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1 Analytic Functions

1.1 The Complex Plane and the Riemann Sphere

Re = <
Im = =

Any z ∈ C can be written in the form x+ iy where x = <(z), y = =(z), x, y ∈ R,

or reiθ where the modulus is |z| = r =
√
x2 + y2 and the argument θ = arg z

satisfies x tan θ = y (x sin θ = y cos θ).

The argument is defined only up to multiples of 2π; the principal value of the
argument is the value of θ in the range (−π, π].

Note that the formula tan−1( yx ) gives the correct value for the principal value
of θ only if x > 0; if x ≤ 0 then it might be out by ±π (consider z = 1 + i and
−1− i).

Definition. An open set D is a subset of C which does not include its boundary.
More technically, D ⊂ C is open if ∀z0 ∈ D, ∃δ > 0 s.t. the disc |z − z0| < δ is
contained in D. A neighbourhood of a point z is an open set that contains z.

A domain is an open set that is connected, i.e. is not composed of two disjoint
open sets). A simply-connected domain is one with no holes, i.e. any curve lying
in the domain can be shrunk continuously to a point.

Among the above three diagrams, the first is not connected, the second is not
simply-connected, and the third is simply-connected.

Definition. The extended complex plane C∗ = C ∪ {∞}. We can reach the
’point at infinity’ by going off in any direction in the plane, and all are equivalent.

Conceptually, we may use the Riemann sphere, which is a sphere resting on the
complex plane with its ’South Pole’ S at z = 0.
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For any point z in C, drawing a line through the ’North Pole’ N of the sphere
to z, and noting where this intersects the sphere, specifies an equivalent point P
on the sphere. Then ∞ is equivalent to the ’North Pole’ itself.

To investigate properties of∞, we use the substitution ζ = 1
z . A function f(z) is

said to have a particular property at ∞ if f( 1
ζ ) has that same property at ζ = 0.

1.2 Complex Differentiation

Recall the definition of differentiation for a real function f(x):

f ′(x) = lim
δx→0

f(x+ δx)− f(x)

δx

It is implicitly that the limit must be the same whichever direction we approach
from. Consider |x| at x = 0 for example; if we approach from the right (δx→ 0+),
then the limit is +1, whereas from the left (δx→ 0−), it is −1. Because these
limits are different, we say that |x| is not differentiable at x = 0.

Now extend the definition to complex functions f(z) : f is differentiable at z if

f ′(z) = lim
δz→0

f(z + δz)− f(z)

δz

exists (and is therefore independent of the direction of approach – but now there
is an infinity of possible directions).

We say that f is analytic at a point z if there exists a neighbourhood of z
throughout which f ′ exists. The terms regular and holomorphic are also used.
A function which is analytic throughout C is called entire.

The property of analyticity is in fact a surprisingly strong one! For example,
two consequences include:
• If a function is analytic then it is differentiable infinitely many times (c.f. the
existence of real functions which can be differentiated N times but no more, for
any given N).
• A bounded entire function is a constant (c.f. tanhx for x ∈ R).

Definition. A singularity of f is a point at which it is not analytic, or not even
defined.
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Theorem. (Cauchy-Riemann Equations)
Separate f and z into real and imaginary parts:

f(z) = u(x, y) + iv(x, y)

where z = x+ iy and u, v are real functions. Suppose that f is differentiable at
z. We may take δz in any direction; first take it to be real, δz = δx. Then

f ′(z) = lim
δx→0

f(z + δx)− f(z)

δx

= lim
δx→0

u(x+ δx, y) + iv(x+ δx, y)− u(x, y)− iv(x, y)

δx

=
∂u

∂x
+ i

∂v

∂x

Now take δz to be pure imaginary, i.e. δz = iδy. Then

f ′(z) = lim
δy→0

f(z + iδy)− f(z)

iδy

= lim
δy→0

u(x, y + δy) + iv(x, y + δy)− u(x, y)− iv(x, y)

iδy

= −i∂u
∂y

+
∂v

∂y

The two values for f ′(z) must be the same since f is differentiable. So compare
real and imaginary parts we get

∂u

∂x
=
∂v

∂y
,

∂v

∂x
= −∂u

∂y

The Cauchy-Riemann equations. The converse (that a function satisfying the
CR equations is differentiable) is true only if we impose additional requirements,
for example that the partial derivatives ux, uy, vx, vy are continuous functions of
x and y (together), in the sense described in Analysis II.

Example. (Analytic functions)
(i) f(z) = z is entire. We check u = x, v = y, and the C − R equations are
satisfied (1 = 1 and 0 = 0).
(ii) f(z) = ez = ex(cos y + i sin y) is entire since

∂u

∂x
= ex cos y =

∂v

∂y
,

∂u

∂y
= −ex sin y = −∂v

∂x

And obviously the derivatives are all continuous. The derivative is

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez
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as expected.
(iii) f(z) = zn (n a positive integer) is entire.
Writing z = r(cos θ + i sin θ) we obtain u = rn cosnθ and v = rn sinnθ. We can

check the CR equations using r =
√
x2 + y2 and tan θ = y

x . The derivative is
nzn−1 as expected!

(iv) Any rational function, i.e. f(z) = P (z)
Q(z) where P,Q are polynomials is analytic

except at points where Q(z) = 0. For instance, f(z) = z
z2+1 is analytic except

at ±i.
(v) Many standard real functions can be extended naturally to complex functions
and obey the usual rules for their derivatives: for example:
•

sin z ≡ eiz − e−iz

2i

has derivative

cos z ≡ eiz + e−iz

2

We can also write

sin z = sin(x+ iy) = sinx cos iy + cosx sin iy

= sinx cosh y + i cosx sinh y

Similarly for cos z, sinh z, cosh z, etc.

• log z = log |z|+ i arg z has derivative 1
z .

• The product, quotient and chain rules hold in exactly the same way as for real
functions.

Example. (Non-analytic functions)
(i) f(z) = <(z). We have u = x, y = 0. But 1 6= 0, so f is not analytic anywhere.

(ii) f(z) = |z| has u =
√
x2 + y2 and v = 0, and is also nowhere analytic.

(iii) f(z) = z̄ = x− iy (complex conjugate) has u = x, v = −y. We have 1 6= −1,
so f is also nowhere analytic.
(iv) f(z) = |z|2 = x2 + y2 has u = xz + y2, v = 0 are satisfied only at the origin.
So f is only differentiable at z = 0. So f is also nowhere analytic.

1.2.1 (*)Analytic continuation

If we are given the values of an analytic function in some restricted region –
which could be rather small, such as a short curve somewhere in the complex
plane – then there is a unique extension of the function to the rest of C that
is still analytic. This extension might have some singularities, and might be
multi-valued.
This fact can be useful in extending the domain of definition of a function. We
shall see an example in section 5.2.
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1.3 Harmonic functions

Suppose f(z) = u+ iv is analytic. Then

∂2u

∂x2
=

∂

∂x
(
∂u

∂x
) =

∂

∂x
(
∂v

∂y
) =

∂

∂y
(
∂v

∂x
) =

∂

∂y
(−∂u

∂y
) = −∂

2u

∂y2

So u satisfies Laplace’s equation in two dimensions,

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0

Similarly, so does v.

A function satisfying Laplace’s equation in an open set is said to be harmonic
there.

Functions u and v satisfying the CR equations are called harmonic conjugates. If
we know one then we can find the other, up to a constant. For example, consider
u(x, y) = x2−y2, which is easily verified to be harmonic. Its harmonic conjugate
v satisfies

∂v

∂y
=
∂u

∂x
= 2x =⇒ v = 2xy + g(x)

for some function g(x). So

−2y =
∂u

∂y
= −∂v

∂x
= −2y − g′(x) =⇒ g′(x) = 0

So g(x) is some constant α. The corresponding analytic function whose real part
is u is therefore

f(z) = x2 − y2 + i(2xy + α)

= (x+ iy)2 + iα

= z2 + iα

If the domain is not simply connected then this method might give a solution
that is multi-valued. For example, if u = 1

2 log(x2 + y2), which is harmonic in
the domain 0 < |z| < 1, the corresponding f(z) is log z.

1.4 Multi-valued functions

For z = reiθ, we define log z = log r + iθ. There are therefore infinitely many
values of log z, for θ may take an infinity of values. For example,

log i =
πi

2
,

5πi

2
,−3πi

2
, ...

Depending on which choice of θ we make.
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1.4.1 Branch points

Consider the three curves shown in the diagram.

On C1, we could choose θ to be always in the range (0, π2 ), and then log z would
be continuous and single-valued (c.s.v.) going around C1. On C2, we could
choose θ ∈ (π2 ,

3π
2 ) and log z would again be c.s.v. But for C3, which encircles

the origin, there is no such choice; whatever we do, log z cannot be made c.s.v.
around C3 (it must either ’jump’ somewhere or be multi-valued).

A branch point of a function – here, the origin – is a point which is impossible to
encircle with a curve on which the function is both continuous and single-valued.
The function is said to have a branch point singularity at that point.

Example. (i) log(z − a) has a branch point at z = a.
(ii) log( z−1

z+1 ) = log(z − 1)− log(z + 1) has two branch points at ±1.

(iii) zα = rαeiαθ has a branch point at the origin for α 6∈ Z. Consider a circle of
radius r0 centred at O, and suppose WLOG that we start at θ = 0 and go once
round anti-clockwise.
θ must vary continuously to ensure continuity of eiαθ, so as we get back almost
to where we started, θ will approach 2π. But then there will be a jump in θ
back to 0 (to satisfy the single-valued requirement) and hence a jump in zα

from rα0 e
2πiα to rα0 (note that if α ∈ Z then e2πiα = 1, so there’s no jump). We

cannot, therefore, make zα c.s.v. on the circle.
(iv) log z also has a branch point at ∞, because if ζ = 1

z (see section 1.1),
log z = − log ζ which has a branch point at ζ = 0. Similarly, zα has a branch
point at ∞ for α 6∈ Z.
(v) log( z−1

z+1 ) does not have a branch point at∞, because if ζ = 1
z then log( z−1

z+1 ) =

log( 1−ζ
1+ζ ). For ζ close to zero, 1−ζ

1+ζ remains close to 1 and therefore well away
from the branch point of log at the origin. So we can encircle ζ = 0 without
log 1−ζ

1+ζ being discontinuous.

1.4.2 Branch cuts

If we wish to ensure that log z is c.s.v. on any curve, therefore, we must stop
curves from encircling the origin. We do this by introducing a branch cut from
−∞ on the real axis to the origin. No curve is allowed to cross this cut.
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We can then decide to fix on values of θ lying in the range (−π, π] only, and we
have defined a branch of log z which is c.s.v. on any curve C that doesn’t cross
the cut. This branch is analytic everywhere with derivative 1

z ) except on the
negative real axis, where it is not even continuous, and at the branch point itself.

The cut described above is the canonical (i.e. standard) branch cut for log z,
and the branch of log z is called the principal value of the logarithm.

What are the values of log z just above and below the branch cut? Consider a
point on the negative real axis, z = x, x < 0. Just above the cut, at z = x+ i0+,
θ = π (in the limit) so

log z = log |x|+ iπ

Just below it, at z = x+ i0−, log z = log |x| − iπ.

This is not the only possible branch of log z, for example:

(a) We could place the branch cut along the negative imaginary axis and choose
θ ∈ (−π2 ,

3π
2 ].

(b) With a branch cut along the negative real axis, we could choose θ ∈ (π, 3π].
Then log 1 = 2πi.
(c) With the branch as illustrated, it is more difficult to write down the exact
choice of θ. But this is equally valid.

Any branch cut that stops curves wrapping round the branch point will do.
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Exactly the same considerations (and possible branch cuts) apply for zα = rαeiαθ,
α 6∈ Z. Another way of seeing this is to note that zα = eα log z.

Whenever a problem requires the use of a branch, it is important to specify it
clearly. This can be done in two ways:
• Define the function and parameter range explicitly, e.g.

Log z = log |z|+ i arg z, arg z ∈ (−π, π]

• Specify the location of the branch cut and give the value of the required branch
at a single point not on the cut. The values everywhere else are then defined
uniquely by continuity. For example, log z with a branch cut along R− and
log 1 ≡ 0.

Note that a branch cut alone does not specify a branch (compare (b) above with
the principal branch, which is a different branch even though it uses the same
branch cut), nor a single value of the function sufficient by itself (compare (a)
and (c) above).

1.4.3 Riemann Surfaces*

Riemann imagined different branches as separable copies of C, all stacked on top
of each other but each one joined to the next at the branch cut. This structure
is a Riemann surface.

1.4.4 Multiple Branch Cuts

When there is more than one branch point, we may need more than one branch
cut. For

f(z) = {z(z − 1)}1/3

there are branch points at 0 and 1, so we need two branch cuts; a possibility is
shown below. Then no curve can wrap around either 0 or 1.
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For any z, write z = reiθ and z − 1 = r1e
iθ, with θ ∈ (−π, π], θ1 ∈ [0, 2π), and

define
{z(z − 1}1/3 = 3

√
rr1e

i(θ+θ1)/3.

This is continuous so long as we don’t cross either branch cut.

Sometimes we need fewer branch cuts than we might think: wee the worked
example.

1.5 Möbius maps

The Möbius map

z → w =
az + b

cz + d
, ad− bc 6= 0

is analytic except at z = −dc . It can be useful to consider it as a map from C∗ to

C∗ (C∗ = C∪ {∞}), with −dc →∞ and ∞→ a
c . It is then bijective, the inverse

being

w → z =
−dw + b

cw − a
which is another Möbius map.

A circline is either a circle or a line. Möbius maps take circlines to circlines.

Proof. Any circline can be expressed as a circle of Apollonius, |z−z1| = λ|z−z2|
where z1, z2 ∈ C, |lambda ∈ R+ (recall Vectors and Matrices: the case λ = 1
corresponds to a line, λ 6= 1 to a circle). We then have∣∣∣∣−dw + b

cw − a
− z1

∣∣∣∣ = λ

∣∣∣∣−dw + b

cw − a
− z2

∣∣∣∣
⇐⇒ |(cz1 + d)w − (az1 + b)| = λ|(cz2 + d)w − (az2) + b|

(*)

If and only if

|w − w1| = λ

∣∣∣∣cz2 + d

cz1 + d

∣∣∣∣ |w − w2|



1 ANALYTIC FUNCTIONS 13

where w1 = az1+b
cz1+d , w2 = az2+b

cz2+d , which is another circle of Appolonius (This proof
fails if either cz1 + d or cz2 + d vanishes; but in either of these cases, (*) trivially
represents a circle).

Geometrically it is clear that choosing three distinct points in C∗ uniquely
specifies a circline (If one of the points is ∞ then we have specified a straight
line through the other two points).

Given α, β, γ, α′, β′, γ′ ∈ C∗, we can find a Möbius map which sends α → α′,
β → β′, γ → γ′.

Proof. The Möbius map

f1(z) =

(
β − γ
β − α

)
z − α
z − γ

sends α→ 0, β → 1, γ →∞. Let

f2(z) =

(
β′ − γ′

β′ − α′

)
z − α′

z − γ′

then f−1
2 ◦ f1 is the required mapping. It is a Möbius map since Möbius maps

form a group.

Putting all these results together, we conclude that we can find a Möbius map
taking any given circline to any other.

1.6 Conformal map

Definition. A conformal map f : U → V where U, V are open subsets of C, is
one which is analytic with non-zero derivatives in U . Although not part of the
definition, it is usual (and helpful) to require that f be 1-1 from U to V .

An alternative definition is that a conformal map is one that preserves the angle
(in both magnitude and orientation) between intersecting curves. We shall show
that our definition implies this. The converse is also true (proof omitted), so the
two definitions are equivalent.

Proof. Suppose that z1(t) is a curve in C parameterised by t ∈ R, which passes
through a point z0 when t = t1. Suppose further that its tangent there, z′1(t),
has a well-defined direction; then z′1(t1) 6= 0 and the curve makes an angle
φ = arg z′1(t1) to the x-axis at z0.

Consider the image of the curve, Z1(t) = f(z1(t)). Its tangent direction at t = t1
is

Z ′1(t1) = z′1(t1)f ′(z1(t1)) = z′1(t1)f ′(z0)

and therefore makes an angle with the x-axis of argZ1(t1) = arg(z′1(t1)f ′(z0)) =
φ+ arg f ′(z0) (noting that arg f ′(z0) exists since f is conformal so f ′(z0) 6= 0).
In other words, the tangent direction is rotated by arg f ′(z0).
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Now if z2(t) is another curve passing through z0, then its tangent direction will
also be rotated by arg f ′(z0). The result follows.

Sometimes we don’t know what V , the image of f acting on U , is in advance.
Often, the easiest way to find it is first to find the image of the boundary ∂U ,
which will form the boundary ∂V of V ; but, since this does not reveal upon
which side of ∂V V lies, to then find the image of a single point of our choice
within U , which will lie within V .

Example. (i) The map z → az+ b, a, b ∈ C, a 6= 0. It rotates by arg a, enlarges
by |a|, and translates by b, and is conformal everywhere.
(ii) f(z) = z2 is a conformal map from

U = {z : 0 < |z| < 1, 0 < arg z <
π

2
}

to
V = {w : 0 < |w| < 1, 0 < argw < π}.

Note that the right angle between the two boundary curves at z = 1 is preserved
because f is conformal; similarly at z = i. But the right angle at z = 0 is not
preserved because f ′ is not conformal there (f ′(0) = 0). Fortunately this doesn’t
matter since U is an open set so does not include 0.

(iii) Consider U = {z : <z < 0} and V =
{
w : −π4 < argw < π

4

}
.
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We need to halve the angle, so try using z1/2, for which we need to choose a
branch. The branch cut must not lie in U (since z1/2 is not analytic on the
branch cut), so choose a cut along the negative imaginary axis: reiθ →

√
reiθ/2

where θ is chosen to lie in the range (−π2 ,
3π
2 ]. Having defined this branch, we

now apply z1/2 to U to produce the wedge {z′ : π
4 < arg z′ < 3π

4 }; so we just

need to rotate through −π2 . The final map is f(z) = −iz1/2.

(iv) ez takes rectangles conformally to sectors of annuli:

With an appropriate choice of branch, log z does the reverse.

(v) Möbius maps (which are conformal everywhere except at the point that is
sent to ∞) are very useful in taking circles, or parts of them, to straight lines,
or vice versa.

Consider f(z) = z−1
z+1 acting on the unit disc U = {z : |z| < 1}. The boundary of

U is a circle; the three points −1, i and i+ 1 lie on this circle and are mapped
to ∞, i and 0 respectively. Therefore (see section 1.5) the image of ∂V is the
imaginary axis; since f(0) = −1, we see that the image of U is the left-hand
half-plane.
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*Alternative derivation: w = z−1
z+1 ⇐⇒ z = −w+1

w−1 . So |z| < 1 ⇐⇒ |w + 1| <
|w − 1|, i.e. w is closer to −1 than it is to +1.

In fact, this particular map can be deployed more generally on quadrants because
it permutes 8 divisions of the complex plane as follows:

1→ 2→ 3→ 4→ 1, 5→ 6→ 7→ 8→ 5.

(vi) f(z) = 1
z is another Möbius map for acting on vertical or horizontal lines.

In practice, complicated conformal maps are usually built up from individual
building blocks, each a simple conformal map; the required map is the composition
of these (note that the composition of conformal maps is still conformal, see the
worked example).

1.7 Solving Laplace’s Equation using conformal maps

The following algorithm can be used to solve Laplace’s equation

∇2φ(x, y) = 0
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on a tricky domain U ⊂ R with given Dirichlet boundary conditions on ∂U . We
identify subsets of R2 with subsets of C in the obvious manner.

1. Find a conformal map f : U → V where U is now considered a subset of C
and V is a ’nice’ domain of our choice. Our aim is to find a harmonic function
Φ in V that satisfies the same boundary conditions as φ.
2. Map the boundary conditions on ∂U directly to the equivalent points on ∂V .
3. Now solve ∇2Φ = 0 in V with the new boundary conditions.
4. The required harmonic function φ in U is then given by

φ(x, y) = Φ(<f(x+ iy),=f(x+ iy)).

This works because, since Φ is harmonic, it is the real part of some complex
analytic function F (z) = Φ(x, y) + iΨ(x, y) where z = x+ iy (see section 1.3).
Now F (f(z)) is analytic as it is a composition of analytic functions; so its real
part, which is Φ(<f,=f), is harmonic.

Example. Solve ∇2φ = 0 in the first quadrant of R2 subject to boundary
condition φ(x, 0) = 0, φ(0, y) = 1, where x, y > 0, and with φ bounded near the
origin and at ∞.
We choose f(z) = log(z) (principal branch) which maps U to the strip 0 < =z <
π
2 .

It takes the positive real axis to =z = 0 and the positive imaginary axis to
=z = π

2 . Therefore we must solve ∇2Φ = 0 in V subject to boundary conditions
Φ(x, 0) = 0, φ(x, π2 ) = 1, and Φ bounded as x→ ±∞. By inspection the solution
is

Φ(x, y) =
2

π
y.

So
phi(x, y) = Φ(< log z,= log z)

=
2

π
= log z

=
2

π
tan−1

(y
x

)
.



2 CONTOUR INTEGRATION AND CAUCHY’S THEOREM 18

2 Contour Integration and Cauchy’s Theorem

2.1 Contours and Integrals

Definition. A curve γ(t) is a (continuous) map γ : [0, 1]→ C.
A closed curve is one where γ(0) = γ(1).
A simple curve is one which does not intersect itself (except at t = 0, 1 in the
case of a simple closed curve).
A contour is a piecewise smooth curve.
We shall, in an abuse of notation, often use the symbol γ to denote both the map
and its image, namely the actual curve in C traversed in a particular direction.
The contour −γ is the contour γ traversed in the opposite direction. Given two
contours γ1 and γ2, with matching end-points, i.e.γ1(1) = γ2(0), γ1 + γ2 denotes
the two contours joined end to end.
The contour integral

∫
γ
f(z)dz is defined to be∫ 1

0

f(γ(t))γ′(t)dt.

Alternatively (and equivalently), for a simple contour we dissect it at points z0,
z1, ..., zN on the contour in that order, where z0 = γ(0) and zN = γ(1), and let
δzn = zn+1 − zn for n = 0, ..., N − 1. Then∫

γ

f(z)dz = lim
∆→0

N−1∑
n=0

f(zn)δzn

where ∆ = maxn=0,...,N−1 |δzn| and, as ∆→ 0, N →∞.

The result of a contour integral between two points in C may depend on the
choice of contour.

For example, consider

I1 =

∫
γ1

dz

z
,

I2 =

∫
γ2

dz

z

where in both cases we integrate from z = −1 to z = 1. around a unit circle: γ1

above and γ2 below the real axis (see diagram below).
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Substitute z = eiθ, then dz = ieiθdθ. But then

I1 =

∫ 0

π

ieiθdθ

eiθ
= −iπ

while

I2 =

∫ 0

−π

ieiθdθ

eiθ
= iπ.

2.1.1 Elementary properties

(i)
∫
γ1+γ2

f(z)dz =
∫
γ1
f(z)dz +

∫
γ2
f(z)dz.

(ii)
∫
−γ f(z)dz = −

∫
γ
f(z)dz.

(iii) If γ is a contour from a to b in C then
∫
γ
f ′(z)dz = f(b)− f(a) so long as f

is differentiable at every point on γ (so, for example, we must not cross a branch
cut of f).
(iv) Integration by substitution and by parts work exactly as for integrals on the
real line.
(v) If γ has length L and |f(z)| is bounded by M on γ, then

|
∫
γ

f(z)dz| ≤ LM

since

|
∫
γ

f(z)dz ≤
∫
γ

|f(z)||dz|

≤M
∫
γ

|dz|

= LM.

2.1.2 Integrals on closed contours

If γ is a closed contour, then it doesn’t matter where we start from on γ, as long
as we go all the way round.
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The notation
∮
f(z)dz denotes an integral round a closed contour.

The usual direction of traversal is anticlockwise (the ’positive sense’); if we
traverse γ in a negative sense (clockwise) then we get the negation of the
previous result. More technically, the positive sense is the direction that keeps
the interior of the contour on the left.

2.2 Cauchy’s theorem

If f(z) is analytic in a simply-connected domain D, then for every simple closed
contour γ in D, ∮

γ

f(z)dz = 0.

Proof. (*)
The proof of this remarkable theorem is simple and follows from the Cauchy-
Riemann equations and Green’s Theorem. Let u, v be the real and imaginary
parts of f . Then∮

γ

f(z)dz =

∮
γ

(u+ iv)(dx+ idy)

=

∮
γ

(udx− vdy) + i

∮
γ

(vdx+ udy)

=

∫
S

(
−∂v
∂x
− ∂u

∂y

)
dxdy + i

∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy

where S is the region enclosed by γ, by applying Green’s theorem in the plane,∮
∂S

(Pdx+Qdy) =

∫
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

But both brackets vanish by the Cauchy-Riemann equations because f is differ-
entiable throughout S. The result follows.

(**) In fact, this proof requires u and v to have continuous partial derivatives,
else Green’s theorem isn’t applicable. We shall see later that f is in fact
differentiable infinitely many times, so u and v do have continuous partial
derivatives; unfortunately our proof of that will utilize Cauchy’s Theorem. For
the complete proof see complex analysis.

2.3 Contour deformation

Suppose that γ1 and γ2 are two contours from a to b, and that f is analytic on
and between the contours. Then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.
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Proof.

Suppose first that γ1 and γ2 do not cross. Then γ1−γ2 is a simple closed contour,
so
∫
γ1−γ2 f(z)dz = 0 by Cauchy’s Theorem. The result follows.

If γ1 and γ2 do cross, then dissect them at each crossing point (e.g. c in the
diagram) and apply the technique above to each section.

So, if f has no singularities,
∫ b
a
f(z)dz does not depend on the chosen contour

at all.

(*) Another way of thinking about path-independence, and indeed Cauchy’s
Theorem itself, is to consider

∫
f(z)dz as a path integral in R2. Then

f(z)dz = (u+ iv)(dx+ idy)

= (u+ iv)dx+ (−v + iu)dy

is an exact differential:

∂

∂y
(u+ iv) =

∂

∂x
(−v + iu)
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from the Cauchy-Riemann equations. (*)

The same idea of ’moving the contour’ applies to closed contours. Suppose that
γ1 is a closed contour that can be continuously deformed into another, γ2, inside
it; and suppose that f has no singularities in the region between them.

Consider the contour γ shown;
∮
γ
f(z)dz = 0.

Now let the distance between the two ’cross-cuts’ tend to 0; these contributions
cancel out and, in the limit, we have∮

γ1

f(z)dz −
∮
γ2

f(z)dz = 0.

2.4 Cauchy’s integral formula

Suppose that f is analytic in a domain D and that z ∈ D. Then

f(z) =
1

2πi

∮
γ

f(w)

w − z
dw (*)
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for any simple closed contour γ in D encircling z anticlockwise. (Note that if z

does not lie on or inside γ then 1
2πi

∮
γ
f(w)
w−z dw = 0 by Cauchy’s Theorem, since

there is no singularity).

Proof. (*)
Let γε be a circle of radius ε about z, within γ.

By section 2.3, ∮
γ

f(w)

w − z
dw =

∮
γε

f(w)

w − z
dw

Since the only singularity is at z which is not between γε and γ. So by substituting
w = z + εeiθ, the above is then equal to∫ 2π

0

f(z + εeiθ)

εeiθ
iεeiθdθ

=i

∫ 2π

0

(f(z) +O(ε))dθ

→2πif(z)

as ε→ 0. The result follows. (*)

(**) So, if we know f on γ then we know it at all points within γ. Another way
of looking at this is to write f = u+ iv, where u and v are harmonic, and u, v
are specified by on γ; so we have Laplace’s equation for u and v with Dirichlet
boundary conditions, which has a unique solution inside γ. (**)

We can differentiate CIF(*):

f ′(z) =
1

2πi

∮
γ

f(w)

(w − z)2
dw

Differentiation under the integral sign is valid because the integrand, both before
and after, is a continuous function of both w and z, or in short because this is
Complex Methods. Repeating we get

f (n)(z) =
n!

2πi

∮
γ

f(w)

(w − z)n+1
dw
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Hence at any point where f is analytic, all its derivatives exist, so it is differen-
tiable infinitely many times, as advertised in section 1.2.

(*) An application of Cauchy’s integral formula is Liouville’s theorem: any
bounded entire function is a constant. Suppose that |f(z)| ≤M for all z, and
consider a circle of radius r centered at an arbitrary z ∈ C. Then

f ′(z) =
1

2πi

∮
|w−z|=r

f(w)

(w − z)2
dw

So from section 2.1(v),

|f ′(z)| ≤ 1

2π
· 2πr · M

r2
=
M

r

which tends to 0 as r →∞. Hence f ′(z) = 0 ∀z ∈ C. So f is constant, i.e. every
bounded entire function is a constant. (*)

(*) Another application is the maximum modulus principle: if f is analytic
within a bounded domain and on its boundary, then |f(z)| attains its maximum
on the boundary (proof omitted). (*)
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3 Laurent Series and Singularities

3.1 Taylor Series

If f is analytic at z0, then it has a Taylor series

f(z) =

∞∑
n=0

an(z − z0)n

in some neighbourhood of z0 (see section 3.3 for more information about the
region of convergence).

All the standard Taylor series from real analysis apply, for example those of ez

and of (1− z)−1.

3.2 Zeros

The zeros of an analytic function f(z) are the points z0 where f(z0) = 0. A
zero is of order N if, in its Taylor series, the first non-zero coefficient is aN .
Equivalently, it is of order N if

0 = f(z0) = f ′(z0) = ... = f (N−1)(z0)

but f (N)(z0) 6= 0.

A zero of order one (or two, three, etc) is also called a simple zero (or double
zero, triple zero etc).

Example. z3 + iz2 + z + i = (z − i)(z + i)2 has a simple zero at z = i and a
zero of order two at z = −i.

Example. sinh z has zeros where

ez − e−z

2
= 0 ⇐⇒ e2z = 1 ⇐⇒ z = nπi

for n ∈ Z. The zeros are all simple (since coshnπi = cosnπ 6= 0).

Example. Since sinh z has a simple zero at z = πi, sinh3z has a zero of order
3 there. If needed, we can find its Taylor series about πi by writing ζ = z − πi:

sinh3 z = [sinh(ζ + πi)]3

= [− sinh ζ]3

= −(ζ +
1

3!
ζ3 + ...)3

= −ζ3 − 1

2
ζ5 − ...

= −(z − πi)3 − 1

2
(z − πi)5 − ...
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3.3 Laurent Series

If f has a singularity at z0, we cannot expect it to have a Taylor series there.
Instead, if f is analytic in an annulus R1 < |z − z0| < R2, then it has a Laurent
series about z0,

f(z) =

∞∑
n=−∞

an(z − z0)n

convergent within the annulus (this definition is a bit different from that in
GRM).

Proof. (*) See the separate sheet. (*)

It can be shown that the Laurent Series for f about a particular z0 is unique
within any given annulus. Note that Taylor series are just a special case of
Laurent Series (R1 = 0).

Example. ez

z3 has a Laurent series about z0 = 0 given by

ez

z3
=

∞∑
m=0

zm − 3

m!
=

∞∑
n=−3

1

(n+ 3)!
zn

so

an =
1

(n+ 3)!

for n ≥ −3.

Example. e1/z about z0 = 0 has

e1/z = 1 +
1

z
+

1

2!z2
+

1

3!z3
+ ...,

so an = 1
(−n)! for n ≤ 0.
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Example. If f(z) = 1
z−a where a ∈ C, then f is analytic in |z| < |a|. So it has

a Taylor series about z0 = 0 given by

1

z − a
= −1

a
(1− z

a
)−1 = −

∞∑
n=0

a−n−1zn

In |z| > |a|, it has a Laurent series (in the ’annaulus’ |a| < |z| <∞) given by

1

z − a
=

1

z
(1− a

z
)−1 =

∞∑
m=0

am

zm+1
=

−1∑
n=−∞

a−n−1zn.

Example. f(z) = ez

z2−1 has a singularity at z0 = 1 but is analytic in an annulus
0 < |z− z0| < 2 (since the only other singularity is at z = −1). Write everything
in terms of ζ = z − z0, so

f(z) =
eζez0

ζ(ζ + 2)

=
ez0

2ζ
eζ
(

1 +
1

2
ζ

)−1

=
e

2ζ

(
1 + ζ +

1

2!
ζ2 + ...

)(
1− 1

2
ζ +

1

4
ζ2 − ...

)
=

e

2ζ

(
(1 +

1

2
ζ +

1

4
ζ2 + ...

)
=

1

2
e

(
1

z − z0
+

1

2
+
z − z0

4
+ ...

)
.

Hence a−1 = 1
2e, a0 = 1

4e, etc. This series is valid in the whole annulus (our
expansion of (1 + 1

2ζ)−1 was valid for | 12ζ| < 1, i.e. |z − z0| < 2).

Example. The above doesn’t seem to work for f(z) = z−1/2: we cannot find a
Laurent series about z0 = 0. The reason is that the required branch cut (see
section 1.4) would pass through any annulus about the origin, so we cannot find
an annulus in which f is analytic (of course, z−1/2 has Taylor series about other
points z0 6= 0 except those on the branch cut).

3.3.1 Radii of convergence

Suppose we have a Laurent series that we know to be valid in some annulus
R1 < |z − z0| < R2 but that there are no singularities on |z − z0| = R2.
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Then the outer radius of convergence can actually be pushed outwards until
the circle touches a singularity, say at z2. Similarly, if there are no singularities
on |z − z0| = R1, then the inner radius can be pulled inwards until that circle
touches a singularity, say at z1. Then our Laurent series in fact converges in the
new annulus

|z1| ≡ R′1 < |z − z0| < R′2 ≡ |z2|.
In other words, the annulus of convergence of a Laurent series can always be
made maximally large, with a singularity on each of the bounding circles.

(*) This is because we could have stated with R′1 and R′2 in the first place instead
of R1 and R2 in the proof that the Laurent series exists; and Laurent series are
unique, so this new one must be the same as our old series. (*)

A Taylor series is just a special case of a Laurent series, resulting in the following
statement: the radius of convergence of a Taylor series is always the distance to
the nearest singularity.

Example. cosech z has Laurent series(
z +

z3

3!
+ ...

)−1

= z−1

(
1− z2

6
+ ...

)
=

1

z
− z

6
+ ...

for sufficiently small z 6= 0, but it is hard to work out when the binomial
expansion is valid. Nevertheless the singularities closest to the origin are at
z = ±πi, so the annulus of convergence is in fact 0 < |z| < π.

3.4 Classification of singularities

Suppose that f has a singularity at z = z0. If there is a neighbourhood of z0

within which f is analytic, except at z0 itself, then f has an isolated singularity
at z0. If there is no such neighbourhood, then f has a non-isolated singularity
(some authors call this an ’essential singularity’, but that creates confusion with
another type described below).

Example. cosech z has isolated singularities at z = nπi, n ∈ Z (from section
3.2 (ii)).
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Example. cosech 1
z has isolated singularities at z = 1

nπi , n 6= 0, and a non-
isolated singularity at z = 0 (since there are other arbitrarily close singularities).

Example. cosech z has a non-isolated singularity at z =∞ (see section 1.1).

Example. z−1/2 has a branch point singularity at z = 0 (see section 1.4); this
is a type of non-isolated singularity (because z−1/2 is not analytic at any point
on the branch cut), but is usually treated as a separate type of singularity.

If f has an isolated singularity at z0, we can find an annulus 0 < |z − z0| < r0

say within which f is analytic, and therefore has a Laurent series. This gives us
a way to classify singularities:
(a) Check for a branch point singularity;
(b) Check for a non-isolated singularity;
(c) Otherwise, consider the coefficients of the Laurent series

∑∞
n=−∞ an(z−z0)n:

(c1) If an = 0 ∀n < 0, then f has a removable singularity at z0;
(c2) If ∃N > 0 such that an = 0 ∀n < −N , but a−N 6= 0 then f has a pole of
order N at z0 (For N = 1, 2, ... this is also called a simple pole, double pole, etc.).
(c3) If there does not exist such an N , then f has an essential isolated singularity
at z0.

The behaviour of f near z0 is as follows:
1. At a removable singularity, where

f(z) = a0 + a1(z − z0) + ...

for 0 < |z−z0| < r0, f(z)→ a0 as z → z0; so an easy way to tell that a singularity
is removable is that f has a finite limit. We can ’remove the singularity’ by
redefining f(z0) = a0 = limz→z0 f(z); then f will become analytic at z0.
2. At a pole, |f(z)| → ∞ as z → z0.
3. At an essential isolated singularity, f does not tend to any finite or infinite
limit. (*) In fact, it can be shown that f takes all possible complex values (bar
at most one) in any neighbourhood of z0, however small. For example, e1/z takes
all values except 0.(*)

Example. (i) 1
z−i has a simple pole at z = i (since it is its own Laurent series).

(ii) cos z
z has Laurent series

z−1 − 1

2
z +

1

24
z3 − ...

about the origin, so has a simple pole at z = 0.

(iii) z2

(z−1)2(z−i)3 has a double pole at z = 1 and a triple pole at z = i. To show

formally that, for instance, there is a double pole at z = 1, notice first that
z2

(z−i)3 is analytic there, so has a Taylor series

b0 + b1(z − 1) + b2(z − 1)2 + ...

for some bn. Hence

z2

(z − 1)2(z − i)3
=

b0
(z − 1)2

+
b1

z − 1
+ ...
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(iv) If g(z) has a zero of order N at z = z0, then 1
g(z) has a pole of order N there

(and vice vesa). Hence cot z has a simple pole at the origin, because tan z has s
simple zero there. To prove the general statement, write g(z) = (z − z0)NG(z)
for some G(z) with G(z0) 6= 0, and note that 1

G(z) has a Taylor series about z0.

(v) z2 has a double pole at ∞ (see section 1.1).
(vi) e1/z has an essential isolated singularity at z = 0 because all the an’s are
non-zero for n < 0 (see section 3.3(ii)).
(vii) sin 1

z also has an essential singularity at z = 0 because (using the standard
Taylor series for sin) there are non-zero an for infinitely many n < 0.
(viii) f(z) = ez−1

z has a removable singularity at z = 0, because

f(z) = 1 +
1

2!
z +

1

3!
z2 + ...

By defining f(0) = 1, we would remove the singularity and obtain an entire
function.
(ix) f(z) = sin z

z is not defined at z = 0 but has a removable singularity there;
remove it by setting f(0) = limz→0 f(z) = 1.

(x) A rational function f(z) = P (z)
Q(z) where P,Q are polynomials has a singularity

at any point z0 where Q has a zero; but if P (z0) = 0 as well, then the singularity

is removable by redefining f(z) = P ′(z0)
Q′(z0) (assuming that Q has a simple zero).

3.5 Closed Contour Integrals of Laurent Series

Suppose that f is analytic within some annulus, so has a Laurent series

∞∑
n=−∞

an(z − z0)n

there, and that γ is an anticlockwise simple closed contour lying within the
annulus.

What is
∮
γ
f(z)dz?
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Choose a circular contour γr of radius r lying inside γ but still within the annulus.
From section 2.3, we can deform the contour, so∮

γ

f(z)dz =

∮
γr

f(z)dz

=

∞∑
n=−∞

an

∮
γr

(z − z0)ndz

(by uniform convergence on γr). But let z = z0 + reiθ, then∮
γr

(z − z0)ndz =

∫ 2π

0

rneinθ · ireiθdθ

= irn+1

∫ 2π

0

ei(n+1)θdθ

=

{
2π n = −1,
rn+1

n+1 [ei(n+1)θ]2π0 = 0 n 6= −1

Hence ∮
γ

f(z)dz = 2πia−1.
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4 The Calculus of Residues

4.1 Residues

If f has an isolated singularity at z0 then it has a Laurent series expansion
about that point (see section 3.4). The residue of f at z0 is the coefficient a−1

of its Laurent series (we have already seen in section 3.5 that this coefficient is
important for evaluating integrals). There is no standard notation but we shall
denote the residue by resz=z0f(z).

At a simple pole, the residue is given by

resz=z0f(z) = lim
z→z0
{(z − z0)f(z)}

since the RHS is equal to

lim
z→z0

{
(z − z0)

(
a−1

z − z0
+ a0 + a1(z − z0) + ...

)}
More generally, at a pole of order N the residue is given by

lim
z→z0
{ 1

(N − 1)!

dN−1

dzN−1
((z−0)Nf(z))}

which can be proved in a similar manner (see example sheet).

In practice, a variety of techniques can be used to evaluate residues: no single
techniques is optimal.

4.2 The Residue Theorem

Suppose that f is analytic in a simply-connected domain except at a finite
number of isolated singularities z1, ..., zn; and that a simple closed contour γ
encircles the singularities anticlockwise.
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Then ∮
γ

f(z)dz = 2πi

n∑
k=1

resz=zkf(z).

Proof. Consider the curve γ̂ shown, consisting of small clockwise circles γ1,...,γn
around the singularities; cross-cuts, which cancel in the limit as they approach
each other in pairs, and the large outer curve (which is the same as γ in the
limit).

γ̂ encircles no singularities, so ∮
γ̂

f(z)dz = 0

by Cauchy’s Theorem. So in the limit when the cross-cuts cancel, we have∮
γ

f(z)dz +

n∑
k=1

∮
γk

f(z)dz =

∮
γ̂

f(z)dz = 0

But about each isolated singularity zk there is a Laurent series valid locally in
some annulus, so by seciont 3.5 and section 4.1 we have∮

γk

f(z)dz = −2πi resz=zkf(z).

(the minus sign is because γk is a clockwise contour). The result follows.

4.3 Applications of the Residue Theorem

To illustrate the technique we shall evaluate

I =

∫ ∞
0

dx

1 + x2

(which we can already do by trigonometric substitutions).
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Consider ∮
γ

dz

1 + z2

where γ is the contour shown: from −R to R along the real axis (γ0) then
returning to −R via the upper half plane γR. This is known as ’closing in the
upper half plane’. Now

1

1 + z2
=

1

(z + i)(z − i)

So the only singularity enclosed by γ is a simple pole at z = i, where the residue
there is

lim
z→i

1

z + i
=

1

2i

Hence by the Residue Theorem∫
γ0

dz

1 + z2
+

∫
γR

dz

1 + z2
=

∮
γ

dz

1 + z2

= 2πi
1

2i
= π.

But ∫
γ0

dz

1 + z2
=

∫ R

−R

dx

1 + x2
→ 2I

as R→∞. Also ∫
γR

dz

1 + z2
→ 0

as R→∞ (see below), so we get in the limit

2I + 0 = π =⇒ I =
π

2
.

To justify
∫
γR

dz
1+z2 → 0 as R→∞, we can use a formal or an informal argument:

Formal:
|1 + z2| ≥ |1− |z|2| = |1−R2| = R2 − 1
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for large R. So ∣∣∣∣ 1

1 + z2

∣∣∣∣ ≤ 1

R2 − 1
.

From section 2.1(v), ∣∣∣∣∫
γR

dz

1 + z2

∣∣∣∣ ≤ πR · 1

R1 − 1
→ 0

as R→∞.

Informal: ∣∣∣∣∫
γR

dz

1 + z2

∣∣∣∣ ≤ πR sup
z∈γR

∣∣∣∣ 1

1 + z2

∣∣∣∣
= πRO(R−2)

= O(R−1)→ 0

as R→∞.

This example is not in itself impressive, but the method adapts easily to more
difficult integrals.

Note that we could also have ’closed in the lower half plane’ instead. Most of the
argument would be unchanged; the residue would now be resz = −i 1

1+z2 = − 1
2i ,

but the contour now goes clockwise, which results in an additional minus sign
that cancels each other.

Example. To find

I =

∫ ∞
0

dx

(x2 + a2)2

where a > 0 is a real constant, consider∮
γ

dz

(z2 + a2)2

where γ is as above. The only singularity within γ is a pole of order 2 at z = ia,
at which the residue is

lim
z→ia

d

dz

1

(z + ia)2
= lim
z→ia

2

(z + ia)3

= −1

4
ia−3

The integral around γR still vanishes as R→∞, since now∣∣∣∣∫
γR

dz

(z2 + a2)2

∣∣∣∣ ≤ πR ·O(R−4) = O(R−3).

Therefore

2I = 2πi(−1

4
ia−3)

i.e. I = π
4a3 .
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4.4 Advanced Applications of the Residue Theorem: us-
ing rectangular contours

4.5 Jordan’s Lemma
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5 Transform Theory

5.1 Fourier Transforms

The Fourier transforms of a function f(x) that decays sufficiently rapidly as
|x| → ∞ is

f̃(k)

∫ ∞
−∞

f(x)e−ikxdx

and the inverse transform is

f(x) =
1

2π

∫ ∞
−∞

f̃(k)eikxdk

It is common for the terms e−ikx and e+ikx to be swapped around in these
definitions; more rarely, factors of 2π or

√
2π are rearranged. Traditionally, if f

is a function of position x then the transform variable is called k; while if f is a
function of time t then it is called ω.

(*) In fact a more precise version of the inverse transform is

1

2
(f(x+) + f(x−)) =

1

2π
PV

∫ ∞
−∞

f̃(k)e+ikxdk

where PV denotes the principal value of the integral. The LHS indicates that
at a discontinuity, the inverse transform gives the average value. The RHS
shows that only the principal value of the integral, sometimes denoted dashed

∫
is required, i.e. limR→∞

∫ R
−R rather than limR→∞

∫ S
−R (several functions have

PV integrals but not normal ones: e.g. PV
∫
−∞∞

x
1+x2 dx = 0, but

∫
x

1+x2 dx
diverges at both −∞ and ∞). This is convenient for us in light of the semicircle
method of section 4.3 and 4.5.

The Fourier transform can also be denoted by f̃ = F(f) or f̃(k) = F(f)(k). In
a slight abuse of notation, we often write f̃(k) = F(f(x)).

5.1.1 Properties of the Fourier Transform

(i) Linearity: F(αf + βg) = αF(f) + βF(g);
(ii) Translation: F(f(x− x0)) = e−ikx0 f̃(k);
(iii) Scaling: F(f(λx)) = 1

|λ| f̃( kλ );

(iv) Shifting: F(eik0xf(x)) = f̃(k − k0);
(v) Transform of a derivative: F(f ′(x)) = ikf̃(k), More generally, F(f (n)(x)) =
(ik)nf̃(k);
(vi) Derivative of a transform: f̃ ′(k) = −iF(xf(x)); More generally, f̃ (n)(k) =
(−i)nF(xnf(x));
(vii) Parseval’s identity:∫ ∞

−∞
|f(x)|2dx =

1

2π

∫ ∞
−∞
|f̃(k)|2dk.
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(viii) Convolution: if h = f ∗ g, that is, h(x) =
∫∞
−∞ f(x − x′)g(x′)dx′, then

h̃(k) = f̃(k)g̃(k).

5.1.2 Calculating transforms using the calculus of residues

Example. (i) If f(x) = e−x
2/2, then

f̃(k) =

∫ ∞
−∞

e−x
2/2e−ikxdx

=

∫ ∞
−∞

e−(x+ik)2/2e−k
2/2dx

= e−k
2/2

∫
γ0

e−z
2/2dz (z = xik)

where γ0 is the contour show, running along the line im z = k, in the limit R→∞.
We can show that

∫
γR
→ 0 and

∫
γ−R
→ 0, and there are no singularities, so∫

γ0
= −

∫
γ1

=
∫∞
−∞ in the limit. Hence

f̃(k) = e−k
2/2

∫ ∞
−∞

e−z
2/2dz =

√
2πe−k

2/2

using standard result from real analysis.

(ii) When inverting Fourier transforms, we generally use a semicircular contour
(in the upper half plane if x > 0, and lower otherwise) and apply Jordan’s lemma:
see the worked example.

5.2 Laplace transforms

The Fourier transform is a powerful tool for solving differential equations and
investigating physical systems, but it has two key restrictions: first many func-
tions of interest grow exponentially and so do not have Fourier transforms; and
secondly, there is no way of incorporating initial or boundary conditions in the
transform variable (when used to solve an ODE, the Fourier transform merely
gives a particular integral: there are no arbitrary constants produced by the
method).

To get around these restrictions we introduce the Laplace transform, but we
have to pay the price with a different restriction: it is only defined for functions
f(t) which vanish for t < 0 (by convention). From now on we shall make this
assumption, so that if we refer to the function f(t) = et for instance, we really
mean f(t) = etH(t) where H is the Heaviside function.

The Laplace transform of such a function is defined by

f̂(p) =

∫ ∞
0

f(t)e−ptdt
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It exists for functions that grow no more than exponentially fast as t→∞.

The notation f̂ = L(f) or f̂(p) = L(f(t)) is also used, and the symbol s is often
used instead of p. Many functions (e..g. t and et) which do not have Fourier
transforms do have Laplace transforms.

(*) Note that f̂(p) = f̃(−ip) provided that both transforms exist.

Example. (i) L(1) =
∫∞

0
e−ptdt = 1

p .

(ii) L(t) = 1
p2 by integration by parts.

(iii)L(eλt) =
∫∞

0
e(λ−p)tdt = 1

p−λ .

(iv) L(sin t) = L( 1
2i (e

it − e−it)) = 1
2i

(
1
p−i −

1
p+i

)
= 1

p2+1 using (iii).

(*) Note that the integral only converges if <p is sufficiently large; for instance,

in example (iii), we require <p > <λ. However, once we have calculated f̂ in this
domain, we can consider it to exist everywhere in the complex p =plane, except
at singularities (such as at p = λ in this example), using analytic continuation
as described in section 1.2. (*)

It is useful to build up a ’library’ of Laplace transforms:

Table 1: Library of Laplace transforms

f(t) f̂(p) f(t) f̂(p)

1 1/p tn n!/pn+1

eλt 1/(p− λ) tneλt n!/(p− λ)n+1

sinwt (w/p2 + w2) coswt p/(p2 + w2)
sinhλt λ/(p2 − λ2) coshλt p/(p2 − λ2)
δ(t) 1 δ(t− t0) e−pt0

5.3 Properties of the Laplace transform

The first 4 properties are easily proved by substitution.

(i) Linearity: L(αf + βg) = αL(f) + βL(g).

(ii) Translation: L(f(t− t0)H(t− t0)) = e−pt0 f̂(p).

(iii) Scaling: L(f(λt)) = 1
λ f̂( pλ ), where we require λ > 0 so that f(λt vanishes

for t < 0.
(iv) Shifting: L(ep0tf(t)) = f̂(p− p0).

(v) Transform of a derivative: L(f ′(t)) = pf̂(p)− f(0).

Proof. ∫ ∞
0

f ′(t)e−ptdt = [f(t)e−pt]∞0 + p

∫ ∞
0

f(t)e−ptdt

= pf̂(p)− f(0).
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Repeating the process, we get

L(f ′′(t)) = pL(f ′(t))− f ′(0)

= p2f̂(p)− pf(0)− f ′(0)

ans so on. This is the key fact for solving ODEs using Laplace transforms so
should be remembered.

(vi) Derivative of a transform: f̂ ′(p) = L(−tf(t)).

Proof.

f̂(p) =

∫ ∞
0

f(t)e−ptdt

=⇒ f̂ ; (p) = −
∫ ∞

0

tf(t)e−ptdt.

More generally,
f̂ (n)(p) = L((−t)nf(t))

So for example,

L(t sin t) = − d

dp

1

p2 + 1

=
2p

(p2 + 1)2

from section 5.2(iv).

(vii) Asymptotic limits:

pf̂(p)→
{
f(0) p→∞
f(∞) p→ 0

Proof. from (v) above we get

pf̂(p) = f(0) +

∫ ∞
0

f ′(t)e−ptdt

As p→∞, e−pt → 0 ∀t, so pf̂(p)→ f(0) (since f ′ grows no more than exponen-

tially fast). Similarly, as p→ 0, e−pt → 1, so pf̂(p)→ f(0)+
∫∞

0
f ′(t)dt = f(∞).

5.4 The Inverse Laplace Transform

Given f̂(p), we can calculate f(t) using the Bromwich inversion formula

f(t) =
1

2πi

∫ C+i∞

C−i∞
f̂(p)eptdp.
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Here C is a real constant and the inversion contour Γ runs along the vertical
line <p = c. Γ must lie to the right of all the singularities of f̂(p).

In the case that f̂(p) has only a finite number of isolated singularities pk,
k = 1, ..., n, and f(p)→ 0 as |p| → ∞,

f(t) =

n∑
k=1

resp=pk(f̂(p)ept)

for t > 0, and vanishes for t < 0.

Note that this result does not hold if f̂(p) 6→ 0 at ∞ (see example (iii) below).

Proof. When t < 0, consider the contour γ′ = γ0 + γ′R shown, which encloses no
singularities.

If f̂(p) = o(|p|−1) as |p| → ∞ then∣∣∣∣∣
∫
γ′R

f̂(p)eptdp

∣∣∣∣∣ ≤ πRect sup
p∈γ′R

|f̂(p)| → 0
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as R → ∞ (here we have used |ept| ≤ ect which arises from the fact that
<(pt) ≤ ct, noting that t < 0).

If f̂ decays less rapidly at ∞, but still tends to zero there, the same result holds
by a slight modification of Jordan’s Lemma. So in either case,

∫
γ′R
→ 0. Also,∫

γ0
→
∫

Γ
; by Cauchy’s theorem, therefore, f(t) = 0 for t < 0 (As it must do for

any function with a Laplace transform; this explains why Γ must lie to the right
of all the singularities).

When t > 0, we close the contour to the left instead, and let γ = γ0 + γR as
shown. Once again we can show that

∫
γR
→ 0 as R→∞.

Hence, by the residue theorem,∫
Γ

f̂(p)eptdp = lim
R→∞

∫
γ0

f̂(p)eptdp

= lim
R→∞

∫
γ

f̂(p)eptdp

= 2πi

n∑
k=1

resp=pk(f̂(p)ept).

The result follows (fiddly) from the Bromwich inversion formula.

Example. (i) f̂(p) = 1
p−1 has a pole at p = 1, so we must use c > 1. We have

f̂(p)→ 0 as |p| → ∞, so Jordan’s lemma applies as above. Hence f(t) = 0 for
t < 0, and for t > 0,

f(t) = resp=1

(
ept

p− 1

)
= et

.

(ii) f̂(p) = p−n has a pole of order n at p = 0, so c > 0, and f̂(p)→ 0 as |p| → ∞.
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Hence for t > 0,

f(t) = resp=0

(
ept

pn

)
= lim
p=0

{
1

(n− 1)!

dn−1

dpn−1
ept
}

=
tn−1

(n− 1)!
.

(iii) In the case f̂(p) = e−p

p we cannot use the standard result above since

f̂(p) 6→ 0 as |p| → ∞ in the left-hand half plane. But we can write

f(t) =
1

2πi

∫
Γ

e−p

p
eptdp

=
1

2πi

∫
Γ

1

p
ept
′
dp

where t′ = t− 1. Now we can close to the right when t′ < 0 and to the left when
t′ > 0, picking up the residue from the pole of 1

p . Hence

f(t) =

{
0 t′ < 0
1 t′ > 0

=

{
0 t < 1
1 t > 1

= H(t− 1).

(iv)

If f̂(p) has a branch point (at p = 0 say), then we must use a Bromwich keyhole
contour as shown.
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5.4.1 Derivation of the inverse Laplace transform (*)

Since f has a Laplace transform, it frows no more than exponentially fast; hence
there exists c ∈ R s.t.

g(t) = f(t)e−ct

decays at ∞ (and is zero for t < 0 of course). So g has a Fourier transform and

g̃(w) =

∫ ∞
−∞

f(t)e−cte−iwtdt = f̂(c+ iw).

Then invert the Fourier transform, we get

g(t) =
1

2π

∫ ∞
−∞

f̂(c+ iw)eiwtdw

=⇒ f(t)e−ct =
1

2πi

∫ c+i∞

c−i∞
f̂(p)e(p−c)tdp

by substituting p = c+ iw. The result follows.

5.5 The Convolution Theorem for Laplace Transforms

The convolution of two functions f and g

(f ∗ g)(t) =

∫ ∞
−∞

(t− t′)g(t′)dt′.

simplifies when f and g vanish for negative t to

(f ∗ g)(t) =

∫ t

0

f(t− t′)g(t′)dt′.

The convolution theorem states that L(f ∗ g)(p) = f̂(p)ĝ(p), just as for Fourier
transforms.

Proof.

L(f ∗ g)(p) =

∫ ∞
0

{
∫ t

0

f(t− t′)g(t′)dt′}e−ptdt

=

∫ ∞
0

{
∫ t

0

f(t− t′)g(t′)e−ptdt′}dt

=

∫ ∞
0

{
∫ ∞
t′

f(t− t′)g(t′)e−ptdt}dt′

by changing the order of integration in the (t, t′) plane, then equals∫ ∞
0

{
∫ ∞

0

f(u)g(t′)e−pue−pt
′
du}dt′

=

∫ ∞
0

{
∫ ∞

0

f(u)e−pudu}g(t′)e−pt
′
dt′

= f̂(p)ĝ(p)

as required.
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Example. If f(t) = t, then f̂ ∗ f(p) = (f̂(p))2 = 1
p4 .

Now L(tn) = n!
pn+1 (see section 5.2). So (f ∗ f)(t) = 1

6 t
3. This is easily verified

by direct calculation:

(f ∗ f)(t) =

∫ t

0

(t− t′)t′dt′

=
1

2
t3 − 1

3
t3 =

1

6
t3.

5.6 Solution of Differential Equation using the Laplace
Transform

Example. (i) The Laplace transform converts constant coefficient ODEs to
algebraic equations (and PDEs to ODEs): see the worked example.

(ii) Consider
tÿ + (1− t)ẏ + 2y = 0, y(0) = 1.

Now

L(tẏ) = − d

dp
L(ẏ)

= − d

dp
(pŷ − y(0))

= −pŷ′ − y

using section 5.3 (vi) and (v). Similarly for L(tÿ). hence we obtain (after
simplification)

p(1− p)ŷ′ = (p− 3)ŷ

which is a first-order ODE for ŷ(p). It is easily solved:

ŷ = A

(
1

p
− 2

p2
+

1

p3

)
where A is an arbitrary constant. Using section 5.3 (vii),

y(0) = lim
p→∞

pŷ(p) = A

so A = 1.

Inverting ŷ using the ’library’ in section 5.2 we get

y = 1− 2t+
1

2
t2.
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