 \mod 4$.

Conversely, let $n = p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}$ be a product of distinct primes. For each p_i , either $p_i \equiv 3 \mod 4$ and n_i is even, so $p_i^{n_i} = (p_i^2)^{\frac{n}{2}} = N\left(p_i^{\frac{n}{2}}\right)$, or $p_i = 2$ or $p_i \equiv 1 \mod 4$, then $p_i = N\left(\alpha_i\right)$ for some $\alpha_i \in \mathbb{Z}[i]$. So $p_i^{n_i} = N\left(\alpha_i^{n_i}\right)$. So n is the norm of some $z \in \mathbb{Z}[i]$, so $n = N\left(z\right) = N\left(x + iy\right) = x^2 + y^2$ is a sum of squares.

Example. $65 = 5 \cdot 13$. Then 5 = (2 + i) (2 - i)13 = (2 + 3i) (2 - 3i). So $65 = N ((2 + i) (2 + 3i)) = N (1 + 8i) = 1^2 + 8^2$. Also $65 = N ((2 + i) (2 - 3i)) = N (7 - 4i) = 7^2 + 4^2$.

2.7 Algebraic integers

Definition. $\alpha \in \mathbb{C}$ is called an *algebraic integer* if it is a root of a monic polynomial in $\mathbb{Z}[x]$, i.e. \exists monic $f \in \mathbb{Z}[x]$ s.t. $f(\alpha) = 0$. Write $\mathbb{Z}[\alpha] \leq \mathbb{C}$ for the smallest subring containing α . In other words, $\mathbb{Z}[\alpha] = Im(\varphi)$ where φ is defined as:

$$\varphi:\mathbb{Z}[x] \to \mathbb{C}$$
$$g \to g(\alpha)$$

So also $\mathbb{Z}[\alpha] \cong \mathbb{Z}[x]/I$, $I = \ker(\varphi)$.

Proposition. If $\alpha \in \mathbb{C}$ is an algebraic integer then

$$I = \ker \left(\varphi : \begin{array}{cc} \mathbb{Z}[x] & \to \mathbb{C} \\ f & \to f(\alpha) \end{array} \right)$$

is a principal ideal and is generated by a monic irreducible polynomial $f_{\alpha} \in \mathbb{Z}[x]$, called the *minimal polynomial* of α .

Proof. By definition there is a monic $f \in \mathbb{Z}[x]$ s.t. $f(\alpha) = 0$. So $f \in I$ so $I \neq 0$. Let $f_{\alpha} \in I$ be a polynomial of minimal degree. We may suppose that f_{α} is primitive by dividing by its content.

We want to show that $I = (f_{\alpha})$ and that f_{α} is irreducible. Let $h \in I$. In $\mathbb{Q}[x]$ we have a Euclidean algorithm, so we may write $h = f_{\alpha} \cdot q + r$

with r = 0 or $\deg(r) < \deg(f_{\alpha})$.

We may multiply by some $a \in \mathbb{Z}$ to clear denominators and get

$$a \cdot h = f_{\alpha} \cdot (aq) + (ar)$$

with aq and ar in $\mathbb{Z}[x]$. Evaluate at α gives

$$ah(\alpha) = f_{\alpha}(\alpha) (aq)(\alpha) + (ar)(\alpha)$$
$$\implies 0 = (ar)(\alpha)$$

So $(ar) \in I$. As $f_{\alpha} \in I$ has minimal degree, we cannot have deg $(r) = deg (ar) < deg (f_{\alpha})$. So instead must have r = 0. So $ah = f_{\alpha} \cdot (aq) \in \mathbb{Z}[x]$. Take contents of everything, get

$$a \cdot c(h) = c(ah) = c(f_{\alpha}(aq)) = c(aq)$$

as f_{α} is primitive.

So a|c(aq), so $aq = a\bar{q}$ with $\bar{q} \in \mathbb{Z}[x]$ and cancelling a shows $q = \bar{q} \in \mathbb{Z}[x]$. So $h = f_{\alpha} \cdot q \in (f_{\alpha}) \triangleleft \mathbb{Z}[x]$. So $I = (f_{\alpha})$.

Now we want to show that f_{α} is irreducible. We have

$$\mathbb{Z}[x]/(f_{\alpha}) = \mathbb{Z}[x]/\ker(\varphi) \cong Im(\varphi) = \mathbb{Z}[\alpha] \le \mathbb{C}$$

 \mathbb{C} is an integral domain, so $\operatorname{Im}(\varphi)$ is an integral domain, so $\mathbb{Z}[x]/(f_{\alpha})$ is an integral domain.

So (f_{α}) is prime. So f_{α} is prime, so irreducible.

Example. $\alpha = i$ is an algebraic integer with $f_{\alpha} = x^2 + 1$. $\alpha = \sqrt{2}$ is an algebraic integer with $f_{\alpha} = x^2 - 2$. $\alpha = \frac{1}{2} (1 + \sqrt{-3})$ is an algebraic integer with $f_{\alpha} = x^2 - x + 1$. The polynomial $x^5 - x + d \in \mathbb{Z}[x]$ with $d \in \mathbb{Z}$ has precisely one real root α , which is an algebraic integer.

Remark. (Galois theory) This α cannot be constructed from \mathbb{Z} using $+, -, \times, /, \sqrt{n}$.

Lemma. If $\alpha \in \mathbb{Q}$ is an algebraic integer, then $\alpha \in \mathbb{Z}$.

Proof. Let $f_{\alpha} \in \mathbb{Z}[x]$ be the minimal polynomial, which is irreducible. In $\mathbb{Q}[x]$, $x-\alpha$ must divide f_{α} , but by Gauss' lemma, $f_{\alpha} \in \mathbb{Q}[x]$ must be irreducible. So must have $f_{\alpha} = x - \alpha \in \mathbb{Z}[x]$ (else there is a proper decomposition). So $\alpha \in \mathbb{Z}$.

2.8 Hilbert basis theorem

A ring R satisfies the ascending chain condition (ACC) if whenever

 $I_1 \subset I_2 \subset \dots$

is an increasing sequence of ideals, then we have

$$I_n = I_{n+1} = I_{n+2} = \dots$$

for some $n \in \mathbb{N}$.

A ring satisfying this condition is called Noetherian.

Example. Any finite ring, any field, and \mathbb{Z} or any other PID is Noetherian (see next proposition).

Consider $\mathbb{Z}[x_1, x_2, \ldots]$. Note that

$$(x_1) \subset (x_1 x_2) \subset (x_1 x_2 x_3) \subset \dots$$

while none of the ideals are equal. Thus $\mathbb{Z}[x_1, x_2, ...]$ is not Noetherian.

Proposition. A ring R is Noetherian \iff every ideal of R is finitely generated, i.e. $I = (r_1, ..., r_n)$ for some $r_1, ..., r_n \in R$ for every ideal $I \subset R$.

Proof. Suppose every ideal of R is finitely generated. Given $I_1 \subset I_2 \subset ...$, consider the ideal

 $I = I_1 \cup I_2 \cup \dots$

We have $I = (r_1, ..., r_n)$, with WLOG $r_i \in I_{k_i}$. Now let $k = max(k_1, ..., k_n)$. Then $r_1, ..., r_n \in I_k$, hence $I_k = I$.

On the other hand, suppose an ideal I is not finitely generated.

Choose $r_1 \in I$. Then $(r_1) \neq I$ as I is not finitely generated. Then choose $r_2 \in I \setminus (r_1)$. Then $(r_1, r_2) \neq I$. Then choose r_3, r_4, \dots similarly. But now we get a chain of ideals

$$(r_1) \subset (r_1, r_2) \subset \dots$$

while none of them is equal to any other. Contradiction. So I must be finitely generated.

Alternative proof for second part (2017 Lent): conversely, suppose R is Noetherian. Let I be an ideal.

Choose $a_1 \in I$. If $I = (a_1)$ then done, so suppose not. Then choose $a_2 \in I \setminus \{a_1\}$; if $I = (a_1, a_2)$ then done, so suppose not... If we can't be finished by this process, then we get

$$(a_1) \subsetneq (a_1, a_2) \subsetneq (a_1, a_2, a_3) \subsetneq \dots$$

which is impossible as R is Noetherian. So $I = (a_1, a_2, ..., a_r)$ for some r. \Box

Theorem. (Hilbert's basis theorem) R is Noetherian $\implies R[x]$ is Noetherian.

(hence e.g. Z[x] is Noetherian, whence Z[x, y] is Noetherian, etc.)

Proof. (Lent 2017)

Let $J \triangleleft R[x]$. Let $f_1 \in J$ be a polynomial of minimal degree. If $J = (f_1)$ then done, else choose $f_2 \in J \setminus (f_1)$ of minimal degree. If $J = (f_1, f_2)$ then done... Suppose this never terminates, i.e. we have $(f_1) \subsetneq (f_1, f_2) \subsetneq ... \subsetneq (f_1, f_2, f_3) \subsetneq ...$

Let $0 \neq a_i \in R$ be the coefficient of the largest power of X in f_i , and consider the chain of ideals $(a_1) \subset (a_1, a_2) \subset (a_1, a_2, a_3) \subset ... \triangleleft R$. As R is Noetherian, this chain stabilizes, i.e. there exist m s.t. all a_i lie in $a_1, ..., a_m$. In particular, $a_{m+1} = \sum_{i=1}^n a_i b_i$ for some $b_i \in R$.

Let $g = \sum_{i=1}^{m} b_i f_i X^{\deg(f_{m+1}) - \deg(f_i)}$ has top term $\sum_{i=1}^{n} b_i a_i X^{\deg(f_{m+1})}$, i.e. $a_{m+1} X^{\deg(f_{m+1})}$.

Note that $f_{m+1} - g$ has degree strictly smaller than that of f_{m+1} . But $g \in (f_1, ..., f_m)$, while $f_{m+1} \notin (f_1, ..., f_m)$. So $f_{m-1} - g \notin (f_1, ..., f_m)$, contradicting with the fact that we have chosen f_{m+1} to be the minimal degree each time. \Box

Proof. (Lent 2016) Let I be an ideal in R[x]. For n = 0, 1, 2, ..., let

$$I_n = \{r \in R : \exists f \in I \text{ with } f = rx^n + \dots\} \cup \{0\}$$

Then each I_n is an ideal of R. Also $I_n \subset I_{n+1} \forall n$ since $f \in I \implies xf \in I$ (as I is an ideal in R[x]). Thus $I_N = I_{N+1} = \dots$ for some N since R is Noetherian. For each $0 \le n \le N$, we have

$$I_n = \left(r_1^{(n)}, r_2^{(n)}, ..., r_{k(n)}^{(n)}\right)$$

As R is Noetherian. For each $r_i^{(n)}$, choose a $f_i^{(n)}$ with $f_i^{(n)} = r_i^{(n)} x^n + \dots$ • Claim: The polynomials $f_i^{(n)}$ $(0 \le n \le N, 1 \le i \le k (n))$ generate I. Proof of claim: Suppose not. Then choose $g \in i$ of minimum degree that is not generated by the above polynomials $f_i^{(n)}$.

• If deg $(g) = n \leq N$: have $g = rx^n + \dots$ But $r \in I_n$. So $r = \sum_i \lambda_i r_i^{(n)}$ for some

 $\lambda_i \in R$. So $\sum_i \lambda_i f_i^{(n)} = rx^n + \dots$, whence $g - \sum_i \lambda_i f_i^{(n)}$ has smaller degree than g(or it's zero) and is also not in I, contradicting with the fact that g has the minimum degree.

• If deg (g) = n > N: Have $g = rx^n + \dots$ But $r \in I_n = I_N$, so $r = \sum_i \lambda_i r_i^{(N)}$

for some $\lambda_i \in R$. So $x^{n-N} \sum_i \lambda_i r_i^{(N)} = rx^n + \dots$ is in the ideal, whence $g - x^{n-N} \sum_i \lambda_i r_i^{(N)}$ has smaller degree than g (or it's zero) and is also not in I. Contradiction.

Does R Noetherian imply every subring of R is Noetherian?

The answer is NO – e.g. take $\mathbb{Z}[x_1, x_2, ...]$ (an integral domain) and let R be its field of fractions, while the latter is a field so Noetherian, but the first one isn't Noetherian.

Proposition. Let R be Noetherian, I be an ideal in R. Then R/I is Noetherian.

Proof. Let

$$\begin{aligned} \varphi : R \to R/I \\ x \to x+I \end{aligned}$$

Given an ideal J in R/I, have $\varphi^{-1}(I)$ an ideal in R (by ideal correspondence). So $\varphi^{-1} = (r_1, ..., r_n)$ for some $r_1, ..., r_n \in R$ (since R is Noetherian so I is finitely generated).

Thus $J = (\varphi(r_1), \varphi(r_2), ..., \varphi(r_n))$ is finitely generated. So R/I is Noetherian. \square

What about Z[x]? (recall that it's not a pid since (2, x) is not principal)

Remark. Let $E \subset F[x_1, x_2, ..., x_n]$ be any set of polynomial equations. Consider $(E) \triangleleft F[x_1, x_2, ..., x_n]$. By Hilbert's basis theorem, there is a finite list $f_1, ..., f_k$ s.t. $(E) = (f_1, ..., f_k).$ Given $(\alpha_1, \alpha_2, \dots, \alpha_n) \in F^n$, consider

$$\varphi_{\alpha} : \left(\begin{array}{cc} F[x_1, \dots, x_n] & \to F \\ x_i & \to \alpha_i \end{array} \right)$$

a ring homomorphism.

 $(\alpha_1,...\alpha_n) \in F^n$ is a solution to the equations $E \iff (E) \subset \ker(\varphi_\alpha) \iff$ $(f_1, ..., f_n) \triangleleft \ker(\varphi_\alpha) \iff (\alpha_1, ..., \alpha_n)$ is a common solution to $f_1, ..., f_k$.

3 Modules

3.1 Definitions and examples

Definition. Let R be a commutative ring. A quadruple $(M, +, 0_M, \cdot)$ is a R-module if:

- (M1) $(M, +, 0_M)$ is an abelian group;
- (M2) The operation $-\cdot : R \times M \to M$ satisfies

$$(r_1 + r_2) \cdot m = (r_1 \cdot m) + (r_2 \cdot m)$$

 $r \cdot (m_1 + m_2) = (r \cdot m_1) + (r \cdot m_2)$
 $r_1 \cdot (r_2 \cdot m) = (r_1 \cdot r_2) \cdot m$
 $1_R \cdot m = m$

Example. 1) Let F be a field. An F-module is precisely the same as a vector space over F.

2) For any ring $R,\,R^n=R\times R\times \ldots \times R$ is a $R-{\rm module}$ via

$$r \cdot (r_1, r_2, ..., r_n) = (r \cdot r_1, r \cdot r_2, ..., r \cdot r_n)$$

3) If $I \triangleleft R$ is an ideal, then it is an R-module via

$$r \cdot_M a = r \cdot_R a$$

Also, R/I is a R-module via

$$r \cdot (a+I) = r \cdot a + I$$

4) A \mathbb{Z} -module is precisely the same as an abelian group. For A an abelian group,

$$\left(\begin{array}{ccc} \mathbb{Z} \times A & \to A \\ (n,a) & \to \left\{ \begin{array}{ccc} a+a+\ldots+a \ (\text{n times}) & a>0 \\ 0 & a=0 \\ (-a)+(-a)+\ldots+(-a) \ (\text{n times}) & a<0 \end{array} \right) \right)$$

5) Let F be a field, V a vector space on F, and $\alpha: V \to V$ be a linear map. Then V is a F[x]-module via

$$\left(\begin{array}{cc} F[x] \times V & \to V \\ (f,v) & \to (f(\alpha))(v) \end{array}\right)$$

i.e. Substitute α in the polynomial f, then act on v.

Different choices of α make V into different F[x]-modules, so this is a module structure.

6) If $\varphi:R\to S$ is a ring homomorphism, then any $S-{\rm module}\ M$ may be considered as a $R-{\rm module}$ via

$$\left(\begin{array}{cc} R \times M & \to M \\ (r,m) & \to \varphi \left(r \right) \cdot m \end{array}\right)$$

3 MODULES

Definition. If M is a R-Module, a subset $N \subset M$ is a R-submodule if it is a subgroup of $(M, +, 0_M)$ and if $n \in N$ and $r \in R$ then $r \cdot n \in N$. We write $n \leq M$.

Example. A subset of the R is a submodule of the R-module R precisely if it is an ideal.

A subset of an F-module V for F a field is a submodule *precisely* if it is a vector subspace.

Definition. If $N \subseteq M$ is a *R*-submodule, the *quotient module* M/N is the set of *N*-cosets in the abelian group $(M, +, 0_M)$ with

$$r \cdot (m+N) = r \cdot m + N$$

This is well defined as, if any two different m represent the same coset then they differ by some $n \in N$.

Definition. A function $f : M \to N$ between *R*-modules is an *R*-module homomorphism if it is a homomorphism of abelian groups, and satisfies

$$f\left(r\cdot m\right) = r\cdot f\left(m\right)$$

Example. If F is a field and V, W are F-modules (vector spaces over F), then an F-module homomorphism is precisely an F-linear map.

Theorem. (First isomorphism theorem) Let $f: M \to N$ be a *R*-module homomorphism. Then

$$\ker(f) = \{m \in M | f(m) = 0\} \le M$$

(submodule),

$$Im(f) = \{n \in N | \exists m \in Ms.t.n = f(m)\} \le N$$

Moreover, $M/\ker(f) \cong \operatorname{Im}(f)$.

Theorem. (Second isomorphism theorem) Let $A, B \leq M$. Then

$$A + B = \{m \in M | \exists a \in A, b \in B \text{ s.t. } m = a + b\} \le M$$

(a submodule), and

 $A\cap B\leq M$

and

$$A + B/A \cong B/(A \cap B).$$

Theorem. (Third isomorphism theorem) If $N \leq L \leq M$, then

$$M/L \cong (M/N)/(L/N)$$

In addition, there is a submodule correspondence between submodules of M/N and submodules of M which contain N.

Definition. Let M be a R-module, $m \in M$. The annihilator of m is

$$\operatorname{Ann}(m) = \{r \in R | r \cdot m = 0\}$$

The annihilator of ${\cal M}$ is

$$\operatorname{Ann}\left(M\right)=\bigcap_{m\in M}\operatorname{Ann}\left(m\right)=\{r\in R|r\cdot m=0\forall m\in M\}$$

Remark. Ann (m) is an ideal of R (so Ann (M) is too).

Definition. If M is a R-module and $m \in M$, the submodule granted by m is

$$R_m = \{r \cdot m \in M | r \in R\}$$

Consider the R-module homomorphism

$$\varphi: \left(\begin{array}{cc} R & \rightarrow M \\ r & \rightarrow r \cdot m \end{array} \right)$$

Here

$$R_m = Im(\varphi)$$

Ann(m) = ker(\varphi)

 So

$$R_m \cong R / \operatorname{Ann}(m)$$

Definition. Say an R-module M is *finitely generated* if there are elements $m_1, ..., m_k$ s.t.

$$M = R_{m_1} + R_{m_2} + \dots + R_{m_k}$$

= { $r_1m_1 + r_2m_2 + \dots + r_km_k | r_1, r_2, \dots, r_k \in R$ }

Lemma. A R-module M is finitely generated if and only if there is a surjective R-module homomorphism

$$f: \mathbb{R}^k \to M$$

Proof. If $M = R_{m_1} + \ldots + R_{m_k}$, define

$$f: \left(\begin{array}{cc} R^k & \rightarrow M \\ (r_1,...,r_k) & \rightarrow r_1m_1 + r_2m_2 + \ldots + r_km_k \end{array} \right)$$

This is a R-module map. This is surjective by the definition of M. Conversely, given a surjection $f: \mathbb{R}^k \to M$, let

$$M_i = f(0, 0, ..., 0, 1, 0, ..., 0)$$

where the 1 is in the i^{th} position.

Let $m \in M$. As f is surjective, $m = f(r_1, r_2, ..., r_k)$ for some $r_1, ..., r_k$. Then write

$$\begin{aligned} f\left(r_{1},...,r_{k}\right) &= f\left((r_{1},0,...,0) + (0,r_{2},0,...,0) + ... + (0,0,...,0,r_{k})\right) \\ &= f\left(r_{1}\cdot 1,0,...,0\right) + f\left(0,r_{2}\cdot 1,0,...,0\right) + ... + f\left(0,...,0,r_{k}\cdot 1\right) \\ &= r_{1}f\left(1,0,...,0\right) + r_{2}f\left(0,1,0,...,0\right) + ... + r_{k}\left(0,...,0,1\right) \\ &= r_{1}m_{1} + r_{2}m_{2} + ... + r_{k}m_{k} \end{aligned}$$

So the m_i 's generate M.

Corollary. If $N \leq M$ and M is finitely generated, then M/N is finitely generated.

Proof. *m* is finitely generated \implies there is a surjection $f : \mathbb{R}^k \to M$ $\implies \mathbb{R}^k \to M \to M/N \text{ (by } m \to m + N) \text{ (surjection)}$

Example. A submodule of a finitely generated module need not be finitely generated.

Let

$$R = \mathbb{C}[x_1, x_2, x_3, \ldots]$$

Let M = R be finitely generated (by 1). The submodule $I = (x_1, x_2, ...) \triangleleft R$ is not finitely generated (because finitely generated as a module implies finitely generated as an ideal, which it isn't).

Example. For $\alpha \in \mathbb{C}$, $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module $\iff \alpha$ is an algebraic integer (see example sheet).

3.2 Direct sums and free modules

Definition. If $M_1, M_2, ..., M_k$ are *R*-modules, the *direct sum*

$$M_1 \oplus M_2 \oplus \ldots \oplus M_k$$

is the set

$$M_1 \times M_2 \times \ldots \times M_k$$

with addition

$$(m_1, m_2, ..., m_k) + (m'_1, m'_2, ..., m'_k) = (m_1 + m'_1, ..., m_k + m'_k)$$

and R-module structure

$$r \cdot (m_1, ..., m_k) = (r \cdot m_1, r \cdot m_2, ..., r \cdot m_k)$$

Example. What we have been calling R^n is $R \oplus R \oplus ... \oplus R$ (*n* times).

Definition. Let $m_1, m_2, ..., m_k \in M$. The set $\{m_1, ..., m_k\}$ is independent if

$$\sum_{i=k}^{m} r_i m_i = 0 \implies r_1 = r_2 = \dots = r_k = 0$$

Definition. A subset $S \subset M$ generates M freely if

1) S generates M;

2) Any function $\psi : S \to N$ to a *R*-module extends to a *R*-module map $\theta : M \to N$.

If θ_1 and θ_2 are two of such extensions, consider $\theta_1 - \theta_2 : M \to N$. Then $S \subseteq \ker(\theta_1 - \theta_2) \leq M$. So the submodule generated by S lies in $\ker(\theta_1 - \theta_2)$ too. But 1) says S generates M. So $M = \ker(\theta_1 - \theta_2)$. So $\theta_1 = \theta_2$.

A R-module freely generated by some subset $S \subset M$ is called *free*, and S is called a *basis*.

Proposition. For a subset $\{m_1, m_2, ..., m_k\} \subset M$, the following are equivalent: 1) S generates M freely;

- 2) S generates M and the set S is independent;
- 3) Every element of M is uniquely expressible as

$$r_1m_1 + r_2m_2 + \dots + r_km_k$$

for some $r_i \in R$.

Proof. • 1) \implies 2): Let S generate M freely. If S is *not* independent, we have

$$0 = r_1 m_1 + \ldots + r_k m_k$$

with some $r_j \neq 0$. Let

$$\psi: \left(\begin{array}{cc} S \to & R \\ m_j \to & 1_R \\ m_i \to & 0 \ (i \neq j) \end{array}\right)$$

a function.

As S generates M freely, this extends to a R-module homomorphism $\theta: M \to R$. Thus

$$0 = \theta (0) = \theta (r_1m_1 + r_2m_2 + \dots + r_km_k)$$
$$= r_1\theta (m_1) + \dots + r_k\theta (m_k)$$
$$= r_j \cdot 1_R \in R$$

a contradiction as we supposed $r_j \neq 0$.

The remaining steps are just as in Linear Algebra.

Example. The set $\{2,3\} \in \mathbb{Z}$ generates \mathbb{Z} , but *not* freely, as $3 \cdot 2 + (-2) \cdot 3 = 0$. So S is not independent. So S doesn't generate \mathbb{Z} freely. Also $\{2\}$ and $\{3\}$ do *not* generate \mathbb{Z} .

Example. The \mathbb{Z} -module $\mathbb{Z}/2$ is not free. Generating set: $\{1\}$, $\{0,1\}$. 1) for $\{1\}$: Let

$$\psi: \left(\begin{array}{cc} \{1\} & \to \mathbb{Z} \\ 1 & \to 1 \end{array}\right)$$

this extends to

$$\theta: \left(\begin{array}{cc} \mathbb{Z}/2 & \to \mathbb{Z} \\ 1 & \to 1 \\ 0 = 1+1 & \to 1+1 \end{array}\right)$$

which is a contradiction since it's not a homomorphism. For the second case is generally the same.

Lemma. If $S = \{m_1, ..., m_k\} \subset M$ is freely generated, then $M \cong \mathbb{R}^k$ as an \mathbb{R} -module.

Proof. Let $f: \mathbb{R}^k \to M$ by $(r_1, ..., r_k) \to \sum r_i m_i$ as \mathbb{R} -module map. It is surjective as $\{m_i\}$ generate M, and is injective as the m_i are independent. \Box

Definition. If M is a finitely generated R-module, we have shown that there is a surjective R-module homomorphism $\varphi: \mathbb{R}^k \to M$.

We call ker (φ) the *relation module* for these generators.

Now As $M \cong \mathbb{R}^k / \ker(f)$, knowing M is equivalent of knowing the relation module.

We say M is *finitely presented* if, in addition, ker (φ) is finitely generated. More precisely, if $\{m_1, m_2, ..., m_k\}$ generate M and $\{n_1, n_2, ..., n_l\}$ generate ker (φ) , then each $n_i = (r_{i1}, r_{i2}, ..., r_{ik})$ corresponds to the relation

$$r_{i1}m_1 + r_{i2}m_2 + \dots + r_{ik}m_k = 0$$

in M.

Proposition. (Invariance of dimension (rank)) Let R be a non-zero ring. Then if $R^n \cong R^m$ as a R-module, we must have n = m.

Proof. We know this is true if R is a field (since they are vector spaces). General construction: let $I \triangleleft R$ be an ideal and M a R-module. Define

$$IM = \{a \cdot m \in M | a \in I, m \in M\}$$

a submodule of M, so M/IM is a R-module. If $b \in I$ then $b \cdot (m + IM) = b \cdot m + IM = 0 + IM$. So M/IM is a R/I-module via

$$(r+I) \cdot (m+IM) = r \cdot m + IM$$

General property: every non-zero ring has a maximal ideal. Observation: an ideal $I \triangleleft R$ is proper $\iff 1_R \notin I$. So an increasing union of proper ideals is proper. (Fact: (Zorn's lemma applies) so there is a maximal ideal) Back to the proof: choose a maximal ideal $I \triangleleft R$. If $R^n \cong R^m$, then $R^n/IR^n \cong R^m/IR^m$, i.e. $(R/I)^n \cong (R/I)^m$. But I is maximal, so R/I is a field. So this is an isomorphism between vector spaces over the spaces R/I. So n = m by usual dimension theory from linear algebra.

3.3 Matrices over Euclidean domains

Until further notice, R is a Euclidean domain, and write $\phi : R \setminus \{0\} \to \mathbb{Z} \ge 0$ for its Euclidean function.

We know what gcd(a, b) is for $a, b \in R$ and is unique up to associates. The Euclidean algorithm using ϕ shows that gcd(a, b) = ax + by for some $x, y \in R$.

Definition. Elementary row operations on a $m \times n$ matrix A with entries in R are

(ER1) Add $c \in R$ times the i^{th} row to the j^{th} . This may be done by multiplying A on the left by /1

$$\begin{pmatrix} 1 & & & \\ & 1 & c & \\ & & 1 & & \\ & & & \cdots & \\ & & & & & 1 \end{pmatrix}$$

Where c is in the j^{th} row and the i^{th} column. (ER2) Swap the i^{th} and the j^{th} rows. This is done using

Where the two 1 are in the (i, j) entry and the (j, i) entry. (ER3) Multiply the i^{th} row by a unit $c \in R$, using

$$\begin{pmatrix} 1 & & & \\ & 1 & & \\ & & c & \\ & & & \cdots & \\ & & & & 1 \end{pmatrix}$$

Where c is in the (i, i) entry.

We have analogues for column operations, called (EC1),(EC2),(EC3).

Definition. A and B are *equivalent* if they differ by a sequence of elementary row or column operations.

If A and B are equivalent, there are invertible (square) matrices P,Q s.t. B = QAP^{-1} .

Theorem. (Smith normal form)

A $m \times n$ matrix A on a ED R is equivalent to $\text{Diag}(d_1, d_2, ..., d_r, 0, ..., 0)$ with the d_i all non-zero and

$$d_1 | d_2 | ... | d_r$$

The d_k are called *invariant factors* of A.

Proof. if A = 0 we are done. So suppose $A \neq 0$. So some entry $A_{ij} \neq 0$. Swapping the i^{th} and first row then j^{th} and first column, we arrange that $A_{11} \neq 0$.

Try to reduce $\varphi(A_{11})$ as much as possible:

Case 1) If there is a A_{1j} not divisible by A_{11} , use Euclidean algorithm to write

$$A_{1j} = q \cdot A_{11} + r$$

with $\varphi(r) < \varphi(A_{11})$.

Subtract q times the first column from the j^{th} column. In position (1, j), we

now have r. Swapping j^{th} and 1^{st} columns puts r in position (1,1), and so $\varphi(r) < \varphi(A_{11})$.

Case 2) If there is a A_{i1} not divisible by A_{11} , do the analogous thing to reduce $\varphi(A_{11})$.

After finitely many applications of Case 1 and Case 2, we get that A_{11} divides all A_{ij} and all A_{i1} .

Then subtracting appropriate multiples of the first column from all others makes $A_{1j} = 0$ for all j apart from the first one. Do the same with rows. Then we have

$$\begin{pmatrix} d & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & & & \\ \dots & & & C & \\ 0 & & & & \end{pmatrix}$$

Case 3) if there is an entry of C not divisible by d, say A_{ij} with i > 1, j > 1. Then write $A_{ij} = qd + r$, with $\varphi(r) < \varphi(d)$.

Now add column 1 to column j, subtract q times row 1 from row i, swap row i with row 1, and swap column j with column 1. Then the (1, 1) entry is r, and $\varphi(r) < \varphi(d)$.

But now the zeroes are messed up. So do case 1 and case 2 if necessary to get

$$\begin{pmatrix} d' & 0 & 0 & \dots & 0 \\ 0 & & & & \\ 0 & & & & \\ \dots & & & C' & \\ 0 & & & & \end{pmatrix}$$

But now with $\varphi(d') \leq \varphi(r) < \varphi(d)$.

Since case 3 strictly decreases $\varphi(d)$, it can only happen for finitely many times. Therefore, we arrive at

$$\begin{pmatrix} d & 0 & 0 & \dots & 0 \\ 0 & & & & & \\ 0 & & & & & \\ \dots & & & C & \\ 0 & & & & & \end{pmatrix}$$

Such that d divides *every* entry of C (this is because case 3 stops only if there is no entry of C not divisible by d, by the condition).

Now apply the entire process to C. We end up with a diagonal matrix with the claimed divisibility. $\hfill \Box$

Example.

$$\begin{pmatrix} 3 & 7 & 4 \\ 1 & -1 & 2 \\ 3 & 5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 \\ 3 & 7 & 4 \\ 3 & 5 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 3 & 10 & -2 \\ 3 & 8 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 & -2 \\ 0 & 8 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 10 \\ 0 & 5 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 10 \\ 0 & 1 & -12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -12 \\ 0 & 2 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -12 \\ 0 & 2 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 34 \end{pmatrix}$$

3 MODULES

To study the uniqueness of the invariant factors (the d_k 's) of a matrix A, we will consider *minors*:

Definition. A $k \times k$ minor of a matrix A is the determinant of a $k \times k$ sub-matrix of A (a matrix found by removing all but k rows and all but k columns). For a matrix A, the k^{th} fitting ideal called Fit_k (A) $\triangleleft R$ is the ideal generated by the set of all $k \times k$ minors of A.

Lemma. If A and B are equivalent matrices, then

$$\operatorname{Fit}_{k}(A) = \operatorname{Fit}_{k}(B)$$

for all k.

Proof. We just show that changing A by the elementary row operations (or the column versions) doesn't change $\operatorname{Fit}_{k}(A)$. We just need to consider the row operations as $\operatorname{Fit}_k(A) = \operatorname{Fit}_k(A^T)$.

For (ER1): Fix C a $k \times k$ minor of A. Let B be the result of adding c times the i^{th} row to the j^{th} row.

If the j^{th} row is outside of C, then the minor is unchanged.

If i^{th} and j^{th} row are in C, then the sub-matrix changes by a row operation. But we know from linear algebra that a row operation doesn't change the determinant. If j^{th} row is in C but the i^{th} row is not, then C is changed to C' with j^{th} row equal to

$$(C_{j1} + cf_1, C_{j2} + cf_2, ..., c_{jk} + cf_k)$$

Where $f_1, f_2, \dots f_k$ are the i^{th} row. Computing det (C') using this row, we get det $(C') = \det(C)$ a minor $+c \det(C)$ matrix obtained by replacing the jth row of C with $f_1, f_2, ..., f_k$) also a minor of Α.

So det $(C') \in \operatorname{Fit}_k(A)$.

(ER2) and (ER3) follow by standard properties of swapping rows or multiplying rows on determinants.

So Fit_k $(B) \leq$ Fit_k (A). But this also follows in the opposite direction as row operations are invertible. So they are equal.

Remark. if $B = \text{Diag}(d_1, d_2, ..., d_r, 0, ..., 0)$ is a matrix in its Smith Normal Form, then

$$\operatorname{Fit}_{k}(B) = (d_{1}d_{2}...d_{n})$$

Corollary. If A has Smith Normal Form Diag $(d_1, d_2, ..., d_r, 0, ..., 0)$ then $(d_1d_2...d_k) =$ $\operatorname{Fit}_{k}(A)$, so d_{k} is unique up to associates.

Example. Consider

$$\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = A$$

Then

$$\operatorname{Fit}_1(A) = (2,3) = (1)$$

So $d_1 = \pm 1$,

$$\operatorname{Fit}_{2}\left(A\right) = (6)$$

 \mathbf{So}

$$d_1d_2 = \pm 6 \implies d_2 = \pm 6$$

So

$$\begin{pmatrix} 1 & 0 \\ 0 & 6 \end{pmatrix}$$

is a Smith Normal Form for A.

Lemma. Let R be a Euclidean Domain. Any submodule of R^m is generated by at most m elements.

Proof. Let $N \leq R^m$ be a submodule. Consider the ideal

$$I = \{ r \in R | (r, r_2, ..., r_m) \in N \text{ for some } r_2, ..., r_m \in \mathbb{R} \}$$

As R is a ED, it is also a PID. So I = (a) for some $a \in R$. Choose a $n = (a_1, a_2, ..., a_m) \in N$. For a $(r_1, r_2, ..., r_m) \in N$, we know $a|r_1$, so $r_1 = r \cdot a_1$, and

$$(r_1, r_2, ..., r_m) - r(a_1, a_2, ..., a_m) = (0, r_2 - ra_2, ..., r_m - ra_m)$$

This lies in $N' = N \cap (\{0\} \times \mathbb{R}^{m-1}) \leq \mathbb{R}^{m-1}$. Then by induction we can suppose that there are $n_2, ..., n_m \in N'$ generating N'. Thus

$$(r_1, ..., r_m)$$

lies in the submodule generated by $n, n_2, ..., n_m$. Since $r_1, ..., r_m$ are arbitrary, we know that $n, n_2, ..., n_m$ generate N.

(missing 0.5 lecture?)

Example. Let $R = \mathbb{Z}$ (a ED), and let A be the abelian group (= \mathbb{Z} -module) generated by a, b, c, subject to 2a + 3b + c = 0, a + 2b = 0 and 5a + 6b + 7c = 0.

Thus $A = \mathbb{Z}^3 / N$ where $N \leq \mathbb{Z}^3$ generated by $(2, 3, 1)^T, (1, 2, 0)^T, (5, 6, 7)^T$.

Now put $M = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 2 & 6 \\ 1 & 0 & 7 \end{pmatrix}$ into Smith Normal form we get (1, 1, 3). To show

that, we just have to calculate the fitting ideals: $\operatorname{Fit}_1(M) = (1)$, $\operatorname{Fit}_2(M) = (1)$ and $\operatorname{Fit}_3(M) = \det(M) = 3$.

After changing basis, N is generated by (1,0,0), (0,1,0), (0,0,3). So $A \cong \mathbb{Z}/3$.

3.3.1 Structure theorem for finitely-generated abelian groups

Any f.g. abelian group is isomorphic to

$$C_{d_1} \times C_{d_2} \times \ldots \times C_{d_r} \times C_{\infty} \times C_{\infty} \times \ldots \times C_{\infty}$$

with $d_1 | d_2 | ... | d_r$.

Proof. Apply classification of f.g. modules to the ED $R = \mathbb{Z}$, and note $\mathbb{Z}/(d) = C_d$ and $\mathbb{Z}/(0) = C_{\infty}$.

Lemma. Let R be a ED, $a, b \in R$ with gcd(a, b) = 1. Then $R/(ab) \cong R/(a) \oplus R/(b)$.

Proof. Consider the R-module homomorphism

$$\phi: R/(a) \oplus R/(b) \longrightarrow R/(ab)$$

(r₁ + (a), r₂ + (b)) \rightarrow (br₁ + ar₂ + (ab))

As gcd(a,b) = 1, (a,b) = (1). So 1 = xa + yb for some $x, y \in \mathbb{Z}$. So for $r \in R$, we get r = rxa + ryb. So

$$r + (ab) = rxa + ryb + (ab) = \phi(ry + (a), rx + (b))$$

So ϕ is onto.

Now we also have to deal with injectivity (since R/(ab) is not necessarily finite). If $\phi(r_1 + (a), r_2 + (b)) = 0 + (ab)$, then $br_1 + ar_2 \in (ab)$. Thus $a|br_1 + ar_2$, so $a|br_1$, but gcd(a, b) = 1, so $a|r_1$, so $r_1 + (a) = 0 + (a)$.

3.3.2 Primary decomposition theorem

Let R be a ED, M a f.g. R-module. Thus $M \cong N_1 \oplus ... \oplus N_t$ with each N_i either equal to R, or $R/(p^n)$ for some prime $p \in R$ and some $n \ge 1$.

Proof. Note that if $d = p_1^{n_1} \dots p_k^{n_k}$ with $p_i \in R$ distinct primes, then the previous lemma shows that $R/(d) \cong R/(p_1^{n_1}) \oplus \dots \oplus R/(p_k^{n_k})$. Plug this into the usual classification of f.g. modules we get the result.

3.4 Modules over F[X], and normal forms for matrices

For any field F, F[X] is a ED. So the results of the last section apply.

If V is a vector space over F and $\alpha: V \to V$ an endomorphism, then we have

$$F[X] \times V \quad \rightarrow V$$

(f,v)
$$\rightarrow f(\alpha)(v)$$

which makes V into a F[X]-module, call it V_{α} (see section 3.1).

Lemma: if V is finite-dimensional, then V_{α} is finitely-generated as a F[X]-module.

Example. 1) Suppose $V_{\alpha} \cong F[X]/(X^r)$ as a F[X]-module. This has F-basis $1, X, X^2, ..., X^{r-1}$, and the action of α on V corresponds to multiplication by X.

So in this basis, α has matrix with $A_{(i+1),i} = 1$ and all other entries 0.

2) Suppose $V_{\alpha} \cong F[X]/(X-\lambda)^r$ is a F[X]-module. Consider $\beta = \alpha - \lambda Id$, then

$$V_{\beta} \cong F[Y]/(Y^n)$$

as a F[Y]-module. So by (1), V has a basis so that β is given by the above matrix. So α is given by $\text{Diag}(\lambda) + A$ where $A_{(i+1),i} = 1$.

3) Suppose $v_{\alpha} \cong F[X]/(f)$ with $f = a_0 + a_1X + \ldots + a_{r-1}X^{r-1} + X^r$. Then $1, X, \ldots, X^{r-1}$ is a F-basis, and in this basis, α is given by the A in example (1) with an additional column $-a_0, -a_1, \ldots, -a_{r-1}$ added rightmost. This matrix is called the *companion matrix* for f_1 and is written C(f).

3.4.1 Rational canonical form theorem

Let $\alpha : V \to V$ be a linear map, V finite-dimensional vector space over F. Regards V as a F[X]-module V_{α} , we have

$$V_{\alpha} \cong F[X]/(d_1) \oplus \ldots \oplus F[X]/(d_r)$$

with $d_1|d_2|...|d_r$. This there is a basi sof V for which α is given by $\text{Diag}(c(d_1), c(d_2), ..., c(d_r))$. To prove this we can simply apply classification of f.g. modules over F[X], an ED, and note that is(?) copies of F[X] appear, as this has ∞ dimension over F.

Observations:

1) If α is represented by a matrix A in some basis, then A is conjugate to $(\text{Diag}(c(d_1), ..., c(d_r)))$. 2) The minimal polynomial for α is $d_r \in F[X]$. 3) The characteristic polynomial of α is $d_1d_2...d_r$.

Lemma. The primes in $\mathbb{C}[X]$ are $X - \lambda$ for $\lambda \in \mathbb{C}$, up to associates.

Proof. If $f \in \mathbb{C}[X]$ is irreducible, Fundamental theorem of algebra says that f has a root λ , or f is a constant. If it is constant it is 0 or a unit X, so $X - \lambda | f$, so $f = (X - \lambda)g$. But f is irreducible. So g is a unit, so f is an associate of $X - \lambda$.

The conjugacy classes in $GL_2(\mathbb{Z}/3)$ are

$$\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}, \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$

for non-zero λ and μ .

Recall

$$|GL_2(\mathbb{Z}/3)| = (9-1)(9-3) = 2^4 \cdot 3$$

so Sylow 2-subgroup has order $16 = 2^4$. The first matrix among the above 5 has order 4, the second and third have order 8, while for the fourth one, $\lambda = 1$ has order 3 and $\lambda = 2$ has order 6, and the diagonal matrices has order 2. So Sylow 2-subgroup cannot be cyclic (order 16).

3 MODULES

Now let A, B be the first and the second matrix respectively. Then

$$A^{-1}BA = \begin{pmatrix} 2 & 2\\ 2 & 0 \end{pmatrix}$$

This have to be some power of B (since it's in the same conjugacy class as B). In fact it is equal to B^3 .

So $\langle B \rangle \leq \langle A, B \rangle \leq GL_2(\mathbb{Z}/3)$, and $\langle B \rangle \triangleleft \langle A, B \rangle$.

By the second isomorphism theorem is $\frac{\langle A,B\rangle}{\langle B\rangle}=\frac{\langle A\rangle}{\langle A\rangle\cap\langle B\rangle}.$ But

$$\left\langle A\right\rangle \cap \left\langle B\right\rangle = \left\langle \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \right\rangle$$

is a group of order 2. But $\langle A \rangle$ has order 4. So

$$\left|\left\langle A,B\right\rangle /\left\langle B\right\rangle \right|=\left|\left\langle A\right\rangle /(\left\langle A\right\rangle \cap\left\langle B\right\rangle)\right|=4/2=2$$

so $\langle A, B \rangle | = 2 \cdot 8 = 16$. So this is a Sylow 2-subgroup of $GL_2(\mathbb{Z}/3)$. It is

$$\left\langle A,B|A^{4}=I,B^{8}=I,A^{-1}BA=B^{3}\right\rangle$$

a semidihedral group of order 16.

Example. Let $R = \mathbb{Z}[X]/(X^2 + 5)$, which we wish to show, that it is equal to $\mathbb{Z}[-5] \leq \mathbb{C}$. Then

$$(1+X)(1-X) = 1 - X^2 = 1 + 5 = 6 = 2 \cdot 3$$

while $1 \pm X$, 2, 3 are all irreducible, so R is not a UFD. Let

$$I_1 = (3, 1 + X), I_2 = (3, 1 - X)$$

be ideals (submodules) of R. Consider

$$\phi: I_1 \oplus I_2 \to R$$
$$(a, b) \to a + b$$

an R-module map. Then

$$im(\phi) = (3, 1 + X, 1 - X)$$

But 3 - ((1 + X) + (1 - X)) = 1. So this is the whole ring.

Also ker $(\phi) = \{(a, b) \in I_1 \oplus I_2 | a + b = 0\} \cong I_1 \cap I_2$ by sending x back to (x, -x). Hence $(3) \subset I_1 \cap I_2$

Let
$$s \cdot 3 + t(1-x) \in (3, 1-X) \subset R = \mathbb{Z}[X]/(X^2 + 5).$$

Working module (3) as well, get

$$t(1+X) = (1-X)p \pmod{(3, X^2+5)} = (3, X^2-1) = (3, (X-1)(X+1)).$$

3 MODULES

So 1 - X|t, so (1 + X)(1 - X)|t(1 + X), so $t(1 + X) = q(X^2 - 1) = q(X^2 + 5 - 6)$ i.e. t(1 + X) = 3(-2q).

Therefore $s \cdot 3 + t(1 + X)$ is divisible by 3, so $I_1 \cap I_2 \subset (3)$, so equality.

By Example sheet 4 Q1(iii), if we have module $N \leq M$ and $M/N \cong \mathbb{R}^n$, then $M \cong N \oplus \mathbb{R}^n$.

So hence, $I_1 \oplus I_2 / \ker(\phi) \cong \operatorname{im}(\phi) = R$, so $I_1 \oplus I_2 \cong R \oplus \ker(\phi) = R \oplus (3)$.

Consider

$$\psi: R \to (3)$$
$$x \to 3x$$

 $\ker(\psi) = \{x \in R | 3x = 0\} = 0$ as R is an integral domain. So ψ is an isomorphism. So $I_1 \oplus I_2 \cong R \oplus R$.

We claim that I_1 is not principal. If $I_1 = (a + bX)$, then $I_2 = (a - bX)$. Then

$$(3) = I_1 \cap I_2 = ((a+bX)(a-bX)) = (a^2 - bX^2) = (a^2 + 5b^2)$$

so $3 \in (a^2 + 5b^2)$, so $3 = (a^2 + 5b^2)(c + dX)$, so $a^2 + 5b^2|3$. Contradiction. So I_1 cannot be principal, so I_2 cannot be as well. But now:

• I_1 need 2 elements to generate it, but it is not the free module R^2 ;

• I_1 is a direct summand of R^2 .