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1 Groups

1.1 1.2

Definition. A homomorphism is called an isomorphism if it is a bijection. Say
groups G and H are isomorphic if there exists an isomorphism φ : G → H
between them, write G ∼= H.

Exercise: If φ is an isomorphism, then the inverse function φ−1 : H → G is also
a homomorphism (so an isomorphism).

Theorem. (First isomorphism theorem)
Let φ : G → H be a homomorphism. Then ker(φ) / G, im(φ) ≤ H, and
G/ ker(φ) ∼= im(φ).

Proof. We’ve done the first two parts.
Let f : G/ ker(φ)→ im(φ) by g ker(φ)→ φ(g).
f is well-defined: if g ker(φ) = g′ ker(φ) then g−1g′ ∈ ker(φ). So eH = φ(g−1g′) =
φ(g−1) · φ(g′) = φ(g)−1φ(g′). So φ(g) = φ(g′). So we have f(g ker(φ)) =
f(g′ ker(φ)).

f is a homomorphism: f(g ker(φ) · g′ ker(φ)) = f(gg′ ker(φ)) = φ(gg′) =
φ(g)φ(g′) = f(g ker(φ)) · f(g′ ker(φ)).

f is surjective: Let h ∈ im(φ), i.e. h = φ(g) for some g. So h = f(g ker(φ)).

f is injective: Suppose f(g ker(φ)) = eH , i.e. φ(g) = eH . Then g ∈ ker(φ). So
g ker(φ) = eG ker(φ).

Example. Consider φ : C → C\{0} by z → ez. Then φ is a homomorphism
from (C,+, 0) to (C\{0},×, 1). φ is onto because log exists (principal value).
We have

ker(φ) = {z ∈ C|ez = 1} = {2πik ∈ C|k ∈ Z} = 2πiZ

So from first isomorphism theorem we get (C/2πiZ,+, 0) ∼= (C\{0},×, 1).

Theorem. (Second isomorphism theorem)
Let H ≤ G, K / G. Then

HK = {x = hk ∈ G|h ∈ H, k ∈ K}

is a subgroup of G, H ∩K /H, and

HK/K ∼= H/H ∩K

Proof. Let hk, h′k′ ∈ HK. Then

h′k′(hk)−1 = h′k′k−1h−1 = h′h−1hk′k−1h−1

h′h−1 ∈ H, and hk′k−1h−1 ∈ K since K/G. So h′k′(hk)−1 ∈ HK. So HK ≤ G.
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Then consider φ : H → G/K by h→ hK. This is a homomorphism (composition
of H → G→ G/K). Then

ker(φ) = {h ∈ H|hK = eK} = H ∩K

so H ∩K is normal in H by first isomorphism theorem. Also

im(φ) = {gK ∈ G/K|gK = hK for some h ∈ H} = HK/K

So by first isomorphism theorem, H/H ∩K ∼= HK/K as required.

Theorem. (Subgroup correspondence)
Let K / G. There is a bijection between subgroups of G/K and subgroups of G
that contain K by:
←: L/K ≤ G/K ← K / L ≤ G and
→: U ≤ G/K → {g ∈ G|gK ∈ U}.

The same maps give a bijection between normal subgroups of G/K and normal
subgroups of G that contain K.

Theorem. (Third isomorphism theorem)
Let K / L, L / G. Then (G/K)/(L/K) ∼= G/L.

Proof. Let φ : G/K → G/L by gK → gL.

φ is well-defined: if gK = g′K then g−1g′ ∈ K ≤ L. So gL = g(g−1g′)L = g′L.

φ is clearly surjective, and ker(φ) = {gK ∈ G/K|gL = eL ⇐⇒ g ∈ L} = L/K.

So by first isomorphism theorem, (G/K)/(L/K) ∼= G/L.

Definition. A group G is simple if its only normal subgroups are {e} and G.

Lemma. An abelian group is simple iff it is isomorphic to Cp for prime p.

Proof. In an abelian group, every subgroup is normal. Now let g ∈ G be non-
trivial and consider H = {..., g−1, e, g, ...}. This is a subgroup of G, so a normal
subgroup of G. If G is simple, then since g is non-trivial, this must be equal to
G. So G is a cyclic group.

If G is infinite, then it is isomorphic to (Z,+, 0). But 2Z / Z. So this is not
simple.

So G ∼= Cn for some n. If n = a · b for some a, b ∈ Z and a, b 6= 1, then G
contains < ..., g−a, e, ga, ... >∼= Cb as a proper subgroup. Contradiction.

So n must be a prime number.

Finally, note that Cp for prime p is indeed simple: by Lagrange theorem any
subgroup of Cp must have order 1 or p.
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1.2 Actions and Permutations

Theorem. Let G be a non-abelian simple group, and H ≤ G a subgroup of
index n > 1. Then G is isomorphic to a subgroup of An for n ≥ 5.

Proof. We let G act on X = G/H, giving φ : G→ Sym(G/H). Then ker(φ) /G,
so as G is simple, either ker(φ) = G or ker(φ) = {e}. But

ker(φ) =
⋂
g∈G

g−1Hg ≤ H

a proper subgroup of G; so the first case cannot occur. So ker(φ) = {e}.

By 1st isomorphism theorem,

G ∼= G/{e} ∼= im(φ) = GX ≤ Sym(G/H) ∼= Sn

Apply 2nd isomorphism theorem to An / Sn, GX ≤ Sn. Then GX ∩ An / GX ,
GX/GX ∩An = GXAn/An. As GX ∼= G is simple, GX ∩An /GX , so GX ∩An =
{e} or GX ∩ An = {e}. But if the first case holds, then GX ∼= GXAn/An ≤
Sn/An ∼= C2, contradicting GX ∼= G being non-abelian. Hence GX ∩An = GX ,
i.e. GX ≤ An.

n ≥ 5 because A2, A3, A4 have no non-abelian simple subgroups.

Corollary. If G is non-abelian simple, H ≤ G is of index n, then |G| | n!2 .

Definition. If G acts on X, the orbit of x ∈ X is

G · x = {y = g ∗ x ∈ X|g ∈ G}

and the stabiliser of x ∈ X is

Gx = {g ∈ G|g ∗ x = x} ≤ G.

Theorem. (Orbit-stabiliser).
If G acts on X, then for any x ∈ X, there is a bijection between G · x and G/Gx
by g ∗ x→ gGx, gGx ← y = g ∗ x.

1.3 Conjugacy classes, centralisers and normalisers

There is an action of G on the set X = G via g ∗ x := g · x · g−1.

This gives a map φ : G→ Sym(G). Note φ(g)(x·t) = g ·x·t·g−1 = gxg−1gtg−1 =
φ(g)(x) · φ(g)(t), i.e. φ(g) is a group homomorphism. Also it’s a bijection (in
Sym(G)), so it is an isomorphism.

Let Aut(G) = {f : G → G|f is a group isomoprhism } ≤ Sym(G), called the
automorphisms of G.
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We have shown that φ : G→ Sym(G) has image in Aut(G) ≤ Sym(G).

Definition. The conjugacy class of x ∈ G is G · x = ClG(x) = {gxg−1|g ∈ G}.
The centraliser of x ∈ G is Gx = CG(x) = {g ∈ G|gxg−1 = x ⇐⇒ gx = xg}.
The centre of G is Z(G) = GX = ker(φ) = {g ∈ G|gxg−1 = x∀x ∈ G}.
The normaliser of H ≤ G is NG(H) = {g ∈ G|gHg−1 = H}.

By Orbit-stabiliser theorem, there is a bijection between ClG(x) and G/CG(x).
So if G is finite, then |ClG(x)| equals the index of CG(x) ≤ G which divides |G|.

Recall (from IA groups) that in Sn,
(i) everything can be written as a product of disjoint cycles;
(ii) permutations are conjugate iff they have the same cycle type.

Theorem. An is simple for n ≥ 5.

Proof. First, claim An is generated by 3−cycles.

Need to show that a product of two transposition is a product of 3−cycles. We
have (ab)(bc) = (abc), (ab)(cd) = (acb)(acd).

Let H / An. If H contains a 3−cycle, say (abc).

In Sn, there is a σ so that (abc) = σ−1(123)σ. If σ ∈ An, then (123) ∈ H.
Otherwise, let σ′ = (45)σ ∈ An. Then σ(123)σ = (abc).

So all 3−cycles are in H if one of them is in H. In that case we know H = An.

So it is enough to show that any {e} 6= H / An contains a 3−cycle.

Case 1: H contains σ = (123...r)τ in disjoint cycle notation for some r ≥ 4. Let
δ = (123) and consider σ−1δ−1σδ. This is in H. Evaluate it and we get

σ−1δ−1σδ = τ−1(r...21)(132)(12...r)τ(123)

= (r...21)(132)(12...r)(123)

= (23r) ∈ H

is a 3−cycle.

Case 2: H contains σ = (123)(456)τ in disjoint cycle notation. Let δ = (124)
and calculate

σ−1δ−1σδ = (132)(465)(142)(123)(456)(124) = (12436)

So we’ve reduced to the first case.

Case 3: H contains σ = (123)τ , and τ is a product of 2−cycles. Then σ2 =
(132) ∈ H.

Case 4: H contains σ = (12)(34)τ , and τ is a product of 2−cycles. Let δ = (123),
then

u = σ−1δ−1σδ = (12)(34)(132)(12)(34)(123) = (14)(23)
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Now let v = (152)u(125) = (13)(45). We have u · v = (14)(23)(13)(45) = (12345).
So we’ve reduced to the first case.

So H contains a 3−cycle.

1.4 p-groups

A finite group G is a p-group if |G| = pn for some prime number p.

Theorem. If G is a finite p-group, then Z(G) 6= {e}.

Proof. The conjugacy classes partition G, and

|Cl(x)| = |G/CG(x)| | |G|

by Orbit-Stabilizer and Lagrange’s Theorem. So |Cl(x)| is a power of p.

We know |G| is the sum of sizes of conjugacy classes. We can write |G| = number
of conjugacy classes of size 1 + size of all other conjugacy classes (which is
divisible by p). Since p | |G|, the number of conjugacy classes of size 1 is divisible
by p. In particular, |Cl(e)| = 1, so there is at least p of such conjugacy classes.

Now note that Z(G) consider all the elements that commutes with all the elements
in the group, i.e. they have conjugacy classes of size 1. So |Z(G)| ≥ p.

Corollary. A group of order pn, n > 1, is never simple.

Lemma. For any group G, if G/Z(G) is cyclic, then G is abelian.

Proof. Let the coset gZ(G) generate the cyclic group G/Z(G). Then every coset
is a of the form grZ(G), r ∈ Z. So every element of G is of the form gr · z for
z ∈ Z(G). Now take

(grz) · (gr
′
z′) = grgr

′
zz′ = gr

′
grz′z = gr

′
z′grz

So G is abelian.

Corollary. If |G| = p2, p is prime, then G is abelian.

Proof. We know {e} � Z(G) ≤ G, so |Z(G)| = p or p2. If it’s p2 then G = Z(G)
is abelian.

If |Z(G)| = p, then |G/Z(G)| = p. So G/Z(G) is cyclic. So G is abelian.

Theorem. If |G| = pa, then G has a subgroup of order pb for any 0 ≤ b ≤ a.
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Proof. Prove by induction on a. If a = 1 then done. For a > 1, have {e} � Z(G).
Let e 6= x ∈ Z(G). Then x has order a power of p, so we can take some power
of p that has order p, say z. Let C = 〈z〉, a normal subgroup of G (since this is
inside centre). Now G/C has order pa−1. By induction hypothesis, we may find
a subgroup H ≤ G/C of order pb−1. Now by subgroup correspondence, this H
gives some L ≤ G that contains C (by H = L/C), and |L| = pb.

1.5 Finite abelian groups

Theorem. If G is a finite abelian group, then

G ∼= Cd1 × cd2 × ...× Cdk

with di+1|di for all i.

We will prove this later, by considering an abelian group as a Z-module.

Example. If |G| = 8 and G is abelian, then G is either C8, or C4 × C2, or
C2 × C2 × C2.

Lemma. (Chinese Remainder Theorem)
If n,m are coprime, then Cnm ∼= Cn × Cm.

Proof. Let g ∈ Cn have order n, h ∈ Cm has order m. Consider x = (g, h) in
Cn × Cm. Clearly xnm = (e, e).

Now if (e, e) = xr = (gr, hr), then n | r and m | r. So nm | r. So the order of x
is nm. So 〈x〉 ∼= Cnm. Then by size we get the desired result.

Corollary. If G is a finite abelian group, then

G ∼= Cn1
× Cn2

× ...× Cnl

with each ni a power of a prime number.

Proof. If d = p1a
1...pra

r for distinct prime pi, the lemma shows

Cd ∼= Cp1a1 × Cp2a2 × ...× Cprar

Apply this to the theorem.

1.6 Sylow’s Theorems

Theorem. (Sylow’s)
Let |G| = pa ·m, with (p,m) = 1, where p is prime. Then
(i) The set Sylp(G) = {P ≤ G | |P | = pa} of Sylow p-subgroup is not empty.
(ii) All elements inf Sylp(G) are conjugate in G.
(iii) The number np = |Sylp(G)| satisfies n + p ≡ 1 (mod p) and np | |G| (i.e.
np | m).
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Lemma. If np = 1, then the unique Sylow p-subgroup is normal in G.

Proof. If g ∈ G, P ≤ G the Sylow subgroup, then g−1Pg is a subgroup of order
pa. But P is the only such subgroup.

Note that this tells that, if G is simple, then np 6= 1; or conversely, if np = 1 for
some p, then G is not simple.

Example. Let |G| = 96 = 25 · 3. So n2 ≡ 1 (mod 2) and n2 | 3. So n2 = 1 or 3.
Also, n3 ≡ 1 (mod 3) and n3 | 32. So n3 = 1, 4, 16.

G acts on the set Sylp(G) by conjugation. So (ii) of the theorem says that
this action has 1 orbit. The stabilizer of P ∈ Sylp(G), i.e. the normalizer
NG(P ) ≤ G, is of index np = |Sylp(G)|.

Corollary. If G is non-abelian simple, then

|G| | (np)!

2
.

and np ≥ 5.

Proof. NG(P ) has index np. So apply the general result about subgroups of
non-abelian simple groups (see section 1.2).

Now in the above example, |G| - 3!
2 , so the group G cannot be non-abelian simple.

Also it cannot be abelian simple as 96 is not a prime.

Example. Suppose G is a simple group of order 132 = 22 × 3× 11.

We know n11 = 1 (mod 11) and n11|12. As G is simple we can’t have n11 = 1,
so n11 = 12.

Each Sylow 11-subgroup has order 11, so is isomorphic to C11, so contains
10 = (11 − 1) elements of order 11. Such subgroups can only intersect in the
identity element, so we have 12+10 = 120 elements of order 11. We know n3 ≡ 1
(mod 3) and n3|44, so n3 = 1, 4 or 22 but similarly n3 6= 1. If n3 = 4 then we
need |G| | 4!2 | which is impossible. So n3 = 22. But then by counting the number
of elements we get a contradiction.

Proof of Sylow’s Theorems. Let |G| = pn ·m.
i) Let Ω be the set of subsets of G of order pn, and let G act on Ω via g ∗
{g1, ..., gpn} = {gg1, ..., ggpn}.
Let ε ⊂ Ω be an orbit for this action. If {g1, ..., gpn} = ε, then

(gg−11 ) ∗ {g1, ..., gpn} = ε = {g, gg−11 g2, ..., gg
−1
1 gpn}

So for any g ∈ G, there is an element of ε which contains g. So |ε| ≥ |G|pn = m.
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If there is some orbit ε with |ε| = m, then the stabilizer Gε has order |G||ε| =
pnm
m = pn, so Gε is a Sylow p−subgroup. To show this happens, we must show

that it is not possible for every orbit of G acting on Ω to have size > m.

By orbit-stabilizer, for any orbit ε, |ε||pn ·m, so if |ε| > m, then p||ε|. So if all
orbits of G acting on Ω has size > m, then p divides all of them, so p||Ω|.

Let’s calculate |Ω|. We have

|Ω| =
(
pnm

pn

)
=

pn−1∏
j=0

pnm...j

pn...j
(???)

The largest power of p dividing pnm = j is the same as the largest power of p
dividing j, which is the same as the largest power of p dividing pn = j. So |Ω| is
not divisible by p.

ii)Let’s show something stronger : if p ∈ Sylp(G) and Q is a p−subgroup, then
there is a g ∈ G s.t. g−1Qg ∈ P .

Let G act on G/P by q ∗gp = qgp. By orbit-stabilizer, the size of an orbit divides
|Q| = pn, so is either 1 or divisible by p.

On the other hand, |G/P | = |G|
|P | = m is not divisible by p. So ther must be an

orbit of size 1, say {gp}, i.e. for every q ∈ Q, qgp = gp i.e. g−1qg ∈ P ∀q ∈ Q,
i.e. g−1Qg ≤ P .

(iii) By (ii), G acts on Sylp(G) by conjugation with one orbit, so by orbit-
stabilizer, np ≡ |Sylp(G)| | |G|, which is the second part of (ii).

Example. Consider GL2(Z/p). It has order (p2 − 1)(p2 − p) = p(p+ 1)(p− 1)2.
Let l be an odd prime dividing p− 1 once only. Then l - p. But also l - p+ 1. So
l2 is the largest power of l dividing |GL2(Z/p)|, i.e. there is at least a subgroup
of order l2. We have

(Z/p)X = {x ∈ Z/p|∃g ∈ Z/p s.t. xy = 1 ∈ Z/p}
= {x ∈ Z/p|x 6= 0}

has size p− 1. As a group under multiplication, (Z/p)X ∼= Cp−1. So there is a
subgroup Cl ≤ Cp−1, i.e. we can find a 1 6= x ∈ (Z/p)X so that xl = 1.

Now let

H =

{(
a 0
0 b

)
| a, b ∈ (Z/p)X has order l

}
∼= Cl × Cl

≤ GL2(Z/p)

is a Sylow l−subgroup (order l2).

Example. Consider

SL2(Z/p) = ker(det : GL2(Z/p)→ (Zp)X}
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The determinant homomorphism is onto, so SL2(Z/p) ≤ GL2(Z/p) has index
(p− 1). So |SL2(Z/p)| = (p− 1)p(p+ 1).

Now consider

PSL2(Z/p) := SL2(Z/p)/
{(

λ 0
0 λ

)
∈ SL2(Z/p)

}

If

(
λ 0
0 λ

)
∈ SL2(Z/p) then λ2 = 1 ∈ (Z/p)X ∼= Cp−1. As long as p ≥ 3, there

are two such λ, +1 and −1. So |PSL2(Z/p)| = 1
2 (p− 1)p(p+ 1).

Let (Z/p)∞ = Z/p ∪ {∞}. Then PSL2(Z/p) acts on (Z/p)∞ by Möbius maps:[
a b
c d

]
∗ z :=

az + b

cz + d

with the usual convention that if cz + d = 0 then we get ∞.

Example. Let p = 5, then this action gives a homomorphism φ : PSL2(Z/p)→
Sym ((Z/5)∞) ∼= S6.

We have |PSL2(Z/5)| = 1
2 · 4 · 5 · 6 = 60.

Claim. φ is injective.

Proof. If az+b
cz+d = z ∀z ∈ (Z/p)∞, set z = 0 we get b = 0. Set z = ∞ we get

c = 0. Set z = 1 we get a = d. So

[
a b
c d

]
=

[
1 0
0 1

]
∈ PSL2(Z/p).

Claim. φ lands in A6 ≤ S6.

Proof. Consider the composition

ψ : PSL2(Z/5)→ Sym((Z/5)∞) ∼= S6 → {±1}

by φ and sgn respectively. We need to show that ψ

(
a b
c d

)
= +1.

We know that elements of odd order in PSL2(Z/5) have to be sent to +1.

Note that H =

{[
λ 0
0 λ−1

]
,

[
0 λ
−λ−1 0

]
∈ PSL2(Z/5) | λ ∈ (Z/5)X

}
has order

4 (note that λ and −λ represent the same equivalence class as we are in PSL, so
there are 2 of each kind), so is a Sylow 2−subgroup of PSL2(Z/5). Any element
of order 2 or 4 is conjugate to an element in H. We’ll show that ψ(H) = {+1}.

H is generated by

[
2 0
0 −2

]
,

[
0 1
−1 0

]
. Now consider

[
2 0
0 −2

]
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acting on (Z/5)∞. This sends

so is an even permutation. Then [
0 1
−1 0

]
sends

is also even. So they are both in A6.



2 RINGS 13

2 Rings

In this course we only consider commutative rings with a multiplicative identity.
Many of the things we are going to prove in this course will not hold without
these two properties.

2.1 Definitions

Definition. A ring is a quintuple (R,+, ·, 0R, 1R) s.t.
(R1) (R,+, 0R) is an abelian group;
(R2) The operation −·−: R×R→ R is associative, and satisfies 1R ·r = r = r·1R.
(R3) r · (r1 + r2) = r · r1 + r · r2, and (r1 + r2) · r = r1 · r+ r2 · r (Distributivity).

A ring is commutative if in addition a · b = b · a ∀a, b ∈ R.

From now on every ring we discuss will by default be commutative and has a
multiplicative identity.

Definition. If (R,+, ·, 0R, 1R) is a ring ans S ⊂ R is a subset, then it is called
a subring if 0R, 1R ∈ S and +, · make S into a ring in its own right.

Example. We have Z ≤ Q ≤ R ≤ C as rings with the usual 0, 1,+, ·.

Example. Z[i] = {a + ib ∈ C | a, b ∈ Z} ≤ C is the subring called Gaussian
integers.

Example. Q[
√

2] = {a+
√

2 · b ∈ R | a, b ∈ Q} ≤ R is a subring.

Definition. An element r ∈ R is a unit if there is a s ∈ R s.t. sr = 1R.

Note that this depends not only on the element but only on which ring we are
talking about: 2 ∈ Z is not a unit, but 2 ∈ Q is.

If every r ∈ R with r 6= 0R is a unit, then R is called a field.

Notation. If x ∈ R, write −x ∈ R for the inverse of x in (R,+, 0R). We will
write y − x = y + (−x).

Example. 0R + 0R = 0R, so r · (0R + 0R) = r · 0R, i.e. r · 0R + r · 0R = r · 0R,
so r · 0R = 0R. So if R 6= {0}, then 0R 6= 1R, and 0R is never a unit.

However, ({0},+, ·, 0, 0) is a valid ring.

Example. If R,S are rings, then R×S has the state of a ring via componentwise
addition and multiplication, with 1 = (1R, 1S), 0 = (0R, 0S .

Note that in this ring, e1 = (1R, 0S), e2 = (0R, 1S , then e21 = e1 and e22 = e2,
and e1 + e2 = 1.

Example. Let R be a ring. A polynomial f over R is an expression

f = a0 + a1X + a2X
2 + ...+ anX

n
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with ai ∈ R. Xi is just a symbol.

We will consider f and

a0 + a1X + ...+ anX
n + 0R ·Xn+1

as equal. The degree of f is the largest n s.t. an 6= 0.

If in addition, an = 1R, then we say f is monic.

We write R[X] for the set of all polynomials over R.

If g = b0 + ...+ bmX
m, then we define addition and multiplication by the usual

way:

f + g =
∑
i=0

(ai + bi)X
i

f · g =
∑
i

(
i∑
0

ajbi−j

)
Xi

Now consider R as a subring of R[X], given by the polynomials of degree 0. In
particular, 1R ∈ R gives the multiplicative identity element of R[X].

Example. Write R[[x]] for the ring of formal power series, i.e.

f = a0 + a1X + a2X
2 + ...

with the same addition and multiplication.

Consider Z/2[X] and an element f = X +X2. Then

f(0) = 0 + 0 = 0, f(1) = 1 + 1 = 0

But definitely f 6= 0. So we see the reason why we don’t think f as functions
despite that they do give functions. They are just elements in a particular ring.

Example. The Laurent polynomials R[X,X−1] is the set of

f =
∑
i∈Z

aiX
i

s.t. only finitely many ai are non-zero.

Example. The ring of Laurent series are those expressions

f =
∑
i∈Z

aiXi

with only finitely many i < 0 s.t. ai 6= 0 (i.e. formal power series in the positive
part and polynomial in the negative part). This is to make the sum in each
coefficient a finite sum, as we didn’t even define infinite sums in rings.

Example. If R is a ring and X is a set, the set RX of all functions f : X → R
is a ring, with operations

(f + g)(X) = f(X) + g(X),

(fg)(X) = f(X) · g(X).
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The multiplicative identity element is the function 1(X) = 1R for all X, and the
same for the zero element.

Observe RR ) set of continuous f : R→ R ⊃ polynomials R→ R = R[X]. So
R[X] ( RR.

2.2 Homomorphisms, ideals, quotients, and isomorphisms

Definition. A function φ : R→ S between rings is a homomorphism if
(H1) φ(r1 + r2) = φ(r1) + φ(r2), i.e. φ is a group homomorphism between the
additive groups of R and S;
(H2) φ(r1r2)φ(r1)φ(r2);
(H3) φ(1R) = 1S .

If in addition, φ is a bijection, then we say it is an isomorphism.

The kernel of φ : R→ S is

ker(φ) = {r ∈ R|φ(r) = 0}

Lemma. φ : R→ S is injective if and only if ker(φ) = {0}.

Proof. Note that φ : (R,+, 0R)→ (S,+, 0S) is a group homomorphism, and its
kernel as a group homomorphism is also ker(φ). So by theorems in groups we
get the desired result.

Definition. A subset I ⊂ R is an ideal, written I / R, if
(I1) I is a subgroup of (R,+);
(I2) If x ∈ I, r ∈ R, then x · r ∈ I (strong multiplicative closure).

We say I / R is proper if I 6= R.

Lemma. If φ : R→ S is a homomorphism, then ker(φ) / R.

Proof. (I1) holds for ker(φ) since φ is a group homomorphism.

Now let x ∈ ker(φ), r ∈ R. Then

φ(r · x) = φ(r) · φ(x) = φ(r) · 0S = 0S

So r · x ∈ ker(φ).

Example. If I / R and 1R ∈ I, then for any r ∈ R, we have

r = r · 1 ∈ I,

so I = R. In short, proper ideals never include 1, so are never subrings.

Example. If R is a field, then {0} and R are the only ideals. This is reversible:
If {0} and R are the only ideals, then R is a field.
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Example. In the ring Z, all ideals are of the form nZ for some n ∈ Z, where

nZ = {...,−2n,−n, 0, n, 2n, ...}

Proof. nZ is certainly an ideal. Let I / Z be an ideal. Let n ∈ I be the smallest
positive element. Then nZ ⊂ I. If this is not an equality, choose m ∈ I\nZ.
Then m = n · q + r for some 0 ≤ r ≤ n− 1. If r = 0 then m ∈ I, a contradiction.
So

r = m− n · q < n

is in the ideal I. Contradiction.

Definition. For an element a ∈ R, write

(a) = {a · r|r ∈ R}

the ideal generated by a. More generally, for a list a1, ..., as, write

(a1, ..., as) =

{∑
i

airi|ri ∈ R

}
which somewhat resembles the linear combinations in a vector space.

Even more generally, if A ⊆ R is a subset, then the ideal generated by A is

(A) =

{∑
a∈A

a · ra|ra ∈ R, only finitely many ra 6= 0

}
.

since we have no definition of infinite sums in rings.

If an ideal I / R is of the form (a), then we say that I is a principal ideal.

Example. In Z we have
nZ = (n) / Z

is principal.

Example. In C[X], the polynomials with constant coefficient 0 forms an ideal,
which is just (X) (check). This is also principal.

Proposition. Let I /R be an ideal. Define the quotient ring R/I to be the set of
cosets r+ I (i.e. (R,+, 0)/normal subgroup I), with addition and multiplication
given by
• (r1 + I) + (r2 + I) = r1 + r2 + I,
• (r1 + I) + (r2 + I) = r1r2 + I,
and 0R/I = 0R + I, 1R/I = 1R + I.

This is a ring, and the quotient map R→ R/I by r → r + I is a ring homomor-
phism.

Proof. We already know that (R/I,+, 0) is an abelian group. And addition
as described above is well-defined. If r1 + I = r′1 + I, r2 + I = r′2 + I, then
r′1 − r1 = a1 ∈ I, r′2 − r2 = a2 ∈ I. So

r′1r
′
2 = (r1 + a1)(r2 + a2) = r1r2 + r1a2 + a1r2 + a1a2 = r1r2 + a
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for some a ∈ I, i.e. r′1r
′
2 + I = r1r2 + I. So multiplication is well-defined. The

ring axioms for R/I then follow from those of R.

Example. nZ / Z, so have a ring Z/nZ. This has elements 0 + nZ, 1 + nZ, 2 +
nZ, ..., (n− 1) + nZ, and addition and multiplication are modular arithmetic
(mod n).

Example. (X) / C[X], so we have a ring C[X]/(X). Then

a0 + a1X + a2X
2 + ...+ anX

n + (X) = a0 + (X).

If a0 + (X) = b0 + (X), then a0 − b0 ∈ (X). So X|a0 − b0, i.e. a0 = b0.

So consider
φ : C[X]/(X)←− C

a+ (X)←− a

is surjective and injective. So φ is a bijection.

Observe that φ is a ring homomorphism. The inverse is f + (X)→ f(0).

Proposition. (Euclidean algorithm for polynomials)
Let F be a field and f, g ∈ F [X], then we may write

f = g · q + r

with deg(r) < deg(g).

Proof. Let
deg(f) = n, so f = a0 + a1X + ...+ anX

n with an 6= 0;
deg(g) = m, so g = b0 + b1X + ...+ bmX

m with bm 6= 0.

If n < m, let q = 0 and r = f .

Suppose n ≥ m, and proceed by induction on n, Let

f1 = f − g ·Xn−m · anb−1m

we can do this because F is a field, so bm has an inverse.

This has degree smaller than n.

If n = m, then f = gXn−manb
−1
m + f1 where deg(f1) < n = m.

If n > m, by induction on degree, we have f1 = g · q1 + r with deg(r) < deg(g).
So f = gXn−man + b−1m + g · q1 + r = g(Xn−mb−1m + q1) + r as required.

Example. Consider (X2 + 1) / R[X], and R = R[X]/(X2 + 1). Elements of R
are of the form f+(X2 +1). By Euclidean algorithm we have f = q · (X2 +1)+r
with deg(r) < 2. So f + (X2 + 1) = r + (X2 + 1). So every coset is represented
by a polynomial r of degree at most 1.

If a1 + b1X + (X2 + 1) = a2 + b2X + (X2 + 1), then

X2 + 1|(a1 + b1X)− (a2 + b2X)
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But by degree we know that (a1 + b1X)− (a2 + b2X) = 0. So take

φ : R[x]/(X2 + 1)→ C
a+ bX + (X2 + 1)→ a+ bi

This is a bijection. It sends addition to addition, and multiplication satisfies

φ((a+ bX + (X2 + 1)) · (c+ dX + (X2 + 1)))

= φ(ac+ (bc+ ad)X + bdX2 + (X2 + 1))

= φ(ac+ (bc+ ad)X + bd(−1) + bd(X2 + 1) + (X2 + 1))

= φ((ac− bd) + (bc+ ad)X + (X2 + 1))

= (ac− bd) + (bc+ ad)i

= (a+ ib)(c+ id)

So φ is a homomorphism. So R[x]/(X2 + 1) ∼= C.

We also have Q[x]/(X2 − 2) = Q[
√

2] ⊆ R.

Theorem. (First isomorphism theorem)
Let φ : R → S be a ring homomorphism. Then ker(φ) / R, im(φ) ≤ S, and
R/ ker(φ) ∼= im(φ) by r + ker(φ)→ φ(r).

Theorem. (Second isomorphism theorem)
Let R ⊂ S, J / S. Then R ∩ J / R, (R + J)/J = {r + J |r ∈ R} ≤ S/J , and
R/R ∩ J = (R+ J)/J .

Theorem. (Subring correspondence)
We have a bijection between subrings of R/I and subrings of R containing I by:
S/I ≤ R/I ← I / S ≤ R
L ≤ R/I → {r ∈ R|r + I ∈ L}, and the same map gievs a bijection between
ideals of R/I and ideals of R containing I by

J/I / R/I ↔ I / J / R.

Theorem. (Third isomorphism theorem)
Let I, J / R, I ⊂ J . Then J/I / R/I and (R/I)/(J/I) ∼= R/J .

Example. Consider the homomorphism φ : R[X]→ C by substituting in X = i,
which is onto. We know

ker(φ) = {f ∈ R[x]|f(i) = 0} = (X2 + 1)

because real polynomials with i as a root also have −i as a root. So are divisible
by (X − i)(X + i) = (X2 + 1). Then by first isomorphism theorem,

R[X]/(X2 + 1) ∼= C

(Compare with the previous proof).

Definition. For any ring R, there is a unique homomorphism

ι : Z→ R
1→ 1R

n > 0→ 1R + 1R + ...+ 1R (n times)

n < 0→ −(1R + 1R + ...+ 1R) (−n times)
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Note that ker(ι) / Z, so ker(i) = nZ for some n ≥ 0. This n ≥ 0 is called the
characteristic of the ring R.

Example. Z ≤ Q ≤ R ≤ C all have characteristic 0, while Z/n has characteristic
n.

2.3 Integral domains, field of fractions, maximal and prime
ideal

One thing to remember:

Field =⇒ ED =⇒ PID =⇒ UFD =⇒ ID.

The interesting bits start here.

Definition. A non-zero ring R is called an integral domain (ID) if for all a, b ∈ R,
a · b = 0 =⇒ a = 0 or b = 0.

We call x a zero divisor in R if x 6= 0 but ∃y 6= 0 s.t. xy = 0.

Example. All fields are integral domains. If xy = 0 with y 6= 0, then xyy−1 = 0
i.e. x = 0.

A subring of an integral domain is an integral domain, so Z ≤ Q and Z[i] ≤ C
are integral domains.

Definition. A ring R is a principal ideal domain (PID) if it is an integral
domain and every ideal is principal.

For example, Z is a principal ideal domain.

Lemma. A finite integral domain is a field.

Proof. Let a 6= 0 ∈ R, and consider

a · − : R→ R

b→ ab

This is a homomorphism of abelian groups and its kernel is {b ∈ R|ab = 0} = {0}.
So a · − is injective. But R is finite. So a · − is bijective. In particular, ∃b ∈ R
s.t. ab = 1. So R is a field.

Lemma. Let R be an integral domain, then R[X] is also an integral domain.

Proof. Let f =
∑n
i=0 aiX

i and an 6= 0, g =
∑m
i=0 biX

i and bm 6= 0 be non-zero
polynomials. Then the largest power of X in fg is Xn+m and its coefficient is
anbm 6= 0 as R is an ID. So fg 6= 0.
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Iterating this, we have

R[X1, ..., Xn] = (((R[X1])[X2])...[Xn])

is an integral domain.

Theorem. Let R be an ID. There is a field of fractions F of R with the following
properties:
(i) F is a field;
(ii) R ≤ F ;
(iii) every element of F is of the form a · b−1 for a, b ≤ R ≤ F .

Proof. Consider
S = {(a, b) ∈ R×R|b 6= 0}

with the equivalence relation (a, b) ∼ (c, d) ⇐⇒ ad = bc ∈ R. This is reflexive
and symmetric. For transitivity, if

(c, d) ∼ (e, f)

Then (ad)f = (bc)f = b(cf) = b(ed) =⇒ d(af − be) = 0. But d 6= 0. So
af − be = 0.

Let F = S/ ∼. Write [(a, b)] = a
b and define

a

b
+
c

d
=
ad+ bc

bd
,

a

b
· c
d

=
ab

cd
.

and 0 = 0
1 , 1 = 1

1 .

If a
b 6= 0 then a · 1 6= 0 · b, i.e. a 6= 0. Then b

a ∈ F , so a
b ·

b
a = 1

1 . So a
b has an

inverse, so F is a field.

We make R ≤ F by φ : R→ F by r → r
1 .

Example. The field of fractions of Z is Q, and that of C[z] is the rational
polynomial fractions in z.

Note: the ring {0} is not afield.

Lemma. A (non-zero) ring is a field iff its only ideals are {0} and R.

Proof. If I /R is a non-zero ideal, then it contains a 6= 0. But an ideal containing
a unit must be the whole ring. On the other hand, let x 6= 0 ∈ R, Then (x) must
be R, as it is not the zero ideal. So ∃y ∈ R s.t. xy = 1R. So X is a unit.

Definition. An ideal I /R is maximal if there is no proper ideal which properly
contains I.

Lemma. An ideal I is maximal iff R/I is a field.
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Proof. R/I is a field ⇐⇒ I/I and R/I are the only ideals in R/I ⇐⇒
I,R triangleleft are the only ideals containing I by ideal correspondence.

Definition. An ideal I /R is prime if I is proper, and if a, b ∈ R are s.t. a ·b ∈ I,
then a ∈ I or b ∈ I.

Example. The ideal nZ/Z is prime if and only if n is zero and a prime number:
if p is prime and a · b ∈ pZ, then p|a · b, so p|a or p|b, i.e. a ∈ pZ or b ∈ pZ.

Conversely, if n = uv is composite, u · v ∈ nZ but u, v 6∈ nZ.

Lemma. I / R is prime iff R/I is an integral domain.
Note that this shows that every maximal ideal is prime since fields are integral
domains.

Proof. Suppose I is prime. Let a+ I, b+ I ∈ R/I be s.t. (a+ I)(b+ I) = 0, i.e.
ab + I = 0, so ab ∈ I. But I is prime, so a ∈ I or b ∈ I. So a + I = 0 + I or
b+ I = 0 + I is the zero element in R/I. So R/I is an integral domain.

For the other direction, suppose R/I is an integral domain. Let ab ∈ I. Then
ab+ I = 0, so (a+ I)(b+ I) = 0. So a+ I = 0 + I or b+ I = 0 + I, i.e. a ∈ I or
b ∈ I.

Lemma. If R is an integral domain, then its characteristic is 0 or a prime
number.

Proof. Let ι : Z→ R with 1→ 1R. Consider ker(ι) = nZ. By 1st isomorphism
theorem, Z/nZ ∼= im(φ) ≤ R as a subring of an integral domain is again an
integral domain, Z/nZ is an integral domain, so nZ / Z is prime. So n is zero or
a prime number.

2.4 Factorisation in integral domains

Suppose throughout this section that R is an integral domain.

Definition. 1) An element a ∈ R is a unit if there is b ∈ R s.t. ab = 1. Equiva-
lently, (a) = R.
2) a divides b if there is c ∈ R s.t. b = a · c. Equivalently, (b) ⊂ (a).
3) a, b ∈ R are associates if a = b · c with c a unit. Equivalently, (a) = (b), or a|b
and b|a.
4) a ∈ R is irreducible if it is not 0, not a unit, and if a = x · y then x or y is a
unit.
5) a ∈ R is prime if it is not 0, not a unit, and when a|x · y then a|x or a|y.

Note that 2 ∈ Z is prime, but 2 ∈ Q is not.
2x ∈ Q[x] is irreducible, 2x ∈ Z[x] is not irreducible.

Lemma. (a) is a prime ideal in R ⇐⇒ r = 0 or r is prime in R.
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Proof. 1) let (r) be a prime, r 6= 0. As (r) 6= R, r is not a unit.
Suppose r|a · b. Then a · b ∈ (r), but (r) is prime. So a ∈ (r) or b ∈ (r). So r|a
or r|b. So r is prime in R.
2) if r = 0 then (0) is a prime ideal since R is an integral domain.
Now let r 6= 0 and be prime in R.
Let ab ∈ (r). Then r|ab. So r|a or r|b. So a ∈ (r) or b ∈ (r). So (r) is a prime
ideal in R.

Lemma. if r ∈ R is prime, then it is irreducible.

Proof. let r ∈ R be prime, and suppose r = a · b.
As r is prime, r|a or r|b.
Suppose r|a. So a = r · c. Then r = r · c · b.
As R is an integral domain,
r (c · b− 1) = 0 =⇒ c · b = 1.
So b is a unit. So r is irreducible.

Example. Let R = Z[
√
−5] =

{
a+ b

√
−5|a · b ∈ Z

}
⊆ C.

C is a field and R is a subring, so R is an integral domain.
Consider the ”norm”:

N : R→ Z ≥ 0

a+ b
√
−5→ a2 + 5b2

z → zz = |z|2.

This satisfies N (zw) = N (z) ·N (w).
If r · s = 1 then 1 = N (1) = N (r · s) = N (r) ·N (s).
So N (s) = N (r) = 1. So any unit has normal 1.
i.e. a2 + 5b2 = 1. Then a = ±1, b = 0: only ±1 ∈ R are units.
Claim: 2 ∈ R is irreducible:
Suppose 2 = ab. Then 4 = N (a)N (b).
Note that nothing in R has norm 2. So WLOG N (a) = 1, N (b) = 4. So a is a
unit. So 2 is irreducible.
Similarly 3, 1 +

√
−5, 1−

√
−5 are irreducible (no r with N (r) = 3).

Note that
(
1 +
√
−5
) (

1−
√
−5
)

= 6 = 2 · 3.

Claim: 2 does not divide 1±
√
−5 =⇒ 2 is not prime:

if 2|1 +
√
−5, then N (2) |N

(
1 +
√
−5
)
, i.e. 4|6, contradiction.

Lessons: 1) irreducible doesn’t imply prime in general.
2)
(
1 +
√
−5
) (

1−
√
−5
)

= 2 · 3. So factorisation into irreducibles might not be
unique.

Definition. an integral domain R is a Euclidean domain(ED) if there is a
function ϕ : R\ {0} → Z ≥ 0, a ”Euclidean function”, such that:
1) ϕ (a · b) ≥ ϕ (b) for all a, b 6= 0;
2) if a, b ∈ R with b 6= 0, there are q, r ∈ R s.t. a = b · q + r, such that r = 0 or
ϕ (r) < ϕ (b) (r is ”strictly smaller than” b).

Example. 1) Z is a Euclidean domain with ϕ (n) = |n|.
2) F [x] with F a field is a Euclidean domain with ϕ (f) = deg (f).
3) Z[i] = R is Euclidean domain, with ϕ (z) = N (z) = |z|2 = zz:
i) ϕ (zw) = ϕ (z)ϕ (w) ≥ ϕ (z), as ϕ (w) ∈ Z+ for w 6= 0;
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ii) let a, b ∈ Z[i]. Consider a
b ∈ C.

We know that ∃q ∈ Z[i] s.t. |ab − q| < 1,i.e. a
b = q + c with |c| < 1.

Then take r = b · c, so a = b · q + b · c = b · q + r.
r = a− bq, so r is in the ring Z[i]; and ϕ (r) = N (bc) = N (b)N (c) < N (b) =
ϕ (b) since N (c) < 1.

Proposition. (ED =⇒ PID)
if R is a Euclidean domain, then it is a principal ideal domain.

Proof. Let R have Euclidean function ϕ : R\ {0} → Z ≥ 0. Let I /R be non-zero.
Let b ∈ I\ {0} be an element with ϕ (b) minimal.
Then for a ∈ I, write a = bq+ r with r = 0, or ϕ (r) < ϕ (b). But r = a− bq ∈ I,
so we can’t have ϕ (r) < ϕ (b). So r = 0.
Thus a ∈ (b). Since a is arbitrary, I ⊂ (b). But (b) ∈ I as well, so I = (b). So R
is a principal ideal domain.

Example. Z,F [X](F field) are Principal ideal domains.
Z[i] is a PID. In Z[X], (2, x) / Z[X] is not a principal ideal.
Otherwise suppose (2, x) = (f), then 2 = f · g for some g. Then f has to have
degree zero, so a constant, so f ± 1or ± 2.
If f = ±1 a unit, then (f) = Z[x], but 1 /∈ (2, x). Contradiction. If f = ±2,
x ∈ (2, x) = (f) so ±2|x, a contradiction.

Example. Let A ∈Mn×n (F ) be an n× n matrix over a field F .
I = {f ∈ F [X]|f (A) = 0}.
If f · g ∈ I,(f + g) (A) = f (A) + g (A) = 0 + 0 = 0.
If f ∈ I, g ∈ F [X] then (f · g) (A) = f (A) · g (A) = 0
So I is an ideal.
So F [X] is a PID, have I = (m) for some m ∈ F [X].
Suppose f ∈ F [X] s.t. f (A) = 0. Then f ∈ I so f = m · g. So m is the minimal
polynomial of A.

Definition. An integral domain is a unique factorization domain (UFD) if:
1) every non-unit may be written as a product of irreducible elements;
2) if p1p2...pn = q1q2...qm with pi, qi irreducible, then n = m, and they can be
reordered such that pi is an associate of qi. (they generate the same ideal)

Goal: want to show that PID =⇒ UFD.

Lemma. Let R be a PID. If p ∈ R is irreducible, then it is prime.
(prime =⇒ irreducible in any integral domain)

Proof. Let p ∈ R be irreducible. Suppose p|a · b. Suppose p - a.
Consider the ideal (p, a) / R, a PID so (p, a) = (d) for some d ∈ R.
So d|p,so p = q1 · d for some q1.
We must have q1 a unit or d a unit.
If q1 a unit then d = q−11 · p divides a. So a = q1 · p · x, contradiction.
Thus d is a unit, so (p, a) = (d) = R.
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So we have 1R = v · p+ s · a for some r, s ∈ R.
So b = r · p · b+ s · a · b. So p|b.

Lemma. Let R be a PID, let I1 ∈ I2 ∈ ... be a chain of ideals. Then there is a
N ∈ N s.t. In = In+1∀n ≥ N.(this is called the ascending chain condition(ACC),
a ring satisfying this condition is called Noetherian.)

Proof. Let I = ∪∞n≥1In, again an ideal. As R is a PID, I = (a) for some a ∈ R.
This a ∈ I = ∪∞n=0In, so a ∈ In for some n.
Thus (a) ≤ In ≤ I = (a).
So they are all equal. So In = (a) = I, so In = IN∀n ≥ N .

Proposition. PID =⇒ UFD.

Proof. 1) Need to show any r ∈ R is a product of irreducibles.
Let r ∈ R. If r is irreducible then we are done.
Suppose not, then r = r1s1 with r1, s1 both non-units.
If both r1, s1 are reducible then we are done. Suppose not, WLOG write r1 = r2s2
with r2, s2 non-units.
Continue in this way. If the process doesn’t end, (r) ≤ (r1) ≤ ... ≤ (rn) ≤ ....
So by the ACC property, (rn) = (rn+1) = ... for some n.
So rn = rn+1 · sn+1, and (rn) = (rn+1) =⇒ sn+1 is a unit. Contradiction.
2) Let p1p2...pn = q1q2...qn with pi, qi irreducible.
So p1|q1...qn. In a PID, irreducible ⇐⇒ prime. So p1 divides some qi, reorder
to suppose p1|q1. So q1 = p1 · a. But as q1 is irreducible, a must be a unit. So
p1andq1 are associates.
Cancelling p1 gives:
p2p3...pn = (aq2) q3...qn and we continue.
This also shows n = m, else if n = m+ k then get pk+1...pn = 1 a contradiction.

Definition. d is a greatest common divisor of a1, a2, ..., an if d|ai for all i, and
if d′|ai for all i then d′|d.

Lemma. If R is a UFD then the gcd exists, and is unique up to associates.

Proof. Every a is a product of irreducibles, so let p1, p2, ..., pm be a list of all
the irredcibles which are factors of ai, none of them is associate of each other.
Write ai = uiΠ

m
j=1p

nij

j for ui units and nij ∈ N.

Let m)j = mini (nij) and d = Πm
j=1p

mj

j . As mj ≤ nij∀i, d|ai for all i.

If d′|ai∀i, let d′ = vΠm
j=1p

tj
i .

Then we must have tj ≤ nij∀i so tj ≤ mj∀j. Then d′|d.

2.5 Factorisation in polynomial rings

For F a field, we know F [x] is a Euclidean Domain(ED), so a PID, so a UFD. So
1) I / F [x] =⇒ I = (f).
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2) f ∈ F [x] irreducible ⇐⇒ f prime.
3) Let f ∈ F [x] be irreducible, and (f) ≤ J ≤ F [x]. Then J = (g) and (f) ⊂ (g)
so f = g · h. But f is irreducible, so g or h is a unit.
If g is a unit, then (g) = F [x];
If h is a unit, then (f) = (g).
So (f) is a maximal ideal.
4) (f) prime ideal =⇒ f prime impliesf reducible =⇒ (f) is maximal.
So in F [x], prime ideals are the same as maximal ideals.
5) f is irreducible if and only if F [x]/ (f) is a field.

Definition. Let R be a UFD and f = a0 +a1X+ ...+anX
n ∈ R[x] with an 6= 0.

Let the content c (f) of f is the gcd of all the coefficients in R, unique up to
associates. Say f is primitive if c (f) is a unit, i.e. the ai are coprime.

Lemma. (Gauss’) Let R be a UFD, f ∈ R[x] be a primitive polynomial. Then
f is irreducible in R[x] ⇐⇒ f is irreducible in F [x], where F is the field of
fractions of R.

Example. Consider f = x3 + x+ 1 ∈ Z[x]. This has content 1 so is primitive.
Suppose f is reducible in Q[x]. Then by Gauss’ lemma f is reducible in Z[x]
too, so x3 + x+ 1 = g · h for g, h ∈ Z[x], both g and h are not units. Neither g
nor h can be constant, so they both have degree at least 1. So WLOG suppose
g has degree 1 and h as degree 2.
So g = b0 + b1x, h = c0 + c1x+ c1x

2.
Multiplying them gives b0c0 = 1, c2b1 = 1 so b0 and b1 are both ±1. So g is
1 + x or 1− x or −1 + x or −1− x, so has ±1 as a root. But f doesn’t have ±1
as a root. Contradiction.
Note that from this we can know that f has not no root in Q.

Lemma. Let R be a UFD. If f, g ∈ R[x] are primitive, then f · g is primitive
too (Note that we don’t know whether R[x] is a UFD or not).

Proof. Let f = a0 + a1x+ ...+ anx
n with an 6= 0,

g = b0 + b1x+ ...+ bmx
m with bm 6= 0 be both primitive.

Suppose f ·g is not primitive. Then c (fg) is not a unit, so let p be an irreducible
which divides c (fg).
By assumption c (f) and c (g) are units, so p - c (f) and p - c (g).
Suppose p|a0, p|a1, ..., p|ak−1, but p - ak;
p|b0,...,p|bl−1,but p - bl.
Look at coefficient of xk+l in f · g:
...+ ak+1bl−1 + akbl + ak−1bl+1 + ... =

∑
i+j=k+l aibj .

As p|c (fg), we have p|
∑
i+j=k+l aibj .

We see that the only term that might not be divisible by p is akbl.
So p|akbl. p is irreducible (so prime), so p|an or pb|l. Contradiction.
So f · g is primitive.

Corollary. let R be a UFD. Then for f, g ∈ R[x] we have that c (f · g) is an
associate of c (f) c (g).
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Proof. We can always write f = c (f) f1, g = c (g) g1 with f1, g1 being primitive.
Then f · g = c (f) c (g) (f1 · g1). So c (f) c (g) is a gcd of coefficients f · g, so is
c (fg) (up to associates).

Proof. (Gauss’ lemma)
We will show that a primitive f ∈ R[x] is reducible in R[x] ⇐⇒ it is reducible
in F [x].
1) Let f = g · h be a product in R[x], g, h not units. As f is primitive, so are g
and h. So both have degree at least 1.
So g, h are not units in F [x] either, so f is reducible in F [x].
2) Let f = g · h in F [x], g and h not units. So g and h have degree at least 1.
We can find a, b ∈ R s.t. a · g ∈ R[x] and b · h ∈ R[x] (clear the denominators).
Then a · b · f = (a · g) (b · h) is a factorisation in R[x].
Let (a · g) = c (a · g) ·g1 with g1 primitive, (b · h) = c (b · h) ·h1 with h1 primitive.
So

a · b = c (a · b · f)

= c ((a · g) (b · h))

= u · c (a · g) · c (b · h)

by the previous corollary, where u ∈ R is a unit.
But also a · b · f = c (a · g) · c (b · h) · g1 · h1.
So cancelling a · b gives f = u−1g1h1 ∈ R[x], so f is reducible in R[x].

Proposition. Let R be a UFD, g ∈ R[x] be primitive.
Let J = (g) / R[x], I = (g) / F [x].
Then J = I ∩R[x].
(More plainly, if f = g · h ∈ R[x] with h ∈ F [x] then f = g · h′ with h′ ∈ R[x].

Proof. Certainly J ⊆ I ∩ R[x]. Let f ∈ I ∩ R[x], so f = g · h with h ∈ F [x].
Choose b ∈ R s.t. b · h ∈ R[x] (clear denominators).
Then b · f = g · (bh) ∈ R[x].
Let (b · h) = c (b · h) · h1 for h1 primitive. Then
b · f = c (b · h) · g · h1. So c (bf) = u · c (bh) for u a unit since g · h1 is primitive.
But c (b · f) = b · c (f). So b|c (bh).
c (bh) = b · c ∈ R.
So b · f = b · cgh1, cancelling b gives f = g (ch1). So g divides f in R[x].

Theorem. If R is a UFD, then R[x] is a UFD.

Proof. Let f ∈ R[x]. We can write f = c (f) · f1 with f1 primitive.
Firstly, As R is a UFD, we may factor c (f) = p1p2...pn for pi ∈ R irreducible,
(so also irreducible in R[x]).
If f1 is not irreducible, write f1 = f2f3 with f2 and f3 both not units, so f2 and
f3 must both have non-zero degree(since f1 is primitive, they can’t be constant).
Also deg (f2) ,deg (f3) < deg (f1).
If f2, f3 are irreducible then done. Else continue factoring. At each stage the
degree of factors strictly decreases, so we must finish: f1 = q1q2...qm with qi
irreducible.
So f = p1p2...pnq1q2...qm is a product of irreducibles.
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For uniqueness, first note that c (f) = p1p2...pn is a unique factorisation up
to reordering and associates, as R is a UFD. So cancel this off to obtain f1 =
q1...qm.So suppose q1q2...qm = r1r2...rl is another factorisation of f1.
Note that each qi and each ri is a factor of the primitive polynomial f1, so each
of them must be also primitive.
Let F be the field of fractions of R, and consider qi, ri ∈ F [x] instead. Now F [x]
is a ED, hence PID, hence UFD. By Gauss’ lemma, the qi and ri are irreducible
in F [x]. As F [x] is a UFD we find that l = m; and after reordering ri = uiqi
with ui ∈ F [x] a unit.
Firstly ui ∈ F since it is a unit.
Clear denominators of ui, we find that airi = biqi ∈ R[x].
So taking contents shows that ai and bi are associates. So bi = viai with vi ∈ R
a unit.
Cancelling ai gives ri = viqi as required.

Example. Z[x] is a UFD.
R is a UFD =⇒ R[x1, x2, ..., xn] is a UFD.

Theorem. (Eisenstein’s criterion) Let R be a UFD, let

f = a0 + a1x+ ...+ anx
n ∈ R[x]

have an 6= 0 and f primitive. Let p ∈ R be irreducible (=prime, since R is a
UFD) such that:
1) p - an;
2) p|ai for 0 ≤ i ≤ n− 1;
3) p2 - a0.
Then f is irreducible in R[x], so also irreducible in F [x] by Gauss’ lemma.

Proof. Suppose f=g · h with
g = r0 + r1x+ ...+ rkx

k with rk 6= 0,
h = s0 + s1x+ ...+ slx

l with sl 6= 0.
Now rksl = an, and p - an so p - rk and p - sl.
Also r0s0 = a0, and p|a0 but p2 - a0. So WLOG let p|r0 but p - s0.
Let j be such that p|r0, p|r1, ..., p|rj−1, p - rj .
Then aj = r0sj + r1sj−1 + ...+ rj−1s1 + rjs0. All but the last term are divisible
by p, and rjs0 is not divisible by p since both rj and s0 are not divisible by p.
So p - aj . By condition (1) and (2) we must have j = n. Also we have j ≤ k ≤ n,
so j = k = n. That means l = n− k = 0, so h is a constant.
But f is primitive, it follows that h must be a unit. So f is irreducible.

Example. Consider xn − p ∈ Z[x] for p prime. Apply Eisenstein’s criterion
with p, we find that all the conditions hold. So xn − p is irreducible in Z[x], and
so in Q[x] as well by Gauss’ lemma.
This implies that xn − p has no roots in Q. So n

√
p /∈ Q.

Example. Consider f = xp−1 + xp−2 + ...+ x2 + x+ 1 ∈ Z[x] with p a prime
number.
Note f = xp−1

x−1 , so let y = x− 1. Then

f̂ (y) = (y+1)p−1
y = yp−1 +

(
p
1

)
yp−2 + ...+

(
p
p−1
)
.

Now p|
(
p
i

)
for 1 ≤ i ≤ p− 1, but p2 -

(
p
p−1
)

= p.
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So by Eisenstein’s criterion, f̂ is irreducible in Z[x].

Now if f (x) = g (x) · h (x) ∈ Z[x], then get f̂ (y) = g (y + 1) · h (y + 1) a
factorisation in Z[y]. So f is irreducible.

2.6 Gaussian integers

Recall Z[i] = {a+ bi|a, b ∈ Z} ≤ C is thexswq Gaussian integers.
The norm N (a+ ib) = a2 + b2 serves as a Euclidean function for Z[i]. So it is a
ED, so a PID, so a UFD.
The units are precisely ±1 and ±i.

Example. 1) 2 = (1 + i) (1− i), so not irreducible, so not prime.
2) 3: N (3) = 9, so if 3 = u · v with u, v not units, then 9 = N (u)N (v) with
N (u) 6= 1 6= N (v). So N (u) = N (v) = 3. But 3 = u2 + v2 has no solutions
with a, b ∈ Z. So 3 is irreducible, so a prime.
3) 5 = (1 + 2i) (1− 2i) is not irreducible, so not prime.

Proposition. A prime number p ∈ Z is prime in Z[i] ⇐⇒ p 6= a2 + b2 for
a, b ∈ Z\ {0}.

Proof. If p = a2 + b2 = (a+ ib) (a− ib) then it is not irreducible, so not prime.
If p = u·v, then p2 = N (u)N (v). So if u, v are not units, then N (u) = N (v) = p
since p is prime in Z. Writing u = a+ ib, this says a2 + b2 = p.

Lemma. Let p be a prime number, Fp = Z/pZ a field with p elements.
Let F ∗p = Fp\ {0} be the group of invertible elements under multiplication.
Then F ∗p

∼= Cp−1.

Proof. Certainly F ∗p has order p− 1, and is abelian.
Know classification of finite abelian groups, it follows that if F ∗p is not cyclic,
then it must contain a subgroup Cm × Cm for m > 1.
Consider the polynomial Xm − 1 ∈ Fp[x], a UFD. At best this factors into m
linear factors, so Xm − 1 has at most m distinct roots.
If Cm × Cm ≤ F ∗p , then we have m2 elements of Fp which are roots of Xm − 1.
But m2 > m, contradiction. So F ∗p is cyclic.

Proposition. The primes in Z[i] are, up to associates,
1) prime numbers p ≤ Z ≤ Z[i] s.t. p ≡ 3 mod 4;
2) z ∈ Z[i] with N (z) = zz = p for p prime, p = 2 or p ≡ 1 mod 4.

Proof. 1) If p ≡ 3 mod 4 then p 6= a2 + b2.
By the previous proposition, p ∈ Z[i] is prime.
2) If N (z) = p and z = uv, then N (u)N (v) = p. So N (u) = 1 or N (v) = 1, so
u or v is a unit.
Let z ∈ Z[i] be irreducible (also prime). Then z is irreducible, so N (z) = zz is
a factorisation of N (z) into irreducibles.
Let p ∈ Z be a prime number dividing N (z). (N (z) 6= 1 so such p exists).
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• Case 1: p ≡ 3 mod 4. Then p ∈ Z[i] is prime by the first part of the proof.
p|N (z) = zz so p|z or p|z. So perhaps conjugating, get p|z. But both are
irreducible, so p and z are associates.
• Case 2: p = 2 or p ≡ 1 mod 4.
If p ≡ 1 mod 4 then p − 1 = 4k for some k. As F ∗p

∼= Cp−1 = C4k, there is a
unique element of order 2, which must be [−1] ∈ Fp.
Let [a] ∈ F ∗p be an element of order 4. Then [a2] = [−1].
So a2 + 1 is divisible by p. So p| (a+ i) (a− i).
Also 2| (1 + i) (1− i).
So deduce that p (or 2) is not prime, so not irreducible, as it clearly does not
divide a+ i or a− i.
So p = z1z2 for z1, z2 ∈ Z[i]. So

p2 = N (p) = N (z1)N (z2) .

So as zi are not units, N (z1) = N (z2) = p. So p = z1z̄2 (= z2z̄1). So z̄1 = z2.
So p = z1z̄1|N (z) = zz̄. So z is an associate of z1 or z̄1, as z and z1 are
irreducible.

Corollary. An integer n ∈ Z+ may be written as x2 + y2 (the sum of two
squares) if and only if, when we write n = pn1

1 pn2
2 ...pnk

k as a product of distinct
primes, if pi ≡ 3 mod 4 then ni is even.

Proof. Let n = x2 + y2 = (x+ iy) (x− iy) = N (x+ iy). Let z = x + iy, so
z = α1α2...αq a product of irreducibles in Z[i].
By the proposition, each αi is either αi = p prime number with p ≡ 3 mod 4,
or N (αi) = p a prime number which is either 2 or ≡ 1 mod 4.

n = x2 + y2 = N (z) = N (α1)N (α2) ...N (αq)

Each N (αi) satisfies: either
• N (αi) = p2 with p ≡ 3 mod 4 prime, or
• N (αi) = p with p = 2 or p ≡ 1 mod 4 prime.
So if pm is the largest power of p dividing n, we find that m must be even if
p ≡ 3 mod 4.

Conversely, let n = pn1
1 pn2

2 ...pnk

k be a product of distinct primes.

For each pi, either pi ≡ 3 mod 4 and ni is even, so pni
i =

(
p2i
)n

2 = N
(
p

n
2
i

)
, or

pi = 2 or pi ≡ 1 mod 4, then pi = N (αi) for some αi ∈ Z[i]. So pni
i = N (αni

i ).
So n is the norm of some z ∈ Z[i], so n = N (z) = N (x+ iy) = x2 + y2 is a sum
of squares.

Example. 65 = 5 · 13.
Then 5 = (2 + i) (2− i)
13 = (2 + 3i) (2− 3i).
So 65 = N ((2 + i) (2 + 3i)) = N (1 + 8i) = 12 + 82.
Also 65 = N ((2 + i) (2− 3i)) = N (7− 4i) = 72 + 42.
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2.7 Algebraic integers

Definition. α ∈ C is called an algebraic integer if it is a root of a monic
polynomial in Z[x], i.e. ∃ monic f ∈ Z[x] s.t. f (α) = 0.
Write Z[α] ≤ C for the smallest subring containing α.
In other words,Z[α]=Im (ϕ) where ϕ is defined as:

ϕ :Z[x]→ C
g → g (α)

So also Z[α] ∼= Z[x]/I, I = ker (ϕ).

Proposition. If α ∈ C is an algebraic integer then

I = ker

(
ϕ :

Z[x] → C
f → f (α)

)
is a principal ideal and is generated by a monic irreducible polynomial fα ∈ Z[x],
called the minimal polynomial of α.

Proof. By definition there is a monic f ∈ Z[x] s.t. f (α) = 0. So f ∈ I so I 6= 0.
Let fα ∈ I be a polynomial of minimal degree. We may suppose that fα is
primitive by dividing by its content.
We want to show that I = (fα) and that fα is irreducible.
Let h ∈ I. In Q[x] we have a Euclidean algorithm, so we may write h = fα · q+ r
with r = 0 or deg (r) < deg (fα).
We may multiply by some a ∈ Z to clear denominators and get

a · h = fα · (aq) + (ar)

with aq and ar in Z[x].
Evaluate at α gives

ah (α) = fα (α) (aq) (α) + (ar) (α)

=⇒ 0 = (ar) (α)

So (ar) ∈ I.
As fα ∈ I has minimal degree, we cannot have deg (r) = deg (ar) < deg (fα). So
instead must have r = 0.
So ah = fα · (aq) ∈ Z[x].
Take contents of everything, get

a · c (h) = c (ah) = c (fα (aq)) = c (aq)

as fα is primitive.
So a|c (aq), so aq = aq̄ with q̄ ∈ Z[x] and cancelling a shows q = q̄ ∈ Z[x].
So h = fα · q ∈ (fα) / Z[x]. So I = (fα).

Now we want to show that fα is irreducible. We have

Z[x]/ (fα) = Z[x]/ ker (ϕ) ∼= Im (ϕ) = Z[α] ≤ C
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C is an integral domain, so Im(ϕ) is an integral domain, so Z[x]/ (fα) is an
integral domain.
So (fα) is prime. So fα is prime, so irreducible.

Example. α = i is an algebraic integer with fα = x2 + 1.
α =
√

2 is an algebraic integer with fα = x2 − 2.
α = 1

2

(
1 +
√
−3
)

is an algebraic integer with fα = x2 − x+ 1.
The polynomial x5−x+d ∈ Z[x] with d ∈ Z has precisely one real root α, which
is an algebraic integer.

Remark. (Galois theory)
This α cannot be constructed from Z using +,−,×, /, n

√
.

Lemma. If α ∈ Q is an algebraic integer, then α ∈ Z.

Proof. Let fα ∈ Z[x] be the minimal polynomial, which is irreducible.
InQ[x], x−α must divide fα, but by Gauss’ lemma, fα ∈ Q[x] must be irreducible.
So must have fα = x − α ∈ Z[x] (else there is a proper decomposition). So
α ∈ Z.

2.8 Hilbert basis theorem

A ring R satisfies the ascending chain condition (ACC) if whenever

I1 ⊂ I2 ⊂ ...

is an increasing sequence of ideals, then we have

In = In+1 = In+2 = ...

for some n ∈ N.
A ring satisfying this condition is called Noetherian.

Example. Any finite ring, any field, and Z or any other PID is Noetherian (see
next proposition).
Consider Z[x1, x2, ...]. Note that

(x1) ⊂ (x1x2) ⊂ (x1x2x3) ⊂ ...

while none of the ideals are equal. Thus Z[x1, x2, ...] is not Noetherian.

Proposition. A ring R is Noetherian ⇐⇒ every ideal of R is finitely generated,
i.e. I = (r1, ..., rn) for some r1, ..., rn ∈ R for every ideal I ⊂ R.

Proof. Suppose every ideal of R is finitely generated. Given I1 ⊂ I2 ⊂ ...,
consider the ideal

I = I1 ∪ I2 ∪ ...

We have I = (r1, ..., rn), with WLOG ri ∈ Iki .
Now let k = max (k1, ..., kn).
Then r1, ..., rn ∈ Ik, hence Ik = I.
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On the other hand, suppose an ideal I is not finitely generated.
Choose r1 ∈ I. Then (r1) 6= I as I is not finitely generated. Then choose
r2 ∈ I\ (r1). Then (r1, r2) 6= I. Then choose r3, r4, ... similarly. But now we get
a chain of ideals

(r1) ⊂ (r1, r2) ⊂ ...

while none of them is equal to any other. Contradiction. So I must be finitely
generated.

Alternative proof for second part (2017 Lent): conversely, suppose R is Noethe-
rian. Let I be an ideal.

Choose a1 ∈ I. If I = (a1) then done, so suppose not. Then choose a2 ∈ I \{a1};
if I = (a1, a2) then done, so suppose not... If we can’t be finished by this process,
then we get

(a1) ( (a1, a2) ( (a1, a2, a3) ( ...

which is impossible as R is Noetherian. So I = (a1, a2, ..., ar) for some r.

Theorem. (Hilbert’s basis theorem)
R is Noetherian =⇒ R[x] is Noetherian.
(hence e.g. Z[x] is Noetherian, whence Z[x, y] is Noetherian, etc.)

Proof. (Lent 2017)
Let J/R[x]. Let f1 ∈ J be a polynomial of minimal degree. If J = (f1) then done,
else choose f2 ∈ J \ (f1) of minimal degree. If J = (f1, f2) then done... Suppose
this never terminates, i.e. we have (f1) ( (f1, f2) ( ... ( (f1, f2, f3) ( ....

Let 0 6= ai ∈ R be the coefficient of the largest power of X in fi, and consider
the chain of ideals (a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ ... / R. As R is Noetherian,
this chain stabilizes, i.e. there exist m s.t. all ai lie in a1, ..., am. In particular,
am+1 =

∑n
i=1 aibi for some bi ∈ R.

Let g =
∑m
i=1 bifiX

deg(fm+1)−deg(fi) has top term
∑n
i=1 biaiX

deg(fm+1), i.e.
am+1X

deg(fm+1).

Note that fm+1 − g has degree strictly smaller than that of fm+1. But g ∈
(f1, ..., fm), while fm+1 6∈ (f1, ..., fm). So fm−1 − g 6∈ (f1, ..., fm), contradicting
with the fact that we have chosen fm+1 to be the minimal degree each time.

Proof. (Lent 2016)
Let I be an ideal in R[x]. For n = 0, 1, 2, ..., let

In = {r ∈ R : ∃f ∈ I with f = rxn + ...} ∪ {0}

Then each In is an ideal of R.
Also In ⊂ In+1∀n since f ∈ I =⇒ xf ∈ I (as I is an ideal in R[x]).
Thus IN = IN+1 = ... for some N since R is Noetherian.
For each 0 ≤ n ≤ N , we have

In =
(
r
(n)
1 , r

(n)
2 , ..., r

(n)
k(n)

)
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As R is Noetherian.
For each r

(n)
i , choose a f

(n)
i with f

(n)
i = r

(n)
i xn + ...

• Claim: The polynomials f
(n)
i (0 ≤ n ≤ N, 1 ≤ i ≤ k (n)) generate I.

Proof of claim: Suppose not. Then choose g ∈ i of minimum degree that is not

generated by the above polynomials f
(n)
i .

• If deg (g) = n ≤ N : have g = rxn + .... But r ∈ In. So r =
∑
i λir

(n)
i for some

λi ∈ R.
So
∑
i λif

(n)
i = rxn + ..., whence g−

∑
i λif

(n)
i has smaller degree than g(or it’s

zero) and is also not in I, contradicting with the fact that g has the minimum
degree.

• If deg (g) = n > N : Have g = rxn + .... But r ∈ In = IN , so r =
∑
i λir

(N)
i

for some λi ∈ R.
So xn−N

∑
i λir

(N)
i = rxn + ... is in the ideal, whence g − xn−N

∑
i λir

(N)
i has

smaller degree than g (or it’s zero) and is also not in I. Contradiction.

Does R Noetherian imply every subring of R is Noetherian?
The answer is NO – e.g. take Z[x1, x2, ...] (an integral domain) and let R be its
field of fractions, while the latter is a field so Noetherian, but the first one isn’t
Noetherian.

Proposition. Let R be Noetherian, I be an ideal in R. Then R/I is Noetherian.

Proof. Let
ϕ :R→ R/I

x→ x+ I

Given an ideal J in R/I, have ϕ−1 (I) an ideal in R (by ideal correspondence).
So ϕ−1 = (r1, ..., rn) for some r1, ..., rn ∈ R (since R is Noetherian so I is finitely
generated).
Thus J = (ϕ (r1) , ϕ (r2) , ..., ϕ (rn)) is finitely generated. So R/I is Noetherian.

What about Z[x]? (recall that it’s not a pid since (2, x) is not principal)

Remark. Let E ⊂ F [x1, x2, ..., xn] be any set of polynomial equations.
Consider (E) / F [x1, x2, ..., xn]. By Hilbert’s basis theorem, there is a finite list
f1, ..., fk s.t. (E) = (f1, ..., fk).
Given (α1, α2, ...αn) ∈ Fn, consider

ϕα :

(
F [x1, ..., xn] → F
xi → αi

)
a ring homomorphism.
(α1, ...αn) ∈ Fn is a solution to the equations E ⇐⇒ (E) ⊂ ker (ϕα) ⇐⇒
(f1, ..., fn) / ker (ϕα) ⇐⇒ (α1, ..., αn) is a common solution to f1, ..., fk.
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3 Modules

3.1 Definitions and examples

Definition. Let R be a commutative ring. A quadruple (M,+, 0M , ·) is a
R−module if:
• (M1) (M,+, 0M ) is an abelian group;
• (M2) The operation − · − : R×M →M satisfies

(r1 + r2) ·m = (r1 ·m) + (r2 ·m)

r · (m1 +m2) = (r ·m1) + (r ·m2)

r1 · (r2 ·m) = (r1 · r2) ·m
1R ·m = m

Example. 1) Let F be a field. An F−module is precisely the same as a vector
space over F .
2) For any ring R, Rn = R×R× ...×R is a R−module via

r · (r1, r2, ..., rn) = (r · r1, r · r2, ..., r · rn)

3) If I / R is an ideal, then it is an R−module via

r ·M a = r ·R a

Also, R/I is a R−module via

r · (a+ I) = r · a+ I

4) A Z−module is precisely the same as an abelian group. For A an abelian
group, 

Z×A → A

(n, a) →

 a+ a+ ...+ a (n times) a > 0
0 a = 0
(−a) + (−a) + ...+ (−a) (n times) a < 0


5) Let F be a field, V a vector space on F , and α : V → V be a linear map.
Then V is a F [x]−module via(

F [x]× V → V
(f, v) → (f (α)) (v)

)
i.e. Substitute α in the polynomial f , then act on v.
Different choices of α make V into different F [x]−modules, so this is a module
structure.
6) If ϕ : R → S is a ring homomorphism, then any S−module M may be
considered as a R−module via(

R×M →M
(r,m) → ϕ (r) ·m

)
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Definition. If M is a R−Module, a subset N ⊂M is a R−submodule if it is a
subgroup of (M,+, 0M ) and if n ∈ N and r ∈ R then r · n ∈ N .
We write n ≤M .

Example. A subset of the R is a submodule of the R−module R precisely if it
is an ideal.
A subset of an F−module V for F a field is a submodule precisely if it is a
vector subspace.

Definition. If N ⊆M is a R−submodule, the quotient module M/N is the set
of N−cosets in the abelian group (M,+, 0M ) with

r · (m+N) = r ·m+N

This is well defined as, if any two different m represent the same coset then they
differ by some n ∈ N .

Definition. A function f : M → N between R−modules is an R−module
homomorphism if it is a homomorphism of abelian groups, and satisfies

f (r ·m) = r · f (m)

Example. If F is a field and V,W are F−modules (vector spaces over F ), then
an F−module homomorphism is precisely an F−linear map.

Theorem. (First isomorphism theorem)
Let f : M → N be a R−module homomorphism. Then

ker (f) = {m ∈M |f (m) = 0} ≤M

(submodule),

Im (f) = {n ∈ N |∃m ∈Ms.t.n = f (m)} ≤ N

Moreover, M/ ker (f) ∼= Im(f).

Theorem. (Second isomorphism theorem)
Let A,B ≤M . Then

A+B = {m ∈M |∃a ∈ A, b ∈ B s.t. m = a+ b} ≤M

(a submodule), and
A ∩B ≤M

and
A+B/A ∼= B/(A ∩B).

Theorem. (Third isomorphism theorem)
If N ≤ L ≤M , then

M/L ∼= (M/N)/(L/N).

In addition, there is a submodule correspondence between submodules of M/N
and submodules of M which contain N .
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Definition. Let M be a R−module, m ∈M . The annihilator of m is

Ann (m) = {r ∈ R|r ·m = 0}

The annihilator of M is

Ann (M) =
⋂
m∈M

Ann (m) = {r ∈ R|r ·m = 0∀m ∈M}

Remark. Ann (m) is an ideal of R (so Ann (M) is too).

Definition. If M is a R−module and m ∈M , the submodule granted by m is

Rm = {r ·m ∈M |r ∈ R}

Consider the R−module homomorphism

ϕ :

(
R →M
r → r ·m

)
Here

Rm = Im (ϕ)

Ann (m) = ker (ϕ)

So
Rm ∼= R/Ann (m)

Definition. Say an R−module M is finitely generated if there are elements
m1, ...,mk s.t.

M = Rm1 +Rm2 + ...+Rmk

= {r1m1 + r2m2 + ...+ rkmk|r1, r2, ..., rk ∈ R}

Lemma. A R−module M is finitely generated if and only if there is a surjective
R−module homomorphism

f : Rk →M

Proof. If M = Rm1
+ ...+Rmk

, define

f :

(
Rk →M
(r1, ..., rk) → r1m1 + r2m2 + ...+ rkmk

)
This is a R−module map. This is surjective by the definition of M .
Conversely, given a surjection f : Rk →M , let

Mi = f (0, 0, ..., 0, 1, 0, ..., 0)

where the 1 is in the ith position.
Let m ∈M . As f is surjective, m = f (r1, r2, ..., rk) for some r1, ..., rk.
Then write

f (r1, ..., rk) = f ((r1, 0, ..., 0) + (0, r2, 0, ..., 0) + ...+ (0, 0, ..., 0, rk))

= f (r1 · 1, 0, ..., 0) + f (0, r2 · 1, 0, ..., 0) + ...+ f (0, ..., 0, rk · 1)

= r1f (1, 0, ..., 0) + r2f (0, 1, 0, ..., 0) + ...+ rk (0, ..., 0, 1)

= r1m1 + r2m2 + ...+ rkmk

So the mi’s generate M .
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Corollary. If N ≤M and M is finitely generated, then M/N is finitely gener-
ated.

Proof. m is finitely generated
=⇒ there is a surjection f : Rk →M
=⇒ Rk →M →M/N (by m→ m+N) (surjection)

Example. A submodule of a finitely generated module need not be finitely
generated.
Let

R = C[x1, x2, x3, ...]

Let M = R be finitely generated (by 1). The submodule I = (x1, x2, ...) / R is
not finitely generated (because finitely generated as a module implies finitely
generated as an ideal, which it isn’t).

Example. For α ∈ C, Z[α] is a finitely generated Z-module ⇐⇒ α is an
algebraic integer (see example sheet).

3.2 Direct sums and free modules

Definition. If M1,M2, ...,Mk are R−modules, the direct sum

M1 ⊕M2 ⊕ ...⊕Mk

is the set
M1 ×M2 × ...×Mk

with addition

(m1,m2...,mk) + (m′1,m
′
2, ...,m

′
k) = (m1 +m′1, ...,mk +m′k)

and R-module structure

r · (m1, ...,mk) = (r ·m1, r ·m2, ..., r ·mk)

Example. What we have been calling Rn is R⊕R⊕ ...⊕R (n times).

Definition. Let m1,m2, ...,mk ∈M . The set {m1, ...,mk} is independent if

m∑
i=k

rimi = 0 =⇒ r1 = r2 = ... = rk = 0

Definition. A subset S ⊂M generates M freely if
1) S generates M ;
2) Any function ψ : S → N to a R−module extends to a R−module map
θ : M → N .
If θ1 and θ2 are two of such extensions, consider θ1 − θ2 : M → N . Then
S ⊆ ker (θ1 − θ2) ≤ M . So the submodule generated by S lies in ker (θ1 − θ2)
too. But 1) says S generates M . So M = ker (θ1 − θ2). So θ1 = θ2.
A R−module freely generated by some subset S ⊂ M is called free, and S is
called a basis.
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Proposition. For a subset {m1,m2, ...,mk} ⊂M , the following are equivalent:
1) S generates M freely;
2) S generates M and the set S is independent;
3) Every element of M is uniquely expressible as

r1m1 + r2m2 + ...+ rkmk

for some ri ∈ R.

Proof. • 1) =⇒ 2):
Let S generate M freely.
If S is not independent, we have

0 = r1m1 + ...+ rkmk

with some rj 6= 0.
Let

ψ :

 S → R
mj → 1R
mi → 0 (i 6= j)


a function.
As S generates M freely, this extends to a R−module homomorphism θ : M → R.
Thus

0 = θ (0) = θ (r1m1 + r2m2 + ...+ rkmk)

= r1θ (m1) + ...+ rkθ (mk)

= rj · 1R ∈ R

a contradiction as we supposed rj 6= 0.

The remaining steps are just as in Linear Algebra.

Example. The set {2, 3} ∈ Z generates Z, but not freely, as 3 · 2 + (−2) · 3 = 0.
So S is not independent. So S doesn’t generate Z freely. Also {2} and {3} do
not generate Z.

Example. The Z-module Z/2 is not free.
Generating set: {1}, {0, 1}.
1) for {1}: Let

ψ :

(
{1} → Z
1 → 1

)
this extends to

θ :

 Z/2 → Z
1 → 1
0 = 1 + 1 → 1 + 1


which is a contradiction since it’s not a homomorphism.
For the second case is generally the same.

Lemma. If S = {m1, ...,mk} ⊂ M is freely generated, then M ∼= Rk as an
R−module.
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Proof. Let f : Rk → M by (r1, ..., rk) →
∑
rimi as R−module map. It is

surjective as {mi} generate M , and is injective as the mi are independent.

Definition. If M is a finitely generated R−module, we have shown that there
is a surjective R−module homomorphism ϕ : Rk →M .
We call ker (ϕ) the relation module for these generators.
Now As M ∼= Rk/ ker(f), knowing M is equivalent ot knowing the relation
module.
We say M is finitely presented if, in addition, ker (ϕ) is finitely generated.
More precisely, if {m1,m2, ...,mk} generate M and {n1, n2, ..., nl} generate
ker (ϕ), then each ni = (ri1, ri2, ..., rik) corresponds to the relation

ri1m1 + ri2m2 + ...+ rikmk = 0

in M .

Proposition. (Invariance of dimension (rank))
Let R be a non-zero ring. Then if Rn ∼= Rm as a R−module, we must have
n = m.

Proof. We know this is true if R is a field (since they are vector spaces).
General construction: let I / R be an ideal and M a R−module. Define

IM = {a ·m ∈M |a ∈ I,m ∈M}

a submodule of M , so M/IM is a R−module.
If b ∈ I then b · (m+ IM) = b ·m+ IM = 0 + IM .
So M/IM is a R/I-module via

(r + I) · (m+ IM) = r ·m+ IM

General property: every non-zero ring has a maximal ideal.
Observation: an ideal I / R is proper ⇐⇒ 1R 6∈ I.
So an increasing union of proper ideals is proper.
(Fact: (Zorn’s lemma applies) so there is a maximal ideal)
Back to the proof: choose a maximal ideal I / R.
If Rn ∼= Rm, then Rn/IRn ∼= Rm/IRm, i.e. (R/I)

n ∼= (R/I)
m

. But I is
maximal, so R/I is a field. So this is an isomorphism between vector spaces over
the spaces R/I. So n = m by usual dimension theory from linear algebra.

3.3 Matrices over Euclidean domains

Until further notice, R is a Euclidean domain, and write φ : R\ {0} → Z ≥ 0 for
its Euclidean function.
We know what gcd(a, b) is for a, b ∈ R and is unique up to associates. The
Euclidean algorithm using φ shows that gcd(a, b) = ax+ by for some x, y ∈ R.

Definition. Elementary row operations on a m× n matrix A with entries in R
are
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(ER1) Add c ∈ R times the ith row to the jth. This may be done by multiplying
A on the left by 

1
1 c

1
...

1


Where c is in the jth row and the ith column.
(ER2) Swap the ith and the jth rows. This is done using

1
0 1

1
1 0

...
1


Where the two 1 are in the (i, j) entry and the (j, i) entry.
(ER3) Multiply the ith row by a unit c ∈ R, using

1
1

c
...

1


Where c is in the (i, i) entry.

We have analogues for column operations, called (EC1),(EC2),(EC3).

Definition. A and B are equivalent if they differ by a sequence of elementary
row or column operations.
If A and B are equivalent, there are invertible (square) matrices P ,Q s.t. B =
QAP−1.

Theorem. (Smith normal form)
A m × n matrix A on a ED R is equivalent to Diag(d1, d2, ..., dr, 0, ..., 0) with
the di all non-zero and

d1|d2|...|dr
The dk are called invariant factors of A.

Proof. if A = 0 we are done. So suppose A 6= 0.
So some entry Aij 6= 0. Swapping the ith and first row then jth and first column,
we arrange that A11 6= 0.
Try to reduce ϕ (A11) as much as possible:
Case 1) If there is a A1j not divisible by A11, use Euclidean algorithm to write

A1j = q ·A11 + r

with ϕ (r) < ϕ (A11).
Subtract q times the first column from the jth column. In position (1, j), we
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now have r. Swapping jth and 1st columns puts r in position (1, 1), and so
ϕ (r) < ϕ (A11).
Case 2) If there is a Ai1 not divisible by A11, do the analogous thing to reduce
ϕ (A11).
After finitely many applications of Case 1 and Case 2, we get that A11 divides
all Aij and all Ai1.
Then subtracting appropriate multiples of the first column from all others makes
A1j = 0 for all j apart from the first one. Do the same with rows. Then we have

d 0 0 ... 0
0
0
... C
0


Case 3) if there is an entry of C not divisible by d, say Aij with i > 1, j > 1.
Then write Aij = qd+ r, with ϕ (r) < ϕ (d).
Now add column 1 to column j, subtract q times row 1 from row i, swap row i
with row 1, and swap column j with column 1.Then the (1, 1) entry is r, and
ϕ (r) < ϕ (d).
But now the zeroes are messed up. So do case 1 and case 2 if necessary to get

d′ 0 0 ... 0
0
0
... C ′

0


But now with ϕ (d′) ≤ ϕ (r) < ϕ (d).
Since case 3 strictly decreases ϕ (d), it can only happen for finitely many times.
Therefore, we arrive at 

d 0 0 ... 0
0
0
... C
0


Such that d divides every entry of C (this is because case 3 stops only if there is
no entry of C not divisible by d, by the condition).
Now apply the entire process to C. We end up with a diagonal matrix with the
claimed divisibility.

Example.3 7 4
1 −1 2
3 5 1

→
1 −1 2

3 7 4
3 5 1

→
1 0 0

3 10 −2
3 8 −5

→
1 0 0

0 10 −2
0 8 −5

→
1 0 0

0 2 10
0 5 8

→
1 0 0

0 2 10
0 1 −12

→
1 0 0

0 1 −12
0 2 10

→
1 0 0

0 1 0
0 0 34
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To study the uniqueness of the invariant factors (the dk’s) of a matrix A, we will
consider minors:

Definition. A k×k minor of a matrix A is the determinant of a k×k sub-matrix
of A (a matrix found by removing all but k rows and all but k columns).
For a matrix A, the kth fitting ideal called Fitk (A) / R is the ideal generated by
the set of all k × k minors of A.

Lemma. If A and B are equivalent matrices, then

Fitk (A) = Fitk (B)

for all k.

Proof. We just show that changing A by the elementary row operations (or the
column versions) doesn’t change Fitk (A). We just need to consider the row
operations as Fitk (A) = Fitk

(
AT
)
.

For (ER1): Fix C a k × k minor of A. Let B be the result of adding c times the
ith row to the jth row.
If the jth row is outside of C, then the minor is unchanged.
If ith and jth row are in C, then the sub-matrix changes by a row operation. But
we know from linear algebra that a row operation doesn’t change the determinant.
If jth row is in C but the ith row is not, then C is changed to C ′ with jth row
equal to

(Cj1 + cf1, Cj2 + cf2, ..., cjk + cfk)

Where f1, f2, ... fk are the ith row.
Computing det (C ′) using this row, we get det (C ′) = det (C) a minor +cdet(
matrix obtained by replacing the jth row of C with f1, f2, ..., fk) also a minor of
A.

So det (C ′) ∈ Fitk (A).
(ER2) and (ER3) follow by standard properties of swapping rows or multiplying
rows on determinants.
So Fitk (B) ≤ Fitk (A). But this also follows in the opposite direction as row
operations are invertible. So they are equal.

Remark. if B = Diag (d1, d2, ..., dr, 0, ..., 0) is a matrix in its Smith Normal
Form, then

Fitk (B) = (d1d2...dn)

Corollary. IfA has Smith Normal Form Diag (d1, d2, ..., dr, 0, ..., 0) then (d1d2...dk) =
Fitk (A), so dk is unique up to associates.

Example. Consider (
2 0
0 3

)
= A

Then
Fit1 (A) = (2, 3) = (1)

So d1 = ±1,
Fit2 (A) = (6)
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So
d1d2 = ±6 =⇒ d2 = ±6

So (
1 0
0 6

)
is a Smith Normal Form for A.

Lemma. Let R be a Euclidean Domain. Any submodule of Rm is generated by
at most m elements.

Proof. Let N ≤ Rm be a submodule. Consider the ideal

I = {r ∈ R| (r, r2, ..., rm) ∈ N for some r2, ..., rm ∈ R}

As R is a ED, it is also a PID. So I = (a) for some a ∈ R.
Choose a n = (a1, a2, ..., am) ∈ N .
For a (r1, r2, ..., rm) ∈ N , we know a|r1, so r1 = r · a1, and

(r1, r2, ..., rm)− r (a1, a2, ..., am) = (0, r2 − ra2, ..., rm − ram)

This lies in N ′ = N ∩
(
{0} ×Rm−1

)
≤ Rm−1.

Then by induction we can suppose that there are n2, ...nm ∈ N ′ generating N ′.
Thus

(r1, ..., rm)

lies in the submodule generated by n, n2, ..., nm. Since r1, ..., rm are arbitrary,
we know that n, n2, ..., nm generate N .

(missing 0.5 lecture?)

Example. Let R = Z (a ED), and let A be the abelian group (=Z−module)
generated by a, b, c, subject to 2a+ 3b+ c = 0, a+ 2b = 0 and 5a+ 6b+ 7c = 0.

Thus A = Z3/N where N ≤ Z3 generated by (2, 3, 1)T , (1, 2, 0)T , (5, 6, 7)T .

Now put M =

2 1 5
3 2 6
1 0 7

 into Smith Normal form we get (1, 1, 3). To show

that, we just have to calculate the fitting ideals: Fit1(M) = (1), Fit2(M) = (1)
and Fit3(M) = det(M) = 3.

After changing basis, N is generated by (1, 0, 0), (0, 1, 0), (0, 0, 3). So A ∼= Z/3.

3.3.1 Structure theorem for finitely-generated abelian groups

Any f.g. abelian group is isomorphic to

Cd1 × Cd2 × ...× Cdr × C∞ × C∞ × ...× C∞

with d1|d2|...|dr.
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Proof. Apply classification of f.g. modules to the EDR = Z, and note Z/(d) = Cd
and Z/(0) = C∞.

Lemma. Let R be a ED, a, b ∈ R with gcd(a, b) = 1. Then R/(ab) ∼= R/(a)⊕
R/(b).

Proof. Consider the R−module homomorphism

φ :R/(a)⊕R/(b) →R/(ab)
(r1 + (a), r2 + (b)) →(br1 + ar2 + (ab))

As gcd(a, b) = 1, (a, b) = (1). So 1 = xa + yb for some x, y ∈ Z. So for r ∈ R,
we get r = rxa+ ryb. So

r + (ab) = rxa+ ryb+ (ab) = φ(ry + (a), rx+ (b))

So φ is onto.

Now we also have to deal with injectivity (since R/(ab) is not necessarily finite).
If φ(r1 + (a), r2 + (b)) = 0 + (ab), then br1 + ar2 ∈ (ab). Thus a|br1 + ar2, so
a|br1, but gcd(a, b) = 1, so a|r1, so r1 + (a) = 0 + (a).

3.3.2 Primary decomposition theorem

Let R be a ED, M a f.g. R−module. Thus M ∼= N1 ⊕ ... ⊕ Nt with each Ni
either equal to R, or R/(pn) for some prime p ∈ R and some n ≥ 1.

Proof. Note that if d = pn1
1 ...pnk

k with pi ∈ R distinct primes, then the previous
lemma shows that R/(d) ∼= R/(pn1

1 ) ⊕ ... ⊕ R/(pnk

k ). Plug this into the usual
classification of f.g. modules we get the result.

3.4 Modules over F [X], andnormal forms for matrices

For any field F , F [X] is a ED. So the results of the last section apply.

If V is a vector space over F and α : V → V an endomorphism, then we have

F [X]× V →V
(f, v) →f(α)(v)

which makes V into a F [X]−module, call it Vα (see section 3.1).

Lemma: if V is finite-dimensional, then Vα is finitely-generated as a F [X]−module.

Example. 1) Suppose Vα ∼= F [X]/(Xr) as a F [X]−module. This has F−basis
1, X,X2, ..., Xr−1, and the action of α on V corresponds to multiplication by X.

So in this basis, α has matrix with A(i+1),i = 1 and all other entries 0.
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2) Suppose Vα ∼= F [X]/(X − λ)r)is a F [X]−module. Consider β = α − λId,
then

Vβ ∼= F [Y ]/(Y n)

as a F [Y ]−module. So by (1), V has a basis so that β is given by the above
matrix. So α is given by Diag(λ) +A where A(i+1),i = 1.

3) Suppose vα ∼= F [X]/(f) with f = a0 + a1X + ... + ar−1X
r−1 + Xr. Then

1, X, ...,Xr−1 is a F−basis, and in this basis, α is given by the A in example (1)
with an additional column −a0,−a1, ...,−ar−1 added rightmost. This matrix is
called the companion matrix for f1 and is written C(f).

3.4.1 Rational canonical form theorem

Let α : V → V be a linear map, V finite-dimensional vector space over F .
Regards V as a F [X]−module Vα, we have

Vα ∼= F [X]/(d1)⊕ ...⊕ F [X]/(dr)

with d1|d2|...|dr. This there is a basi sof V for which α is given by Diag(c(d1), c(d2), ..., c(dr)).
To prove this we can simply apply classification of f.g. modules over F [X], an
ED, and note that is(?) copies of F [X] appear, as this has ∞ dimension over F .

Observations:
1) If α is represented by a matrix A in some basis, then A is conjugate to
(Diag(c(d1), ..., c(dr)). 2) The minimal polynomial for α is dr ∈ F [X].
3) The characteristic polynomial of α is d1d2...dr.

Lemma. The primes in C[X] are X − λ for λ ∈ C, up to associates.

Proof. If f ∈ C[X] is irreducible, Fundamental theorem of algebra says that f
has a root λ, or f is a constant. If it is constant it is 0 or a unit X, so X − λ|f ,
so f = (X − λ)g. But f is irreducible. So g is a unit, so f is an associate of
X − λ.

The conjugacy classes in GL2(Z/3) are(
0 2
1 0

)
,

(
0 1
1 2

)
,

(
0 1
1 1

)
,

(
λ 0
1 λ

)
,

(
λ 0
0 µ

)
for non-zero λ and µ.

Recall
|GL2(Z/3)| = (9− 1)(9− 3) = 24 · 3

so Sylow 2-subgroup has order 16 = 24. The first matrix among the above 5 has
order 4, the second and third have order 8, while for the fourth one, λ = 1 has
order 3 and λ = 2 has order 6, and the diagonal matrices has order 2. So Sylow
2-subgroup cannot be cyclic (order 16).
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Now let A,B be the first and the second matrix respectively. Then

A−1BA =

(
2 2
2 0

)
This have to be some power of B (since it’s in the same conjugacy class as B).
In fact it is equal to B3.

So 〈B〉 ≤ 〈A,B〉 ≤ GL2(Z/3), and 〈B〉 / 〈A,B〉.

By the second isomorphism theorem is 〈A,B〉〈B〉 = 〈A〉
〈A〉∩〈B〉 . But

〈A〉 ∩ 〈B〉 =

〈(
2 0
0 2

)〉
is a group of order 2. But 〈A〉 has order 4. So

|〈A,B〉 / 〈B〉| = |〈A〉 /(〈A〉 ∩ 〈B〉)| = 4/2 = 2

so 〈A,B〉 | = 2 · 8 = 16. So this is a Sylow 2-subgroup of GL2(Z/3). It is〈
A,B|A4 = I,B8 = I, A−1BA = B3

〉
a semidihedral group of order 16.

Example. Let R = Z[X]/(X2 + 5), which we wish to show, that it is equal to
Z[−5] ≤ C. Then

(1 +X)(1−X) = 1−X2 = 1 + 5 = 6 = 2 · 3

while 1±X, 2, 3 are all irreducible, so R is not a UFD. Let

I1 = (3, 1 +X), I2 = (3, 1−X)

be ideals (submodules) of R. Consider

φ : I1 ⊕ I2 → R

(a, b)→ a+ b

an R−module map. Then

im(φ) = (3, 1 +X, 1−X)

But 3− ((1 +X) + (1−X)) = 1. So this is the whole ring.

Also ker(φ) = {(a, b) ∈ I1⊕ I2|a+ b = 0} ∼= I1 ∩ I2 by sending x back to (x,−x).
Hence

(3) ⊂ I1 ∩ I2
Let s · 3 + t(1− x) ∈ (3, 1−X) ⊂ R = Z[X]/(X2 + 5).

Working module (3) as well, get

t(1 +X) = (1−X)p (mod (3, X2 + 5) = (3, X2 − 1) = (3, (X − 1)(X + 1)).
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So 1−X|t, so (1 +X)(1−X)|t(1 +X), so t(1 +X) = q(X2− 1) = q(X2 + 5− 6)
i.e. t(1 +X) = 3(−2q).

Therefore s · 3 + t(1 +X) is divisible by 3, so I1 ∩ I2 ⊂ (3), so equality.

By Example sheet 4 Q1(iii), if we have module N ≤M and M/N ∼= Rn, then
M ∼= N ⊕Rn.

So hence, I1 ⊕ I2/ ker(φ) ∼= im(φ) = R, so I1 ⊕ I2 ∼= R⊕ ker(φ) = R⊕ (3).

Consider
ψ : R→ (3)

x→ 3x

ker(ψ) = {x ∈ R|3x = 0} = 0 as R is an integral domain. So ψ is an isomorphism.
So I1 ⊕ I2 ∼= R⊕R.

We claim that I1 is not principal. If I1 = (a+ bX), then I2 = (a− bX). Then

(3) = I1 ∩ I2 = ((a+ bX)(a− bX)) = (a2 − bX2) = (a2 + 5b2)

so 3 ∈ (a2 + 5b2), so 3 = (a2 + 5b2)(c+ dX), so a2 + 5b2|3. Contradiction. So I1
cannot be principal, so I2 cannot be as well. But now:

• I1 need 2 eleemnts to generate it, but it is not the free module R2;
• I1 is a direct summand of R2.
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