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0 Miscellaneous

Some speech

Google lecture’s name to find his homepage and example sheets or probably
some notice of a change of room
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1 Poisson process

Suppose we have a Geiger counter. We model the ”click process” as a family
{N(t) : t ≥ 0}, where N(t) denotes the total number of ticks up to time t. Now
note that N(t) ∈ {0, 1, ...}, N(s) ≤ N(t) if s ≤ t, N increases by unit jumps, and
N(0) = 0. We also assert that N is right-continuous, i.e. limx→t+ N(x) = N(t).

Definition. (infinitesimal definition)
A Poisson process with intensity λ is a process N = (N(t) : t ≥ 0) which takes
values in S = {0, 1, 2, ...}, s.t.:
(a) N(0) = 0, N(s) ≤ N(t) if s ≤ t;
(b)

P(N(t+ h) = n+m|N(t) = n) =

 λh+ o(h) m = 1
o(h) m > 1
1− λh m = 0

Recall that g(h) = o(h) means that g(h)
h → 0 as h→ 0;

(c) if s < t, then N(t)−N(s) is independent of all arrivals prior to s.

Theorem. N(t) has the Poisson distribution with parameter λt.

Proof. Study N(t+ h) given N(t). We have

P(N(t+ h) = j) =
∑
i≤j

P(N(t+ h)

= j|N(t) = i)P(N(t) = i)

= (1− λh)P(N(t) = j) + λhP(N(t) = h− 1) + o(h)

So

P(N(t+ h) = j)− P(N(t) = j)

h
= −λP(N(t) = j) + λP(N(t) = j − 1) +

o(h)

h

write pn(t) = P(N(t) = n), then let h→ 0+ we get

p′j(t) = −λpj(t) + λpj−1(t) j ≥ 1

p′0(t) = −λp0(t)

with boundary condition p0(0) = 1.
We solve p0 to get p0(t) = e−λ(t). Then we can use this to inductively solve
p1, p2, ... to get the desired result.

An alternative derivation from the differential equations:
LetG(s, t) =

∑
j s
jpj(t). Now we take the set of differential equation, multiplying

each one by sj , then we get

∂G

∂t
= λ(s− 1)G

Then we have
G(s, t) = A(s)eλ(s−1)t

We also have G(s, 0) = 1 so we should be able to plug in a suitable value of s to
get the desired result (I probably missed that).
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Definition. (Holding/interarrival times) In a poisson process (pp) with param-
eter λ, let N(t) denote the total number of ”clicks”. Define the arrival times
T0 = 0, Tn = inf{t ≥ 0 : N(t) = n}, i.e. the first time t that N reaches n (note
right continuity of N). We also define the interarrival times Xn = Tn − Tn−1.

Theorem. Suppose X1, X2, ... are known. Let Tn =
∑n

1 xi, note N(t) =
max{n : Tn ≤ t}. Then the random variables X1, X2, ... are independent and
they have the exponential distribution with parameter λ (Exp(λ)).

Proof.
P(X1 > t) = P(N(t) = 0) = e−λt

So X1 has Exp(λ) distribution. Now consider P(X2 > t|X1 = t1). This doesn’t
look to make much sense as X1 has a continuous distribution so P(X1 = t1) = 0;

however we could could consider the conditional densiy as fX|Y (x|y) =
fX,Y (x,y)
fY (y) .

Then P(X2 > t|X1 = t1) = P( no arrivals in (t1, t1 + t)|X1 = t1) = P( no
arrivals in (t1, t1 + t) by independence. This is then equal to P( no arrivals in
(0, t)) = P(N(t) = 0) = e−λt. Then continue by induction.

Proposition. (properties of a poisson process N)
(a) N has stationary independent increments, i.e.:
(i) If 0 < t1 < ... < tn, then N(t1), N(t2) − N(t1), ..., N(tn) − N(tn−1) are
independent;

(ii) N(s+ t)−N(s)
d−→ N(t)−N(0).

Amongst processes which are right continuous, non-decreasing, has only jump
discontinuities of size 1, (i) and (ii) are characteristics of the Poisson process,
meaning that Poisson process is the only process that has those two properties.
(b) Thinning:
Suppose insects arrive as a poisson process with parameter λ. Each insect is a
mosquito with probability α, or a skeet with probability 1−α, and the occurences
of the two insects are independent. Then
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(i) the mosquito-arrival process F is a PP (αλ), (ii) the skeet-arrival process is S
a PP ((1− α)λ), and (iii) these processes are independent.

Proof. (i) and (ii) are immediate by infinitestimal definition of a poisson process.
For (iii), by independence we mean that P(F (t1) = f1, S(t1) = s1, ..., F (tn) =
fn, S(tn) = sn) = P(F (t1) = f1, ..., F (tn) = fn)P(S(t1) = s1, ..., S(tn) = sn)
∀t1, ..., tn, f1, ..., fn, s1, ..., sn).

The simple case is

P(F (t) = f, S(t) = s) =
(λt)f+se−λt

(f + s)!

(
f + s

f

)
αf (1− α)s

=
(αλt)f

f !
e−αλt

((1− α)λt)s

s!
e−(1−α)λt

= P(F (t) = f)P(S(t) = s)

(c) Superposition:
F : Flies arrive as PP (λ1);
S: Skeets arrive as PP (λ2), and these processes are independent. Then N =
F + S is a PP (λ1 + λ2). This follows by infinitesimal construction of PP .
(d) Given N(t) = n, write T = (T1, ..., Tn), t = (t1, ..., tn), we have fT(t|N(t) =
n) =

(
1
t

)n
n!L(t), where L(t) = 1 iff t1 < t2 < ... < tn.

Proof. Next time.

Let’s complete the proof left last lecture.

Theorem. Conditional on {N(t) = n}, the times T1, ..., Tn have joint pdf

fT|N(t)=n(t) =
n!

tn
L(t)1{tn≤t}

where L(t) = 1{t1≤t2≤...≤tn}.

Proof. The interarrival times X1, X2, ..., Xn have joint pdf

fX(x) = λn exp(−λ
n∑
i

xi)

by change of variables, we now have (noting Ti = X1 + ...+Xi)

fT(t) = λne−λtnL(t)
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Now for C ⊆ Rn, we have

P(T ∈ C|N(t) = n) =
P(T ⊆ C,N(t) = n)

P(N(t) = n)

=
1

P(N(t) = n)

∫
C

P(N(t)

= n|T = t)fT(t)dt

=
1

P(N(t) = n)

∫
tn≤t

e−λ(t−tn)λne−λtnL(t)dt

the last equation is because we need ther to be no arrival between t and tn. Now
the conditional pdf of T given N(t) = n is

1

(λt)ne−λt/n!
e−λ(t−tn)λne−λtnL(t) =

n!L(t)

tn
1{tn≤t}

I think somewhere in this proof we used P(X ∈ C) =
∫
C
g(u)du ⇐⇒ fX(u) =

g(u), otherwise the lecture wouldn’t have written this down on a separate
board.
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2 Continuous-time Markov chains

This is actually quite a complicated topic, so we are going to make a lot of
assumptions to simplify it.

Assume state space S is countable, and we often take S ⊆ Z = {...,−1, 0, 1, ...}
(sometimes useful to assume |S| <∞).

Definition. A process X = {X(t) : t ≥ 0} taking values in S satisfies the
Markov property if:

P(X(tn) = j|X(t1) = i1, ..., X(tn−1) = in−1)

= P(X(tn) = j|X(tn−1) = in−1)

for all i1, i2, ..., in−1, j ∈ S, t1 < t2 < ... < tn.

We have the transition probabilities pi,j(s, t) = P(X(t) = j|X(s) = i). We,
however, assume the process is homogeneous, i.e.

pi,j(s, t) = pi,j(0, t− s) := pi,j(t− s)∀s, t, i, j

so the transition probabilities only depend on the duration of time passed
instead of the absolute time. We can then write this as a transition matrix
(pi,j(t))i,j∈S = Pt.

Proposition. The family {Pt : t ≥ 0} satisfies
(a) P0 = I;
(b) Pt is a stochastic matrix, i.e. a non-negative matrix with row sum 1;
(c) Ps+t = PsPt for s, t ≥ 0.

Proof. (of (c))
pi,j(s+t) =

∑
k∈S pi,k(s)pj,k(t) by Markov Property which is just the component

form of Ps+t = PsPt.
Ps+t = PsPt is sometimes called the semigroup property (s, t ≥ 0).
(Pt : t ≥ 0) is called a stochastic semigroup.

General theory involves conditions of regularity.

We assume X is a right-continuous jump process.

Holding times for general chains:

Assume X(t0) = i.
Let H = inf{t > t0 : X(t) 6= i}. We have

P(H > u+ v|H > u) = P(H > v) (∗)

by Markov Property (u, v ≥ 0).

Let G(u) = P(H > u). By (*), we get G(u+v)
G(u) = G(v), so G(u+ v) = G(u)G(v).

We know G(0) = 1, and G is non-increasing.
Solution: G(n) = G(1)G(n − 1) = G(1)n ∀n ∈ N. Also G(p/q)...G(p/q) =
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G(p) = G(1)p so G(p/q) = G(1)p/q, hence G(u) = G(1)u for u ≥ 0. We deduce
that G(u) = e−αu for some α > 0.

Lemma. A random variable X > 0 has an exponential distribution iff it has
the lack of memory property : P(X > u+ v|X > u) = P(X > v) ∀u, v > 0.

A MC s a combination of exponential-distribution holding times, and a transition
matrix for the jump chain Y = (Yn) given by Y0 = X(0), Y1 = X(T1), where
T1 = inf{t : X(t) 6= X(0)}, and Yn = X(Tn) where Tn+1 = inf{t > Tn : X(t) 6=
X(Tn)}. Y is a discrete-time Markov chain.

If in state i, want H, we jump to state j 6= i with probability
gij
αi

. Intensity of a
jump is αi, and intensity of a jump to state j is gij .
Note a transition from i to itself is not deemed to be a transition.

We have pij(h) = gijh+o(j) (j 6= i), pij(h) = 1−
∑
j 6=i pij(h) = 1−h

∑
j 6=i gij +

o(h) = 1 − αih + o(h) = 1 + giih + o(h), where we let gii = −αi. Now we let
G be the matrix (gij), with the off-diagonal terms the previous gij ’s, but the
diagonal terms gii as defined just now (so as to make row sums 0). Now the
off-diagonal terms are non-negative, and diagonal terms are non-positive. We
call G the generator of the chain (otherwise known as the Q-matrix).

Conclusion: Pt−I
t

t→0+

−−−−→ G.
Questions of regularity: OK if |S| <∞.

(?)

pij(t+ h) =
∑
k

pik(t)pkj(h)

=
∑
k 6=j

pik(t)[gkjh+ o(h) + pij(t)(1 + gjjh+ o(h))

=
∑
k

pik(t)gkj

= Pt ·G
this is the (Kolmogov) Forward Equation.

pij(t+ h) =
∑
k pik(h)pkj(t), so P ′t = GPt, called the K-Backward equation.

Interchange of limits requires justification – it’s OK if |S| <∞.

Now P ′t = PtG, we can rewrite this as f ′ = fg, which gives f(t) = Aegt. So the

solution should be Pt = P0(= I)etG (i.e. =
∑∞
k=0

tk

k!G
k).

In many cases, the solution to the forward and/or backward equation is the
function P = etG.

A mistake has been made! The definition for holding time is wrong. It should
be H = inf{t− t0 : X(t) 6= X(t0), t > t0} (the length rather than the absolute
time).

Let’s look at an example now.
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Example. Let S = {1, 2}, G =
(−α α
β −β

)
, where αβ > 0. What are the pij(t)?

There are only two states, so let’s find

p′11(t) = −αp11 + βp12,

p′12(t) = αp11(t)− βp12(t)

...

So we get a bunch of differential equations, with boundary conditions p11(0) =
p22(0) = 1. This has a unique solution (check). We get Pt = etG =

∑
n
tn

n!AΛnA−1

wher we diagonalize G = AΛA−1. But etΛ is equal to Diag(eλ1t, eλ2t...). Each
pij(t) has the form

∑
k e

λktcK(i, j), where we need to find the constants ck(i, j).

Lemma. Let i, s ∈ S. Then either pij(t) = 0 ∀t > 0, or pij(t) > 0 ∀t > 0 (this
is because our time here is continuous; we can fit in any number of jumps in any
time length with positive probability).

Proof. Assume pij(T ) > 0 for some T > 0. Then for t > T , pij(t) ≥ pij(T )Pj(Xj >
t− T ) > 0 (start in j and holding time > t− T , which is positive).
For t < T : there exists finite sequence of jumps from i to j in time T , so
there exists i1, i2, ..., in ∈ S with gi,i1gi1,i2 ...gin,j > 0, where gi,j is as defined
previously. Then we can just divide the time (0, t) into n+ 1 intervals. Then
pi,j(t) ≥ pi,i1(t/(n+ 1))...ptn,j(t/(n+ 1)) > 0 (this is an applied course, so we
don’t care that much).

Definition. The chain X on state space is irreducible if ∀i, j ∈ S, ∀t >
0, pi,j(t) > 0 (⇐⇒ ∃t > 0, pi,j(t) > 0).

A distribution π on S is invariant (or stationary, or equilibrium distribution) if
π = πPt for all t ≥ 0.

Note: if X(0) has distribution µ0, then X(t) has distribution µt = µ0Pt (µt(j) =∑
i µ0(i)pi,j(t)).

Note: (a) Differentiate π = πPt to get 0 = πG;
(b) If Pt = etG then πG = 0 iff πGn = 0 for n ≥ 1 iff π

∑
n
tn

n!G
n = π iff πPt = π.

Theorem. Let X be irreducible. If there exist an invariant distribution π, then
it is unique (what a surpise), and pij(t)→ πj as t→∞. Can we prove this in
the remaining 11 minutes? Let’s try:

Proof. Let h > 0. Then Yn = X(nh). So Y is a ’skeleton’ of X. Y is a markov
chain. Since X is irreducible, so is Y . Y has invariant distribution π, hence π is
unique. (?) Since X is irreducible, Y is aperiodic(?). Hence pij(nh) → πij as
n→∞. Since this holds for all h ∈ Q+, we deduce that pij(t)→ πj as t→∞
through the rationals. The conclusion follows by continuity of pij(·).

Lemma. The functions pij(·) are continuous.

Last time we claimed that if ∀h > 0, pij(nh)πj as n→∞, then pij(t)→ πj as
t→∞. However this is wrong as the rate of convergence might depend on h.
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From some theorem in Linear Analysis it is known that if p is continuous then
the above is actually true. But this is an applied course so let’s not assume
Linear Analysis. Let’s now prove it with the following lemma:

Lemma. pij(·) is uniformly continuous in t.

Proof.

|pij(t+ h)− pij(t)| = |[
∑
k

pik(h)pkj(t)]− pij(t)|

≤ |
∑
k 6=i

pik(h)pkj(t)|+ |pij(t)[1− pii(h)]|

≤ [1− pii(h)]

≤ 2(1− e−gih)→ 0

as h→ 0.

Back to the theorem: let t > 0, ∃h s.t. |pij(t + h) − pij(t)| < 1
2ε∀t. Then

|pij(t) − pij(bt/hch)| < 1
2ε. Pick N s.t. |pij(nh) − πj | < ε/2 for n ≥ N . For

t > (n+ 1)h we have |pij(t)− πj | ≤ |pij(t)− pij(bt/hch)|+ |pij(bt/hch)− πj) ≤
1
2ε+ 1

2ε so done.

Explosion:
Let S be countable. H = (hi,j : i, j ∈ S) is the transition matrix of a discrete
time markov chain Z = (Zn : n ≥ 0) on S. Assume hi,i = 0∀i ∈ S. Let
(gi : i ∈ S) be non-negative reals. Inifinitesimal definition of X: gij = gihij
if i 6= j, and −gi if i = j. Holding time definition: X(0) = Z0. Given Z, let
U0, U1, ... be independent exponential random variables, where Un has parameter
gZn .

We define Tn = U0 + ... + Un−1, the time of the nth jump. X(t) = Zn if
Tn ≤ t < Tn+1.

Tn → T∞ =
∑∞

0 Un. Say the process [explodes if T∞ < ∞], or explodes if
P(T∞ <∞) > 0.

We augment the state space S to S′ = S ∪ {∞} (cemetery state, means ∞ is
absorbing). Assume: at T∞, the chain enters the cemetery state labelled ∞.
Such a process is called minimal.

Theorem. The process X, constructed via holding times as above, does not
explode if any of the following occurs:
(a) |S| <∞;
(b) supi gi <∞;
(c) X(0) = i, where i is recurrent for the jump chain Z.

Lemma. Let X1, ... be independent random variales, and Xi has distribution
Exp(λi−1). Let T∞ =

∑∞
1 Xi. P(T∞ <∞ = 0 if

∑
λ−1
i =∞, and 1 otherwise.
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Proof.

E(T∞) = E(

∞∑
1

Xi)

= E( lim
N→∞

N∑
1

Xi)

= lim
N→∞

E(

N∑
1

Xi)

= lim
N→∞

N∑
1

1

λi−1

=

∞∑
1

1

λi−1

Now If
∑

1
λi−1

<∞, then E(T∞) <∞. So P(T∞ =∞) = 0.

The other part will be proven in next lecture.
Problem sheet 2 is online!
For the other part we have

E(e−T∞) = E(

∞∏
1

e−Xi)

=

∞∏
1

E(e−Xi)

=

∞∏
1

1

1 + λ−1
i

= 0

the second equation by dominated convergence. So P(e−T∞ = 0) = 1.

Proof of theorem:

Proof. (a) to (b):(proved? where)
Proof that (b) implies no explosion:
Suppose g + i ≤ γ < ∞ for some γ. Then

∑∞
0 is a sum of independent

exponential distribution r.v.s, i.e .Ui ∼ Exp(gzi). hence gZiUi ∼ Exp(1).
Now γ

∑∞
0 Ui ≥

∑
i gZiUi is sum of independent Exp(1) random variables,

which diverges with probability 1. So P(T∞ <∞) = 0.
Proof that (c) implies no explosion: We know there are infinitely many n with
Zn = i (a.s.) since i is recurrent. Now T∞ ≥ sum of infinitely many indepnedent
holding times in state i = sum of independent Exp(gi) random variables which
diverges a.s.. So P(T∞ <∞) = 0.

Example. Let Z be a discrete-time chain with transition matrix H, where
Hi,i = 0 ∀i ∈ S. Let N be a PP with intensity λ > 0.
Let X(t) = Zn if Tn ≤ t < Tn+1, where Tn is the time of the nth arrival in N .
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Now

pij(t) =

∞∑
n=0

P(X(t) = j|X(0) = i,N(t) = n)P(N(t) = n)

=
∑
n

(λt)n

e−λt
n!(Hn)i,j

We have

eλtI =

∞∑
n=0

(−λt)n

n!
In = e−λtI

So Pt = eλt(H−I)
n

= etG where G = λ(H − I).

Definition. State i of the continuous time MC X is recurrent if Pi({t ≥ 0 :
X(t) = i} is unbounded) = 1; it is transient if the above probability is 0.

Theorem. (a) If gi = 0, then i is recurrent.
(b) Let gi > 0. State i is recurrent for X if it is recurrent for the jump chain Z.
Furthermore, i is recurrent if ∫ ∞

0

pii(t)dt =∞

Proof. (a) If gi = 0 then {(X(t) = i,∀t) = 1.
(b) Let gi > 0. If i is transient for Z, then Z has a last visit to i at some time
N . So X(t) 6= i for t > TN+1. So i is transient for X. If i is recurrent for Z, the
times at which Z visits i is infinite a.s.. By last theorem, there is no explosion.
So the chain {Tn : Zn = i} is unbounded a.s.. (Tn is time of nth jump of X).
Hence i is recurrent for X. Note: the proof implies a non-recurrent state is
transient.
Now ∫ ∞

0

pii(t)dt =

∫ ∞
0

Ei(1X(t)=i)dt

= Ei(
∫

1X(t)=idt)

= Ei(
∑
n

Un1{Zn=i})

=
∑
n

1

gi
Pi(Zn = i)

=
1

gi

∑
n

(Hn)i,i =∞

if i is recurrent for Z.

Assume gj > 0∀j. gi = 0.
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3 Birth Process

This is a continuous-time Markov Chain with generator gn,n+1 = λn and gn,m = 0
for m 6= n, n+ 1. When in state n, we jump to n+ 1 at rate λn, otherwise stay
at n. λn is just a constant, so if λn = λ ∀n then this is just a Poisson process.

For a simple birth process, living particles give birth to single offspring at rate λ
independently of other offsprings.
Let Nt = number of individuals alive at time t. Then

P(Nt+h = n+m|Nt = n) =

(
n

m

)
(λh+ o(h))m(1− λh− o(h))n−m + o(h) =

 1− nλh+ o(h) m = 0
nλh+ o(h) m = 1
o(h) m ≥ 2

Hence this is a birth process with λn = nλ.

Let’s look at another example:

Example. Simple birth with immigration: in this model we have λn = nλ+ ε,
where λ is the birth rate and ε is the immigration rate.

Kolmogorov equations:
Forward equation: condition on Nt, p

′
ij(t) = λj−1pi,j−1(t)−λjpij(t), i, j ≥ 0, t ≥

0, so P ′t = PtG.
Backward eqautions: condition on Nh, p′ij(t) = λipi+1,j(t) − λipi,j(t). So
P ′t = GPt.
Boundary condition: pi,j(0) = δi,j .
Facts: pi,i−1(t) = 0.

Theorem. For a birth process, the forward equations have a unique solution,
which satisfies the backward equation.

Proof. j = i in Forward equation: p′ii(t) = −λipi,i(t). Hence pii(t) = e−λit,
p′i,i+1(t) = λipi,i(t)− λi+1pi,i+1(t).
Hence pi,i+1(t) and hence pi,j(t) by induciton.

Laplace transforms:
Let g : R+ → R. We define the laplace transform of g,

ĝ(θ) =

∫ ∞
0

e−θtg(t)dt

for θ > 0.

Remember we have the mgf, E(eθx) =
∫
eθtfx(t)dt.

We have the Laplace inverse theorem (in Complex Methods). We know∫
e−θtg′(t)dt = [e−θtg]∞0 +

∫
θe−θtg(t)dt

= −g(0) + θĝ(θ) = ĝ′
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Now
θp̂ij − δi,j = λj−1p̂i,j−1 − λj p̂i,j
=⇒ (θ + λj)p̂ij = δi,j + λj−1p̂i,j−1

hence the p̂i,j ’s are

p̂ij(θ) =
1

λj

λj
θ + λi

...
λj

θ + λj
, i ≤ j.

It’s easy to check that this Laplace transform satisfies the ”Laplace” equation of
the backward ”system”,

−δij + θp̂ij = λp̂i+1,j − λj p̂i,j

Theorem. The forward equations have a unique solution (pi,j(t)) which is the
minimal solution to the backward equation, in that, for any other solutions
(πi,j(t)) to the backward equation, we have

pi,j(t) ≤ πi,j(t)∀i, j, t

The lecture thinks the proof might be in a book of Norris, or online notes by
Burostychi + Sousi(?).

If we know in addition that
∑
j pi,j(t) = 1 ∀i, then we know pi,j(t) is the unique

solution to the backward equation, as any other solution πi,j(t) would have a
sum exceeding 1.

Assume we have a MC X = (X(t)), and jump chain Y = (Yn). Assume gj > 0
∀j. Speaking (probably not this word) X via holding time definition. Assume
X is a minimal process. We can define the transition probability:

pi,j(t) = Pi(X(t) = j)∀i, j ∈ S

The (pi,j(t)) satify the C-K equations.

Something we’ve talked about in the last lecture:

(a) (pi,j(t)) = Pt is the minimal no-negative solution to forward equation P ′t =
PtG, P0 = I. Here minimal: for any non-negative solution π we have pi,j(t) ≤
πi,j(t) ∀i, j, t;
a (b) Pr is the minimal non-negative solution to the backward equation P ′t = GPt,
P0 = I.

3.1 Strong Markov Property

A Stopping time is a random variable T taking values in [0,∞) ∪ {∞} such that
{T ≤ t} ∈ FT = σ({X(s) : s ≤ t}), the smallest σ-algebra on which every X(s)
for s ≤ t is measurable.

Strong Markov Property: Let X be a MC, with given generator and initial
distribution. Let T be a stopping time for X. Given T < S, and X(T ) = i.
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Then {X(T + t) : t ≥ 0} is a MP with generator G and initial state X(T ) = i,
which is independent of {X(s) : s ≤ T}.
The proof is omitted for measure-theoretic reasons.

Hitting times: Let X be a MC, as usual, with generator G. Hitting time of
A ⊆ S is TA = inf{t ≥ 0 : X(t) ∈ A}.

Note: TA is a stopping time. The jump chain Y has hitting time HA = inf{n ≥
0 : Yn ∈ A}. Now {TA < ∞} = {HA < ∞}. We call hA(i) = Pi(TA < ∞)
(starting in i). Then hA(i) = Pi(HA < ∞). Hence hA is least non-negative
solution to hA(i) = 1 if i ∈ A, hA(i) =

∑
j∈S

gi,j
gi
hA(j) if i 6∈ A

i.e. hA satisfies the equations, and h+A(i) ≤ h′A(i) ∀i for any other non-zero
solution h′A.

−gi,ihA(i) =
∑
j 6=i gi,jhA(j), i.e. GhA = 0.

Hence hA is the least non-negative solution to:
hA(i) = 1 if i ∈ A,
GhA(i) = 0 if i 6∈ A.

Let kA(i) = Ei(TA), and assume hA(i) = 1 ∀i. kA(i) = 0 if i ∈ A. Let i 6∈ A.
Then kA(i) = 1

gi
+
∑
j 6=i

gi,j
gi
kA(j). By SMP, −giikA(i) = 1 +

∑
j 6=i gijkA(j), so

GkA(i) = −1 for i 6∈ A.

Theorem. kA is minimal non-negative solution to kA(i) = 0 if i ∈ A and
GkA(i) = −1 if i 6∈ A.

Invariant distributions:
Suppose we have a MC X, π = (πi : i ∈ S) is an invariant distribution if πi ≥ 0,∑
i πi = 1, and is invariant if πPt = π∀t.

Theorem. Let X be irreducible and recurrent. The distribution π on S satisfies
(πPt = π∀t) iff πG = 0.

Proof. (skeleton proof)
If πPt = π∀t, then πP ′t = 0 ∀t. When t = 0, πG = 0. If πG = 0, by K-Backward
equation, πP ′t = (πG)Pt = 0, so πPt = piP0 = πI = π.

Positive recurrence: assume gj > 0 ∀j.

Let Ui = inf{t > X − 1 : X(t) = i}. i is recurrent if Pi(Ui <∞) = 1. Easy to
see this is equivalent to saying Pi({t : X(t) = i} is unbounded ) = 1. i is positive
(or non-null) recurrent if Ei(Ui) <∞.

Theorem. Let X be irreducible, with generator G. The following are equivalent:
(a) every state is positive recurrent;
(b) some state is positive recurrent;
(c) X is non-explosive with invariant distribution πi = 1/gimi (i ∈ S).

Proof. (a) =⇒ (b) is trivial.
Assume (b). Let i be positive recurrent. Recurrence or not are shared properties
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of X and Y and irreducibility (??). So i is recurrent for X =⇒ i is recurrent
for Y (???), X is irreducible implies Y is. So every state is recurrent for Y , and
so is for X.
In particular, X starts in a recurrent state, so X is non-explosive. Let i be

recurrent. Let µj = Ei(
∫ Ui

0
1(Xs = j)ds) = 1

gj
Ei(number of visits by Y to j

before 1st return to i) = 1
gj
vi(j).

vi = (vi(j) : j ∈ S) is invariant for Y (this is not a distribution). Now∑
j

µjgjk =
∑
j

v(j)

gj
[(hjk − δjk)gj ]

= v(k)− v(k) = 0

where (hjk is the transition matrix of Y . So µG = 0.∑
j µ − j = mi. Assuming that i is positive recurrent, mi < ∞, and hence

(µj/mi : j ∈ S) is an invariant distribution π. In particular, πi = 1/gimi.

Also, see the printed notes for proof.

3.2 Reversibility

Fact: If X is a MC with generator G, X irreducible ⇐⇒ ∀i, j ∈ S, ∃i1, i2, ..., in ∈
S distinct, with gi,i1gi1,i2 ...gin,j > 0 (also i 6= i+ 1, in 6= j).

–Lecture on 20180212: half an hour spent on the proof of positive recurrence and
invariant distribution. See printed notes.

For an example, let’s consider a birth-death process again, with gn,n+1 = λgn,
gn,n−1 = µgn, where we disallow jumping left from 0, and λ+ µ = 1, gn > 0∀n.

The jump chain is a simple random walk, i.e. jumps take values ±1. We know
this SRW is recurrent if λ ≤ µ, and is positive recurrent if λ < µ. Invariant
measure for jump chain is ρi = (λ/µ)i(1− λ

µ . Hence X has invariant distribution

A(λ/µ)i/gi for some constant A by previous result (see printed notes).

When is this a distribution? Let’s try some examples. If gi = g ∀i, then X has
an invariant distributon iff λ < µ. Try another one: if gi = 2i, i.e. when we go
further to the right, we move faster and faster, and suppose we have 1 < λ/µ < 2,
then X has an invariant distribution, since

∑
(λ/µ)i1/2i <∞.

In this case, X has an invariant distribution, but the jump chain is not recurrent
(λ/µ > 1) (the chain X is exploding – check).

Theorem. Let X = (X(t) : t ≥ 0) be an irreducible, non-explosive MC, with
generator G and invariant distribution π. In particular, πG = 0. Assume X(0)
has distribution π. Fix T > 0, and let X̃(t) = X(T − t). Then X̃ is a MC with
initial distribution π, generator G̃ = (g̃ij) given by (detailed balance equation)
πigi,j = πj g̃ji for i, j ∈ S.

X̃ is irreducible, non-explosive, with invariant distribution π.
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Proof. G̃ is a generator since g̃ij ≥ 0 for all i 6= j by (the detailed balance
equation). Furthermore,

∑
j g̃i,j =

∑
j πj

gji
πi

= 1
πi

0 = 0.
We’ll complete the proof next time.
Now G̃ is a generator, we have

p̃ij(t) = P(X̃(u+ t) = j|X̃(u) = i)

=
πj
πi
pji(t)

Now prove that X̃ is a MC:

P (X̃t0 = i0, X̃t1 = i1, ..., X̃tn = in) = P(X(0) = in, Xsn = in−1, ..., Xs1+...+sn = i0)

= πinpin,in−1(sn)...pi1,i0(s1)

= πi0 p̃i0,i1(s1)...p̃in−1,in(sn)

for t0 < t1 < ... < tn = T , i0, ..., in ∈ S, si = ti − ti−1. Well hopefully this is
correct. So X̃ is a MC with invariant distribution π.

∑
j pij(t) = 1? (pij(t)) satisfies the forward equation P ′t = PtG. Deduce (p̃i,j(t))

satisfy backward equation P̃ ′t = G̃P̃t.
Proof that P̃ ′t = G̃P̃t:

p′ij(t) =
πj
πi
p′ji(t) =

πj
πi

∑
k

pjk(t)gki

=
πj
πi

∑
k

πk
πj
p̃kj(t)gki

=
∑
k

g̃ikp̃kj(t)

So P̃ ′t = GP̃t.
We know

∑
j p̃ij(t) =

∑
j
πj
πi
pji(t) = 1

πi
πi = 1. So X̃ is non-explosive, and

P̃ ′t = G̃P̃t. So X̃ is a non-explosive MC with generator G̃. G̃ is irreducible since
G is.

Definition. X is called reversible if, ∀T > 0, the reversed process X̃ has the
same distribution/law as X. Above, X is reversible iff πig̃ij = πjgji, i, j ∈ S.
This is called the detailed balance equation.

We say G,λ (generator and distribution) are in detailed balnce if the detailed
balance equations hold.

Theorem. If G, π are in detailed balance, then π is invariant.
Note that the reverse is not necessarily true.

Proof. Check πG = 0: ∑
i

πigij =
∑
i

πjgji = πj × 0 = 0
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Note: in this case, if X(0) has distribution π, then X is reversible.

Example. (Birth-death chains)
We have gi,i+1 = λi, gi,i−1 = µi, gij = 0 if |i− j| ≥ 2, and g0,−1 = 0. Assume
λi, µi > 0 otherwise.

Detailed balance equations:
πigi,i+1 = πi+1gi+1,i, xiπi = µi+1πi+1 with i ≥ 0. Solve to obtain each πn in
terms of π0. π is a distribution iff we can choose π0 ∈ (0, 1) such that

∑
n πn = 1.

If ∃ such a distribution π then G, π are in detailed balance π is invariant, and
’X stated in π’ is reversible.



4 QUEUEING THEORY 20

4 Queueing theory

Assumptions:
(a) Inter-arrival times are iid;
(b) Some queue discipline;
(c) There is a number, k, say, of servers;
(d) Each customer requires a service time, and these times are iid;
(e) After service, the customer departs.

We will denote a queue by: A/B/k, where A describes the distribution of
interarrival times, B describes the service tmies, and k is the number of servers.
For example, we may use Exs

Mλ
to mean exponential Exp(λ) random variable, and

we may use D to mean a deterministic interarrival time; or G for some general
distribution.

An example which we will look into is M/M/1 queue.

Let’s consider a A/B/k(= 1) queue. Let X be a typical inter-arrival time, S

be a typical service time. Define ρ = E(X)
E(S) to be the traffic intensity. Overall

observation: if ρ > 1, the queue grows in length; and if ρ < 1 the queue converges
to some equilibrium.

Now consider a Mλ/Mµ/1, i.e. arrivals form a PP (λ), service times are indepen-
dent Exp(µ). Let Qt be the number of people in the system at time t, including
anybody being served. By the lack of memory property, Q = (Qt : t ≥ 0) is
Markov chain on S = {0, 1, 2, ...}. We have under this model,

gi,i+1 = λi ≥ 0,

gi,i−1 = 0i = 0,

gi,i−1 = µi ≥ 1

And obviously gi,j = 0 for |i− j| ≥ 2.

gi(= −gi,i) ≤ λ+ µ <∞ ∀i, so the chain is non-explosive.

For con(?), assume Q0 = 0. Let pn(t) = P(Qt = n). The K-forward equation is

p′n(t) = λpn−1(t)− (λ+ µ)pn(t) + µpn+1(t) n ≥ 1

p′0(t) = −λp0(t) + µp1(t)

We can write this as P ′t = PtG. This may be solved directly to find pn(t) in
terms of a modified Bessel function,

p̂n(θ) =

∫ ∞
0

e−θtpn(t)dt, θ ≥ 0,

θp̂n = λp̂n−1 − (λ+ µ)p̂n + µp̂n+1, n ≥ 1,

θp̂0 − 1 = λp̂0 − µp̂1(sign?)

Solve this difference equation as usual: The indicial/auxiliary equation is

µx2 − (λ+ µ+ θ)x+ λ = 0
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unique solution that is bounded in θ is

x =
λ+ θ)±

√
(λ+ µ+ θ)2 − 4λµ

2µ

Note that we can’t have plus here, otherwise the solution is unbounded in θ. So
let the minus solution be α(θ). So

p̂n(θ) = p̂0(θ)α(θ)n

We have also used the fact that p̂n are continuous functions.

Find expression for p̂0 by either using (*), or using
∑
n pn(t) = 1, so

∑
n p̂n(θ) =

1
θ .

So p̂n(θ) = 1
θα(θ)n(1− α(θ)).

Invariant measures:
Let t→∞ in pn(t). It’s easier to solve equation πG = 0:

λπn−1 − (λ+ µ)πn + µπn+1 = 0

Write λ/µ = ρ, the solution is

πn =

{
A+Bρn ρ 6= 1
A+Bn ρ = 1

πn) is a measure iff ρ < 1, in which case πn = Bρn with B = 1 − ρ.. So the
unique invariant measure (when ρ < 1) is the geometric distribution.

We know Q is irreducible (since λ, µ > 0), non-explosive, and (when ρ < 1) has
an invariant measure. Hence Q is positive recurrent.

Theorem. (Burke)
Let ρ < 1. Assume Q0 has the invariant distribution π. Let D = (Dt : t ≥ 0) be
the departure process, i.e. Dt = number of departures up to t. Then Dt is a
PP (λ) (!), and Qt is independent of (Ds : s ≤ t).

Proof. The ’reason’ is that Q is reversible.
Let’s just remind ourself: here we are considering a Mλ/Mµ/1 queue, where
ρ = λ/µ < 1.
Let T > 0. Q̃u := Qt−u (i.e. reversing the chain). By reversibility, Q̃ has the
same probability distribution as Q (subject to an adjustment of continuity at
jump times). Departures in Q correspond to arrivals in Q̃ and the converse also
holds. Therefore D has the same distribution as the arrival process in Q, i.e.
PP (λ).
For the second part, Q0 is independent of arrivas in (0, T ), so Q̃(T ) is independent
of departures in Q̃. So QT is independent of (Ds : 0 < s < T ).

Let’s now consider Mλ/Mµ/∞, i.e. arrivals begin their services immediately. In
a sense, the queue-length at time t, Qt, is a type of thinned Poisson process. We
have gi,i+1 = λ, gi,−1 = µi. The queue process Q is non-explosive.
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Number of jumps of Q in (0, t] is no more than Nt +Nt = 2Nt, where N is the
arrival process, and P(Nt <∞) = 1 for all t.

We look for solutions of πG = 0: Try detailed balance equations πigi,j = πjgji:
we get

πi = πi=1
λ

µi
= ... = π0(λ/µ)i

1

i!

so 1 =
∑
πi = π0e

λ.µ.

So πi = (λµ )i 1
i!e
−λµ is an invariant distribution. Hence Q is positive recurrent

(as it’s not explosive).

Now let’s turn to the M/G/1 queue. We want to find an embedded/discrete-time
MC.

Let Dn be the departure time of the nth customer. Let Q(Dn) (= QDn)
(:= Q(Dn+)). Then

Q(Dn+1) =

{
Q(Dn) + Un Q(Dn) = 0
Q(Dn)− 1 + Un Q(Dn) ≥ 1

where Un is the number of arrivals during the service of the (n+ 1)th customer.

We can write this as Q(Dn+1) = Q(Dn) + Un − h(Q(Dn)), where h(x) = 1 if
x > 0 and is 0 if x = 0.

Un depends on length of (n+1) th service, but is independent of Q(D1), ..., Q(Dn).
So Q(D) := (Q(Dn) : n ≥ 1) is a MC. We can study Q by following the embedded
chain Q(D). This is OK in the sense that Dn →∞ as n→∞.

We define δj = P(Un = j) = E(P (Un = j|S)), where S is a typical service length

(consider tower law). The above is then equal to E(e−λS (λS)j

j! ).

The pgf of the δj is ∆(s) =
∑
j s
jδj = E(

∑
j

(λSs)j

j! e−λS) = E(e−λS+λSs) =

E(eλ(s−1)S), which is exactly the mgf of S evaluated at λ(s− 1).

I think last time we considered a M/G/1 chain, and defined Dn to be the time of
nth departure. We also defined Q(Dn+). So Q(D) = (Q(Dn) : n ≥ 1) is a MC.
We had δj = P(j arrivals in one service time), ∆(s) =

∑
δjs

j = E(eλ(s−1)S) =
Ms(λ(s− 1)). We know Q(Dn+1) = Q(Dn)− h(Q(Dn)) + Un where the Un are
independent with pmf δ.

The transition matrix of Q(D) is

P =


δ0 δ1 δ2 ...
δ0 δ1 δ2 ...
0 δ0 δ1 ... 0 0 δ0 ...
...


An invariant distribution π for Q(D) solution πP = π. Consider πj = π0δj +∑j+1

i=1 πiδj−i+1 (j ≥ 0).
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For given π0, there exists a unique solution (by iteration). We claim (by symming
over j = 0, 1, ..., n) πn+1δ0 = π0ε = 1− (δ0 + δ1 + ...+ δn) > 0∀n. Hence πn > 0
for all n ≥ 0.

n∑
j=0

πj =

n∑
j=0

π0δj +

n∑
j=0

j+1∑
i=1

πiδj−i+1

= π0(1− εn) +

n+1∑
i=1

n∑
j=i−1

πiδj−i+1

= π0(1− εn) + πn+1δ0 +

n−1∑
i=1

n∑
j=i−1

πiδj−i+1︸ ︷︷ ︸
=πi(1−εn−i+1)

π is a distribution if π0 > 0,
∑
πi = 1, G(s) =

∑∞
0 sjπj , ∆(s) =

∑
j δjs

j ,

G = π0∆ + 1
s (G− π0)∆.

Therefore G = π0(s−1)∆
s−∆ .

We have G(1) = 1. By L’Hopital rule, G(1) = lims↑1
π0∆+π0(s−1)∆′

1−∆′ = π0∆(1)
1−∆′(1)

which is meaningful iff ∆′(1) < 1. So π0 can be picked s.t. π is a distribution iff
∆′(1) < 1 in which case π∆ = 1−∆′(1).

∆(s) = Ms(λ(s − 1)), and ∆′(1) = M ′s(0)λ. But M ′s(0) is the mean of S. So

∆′(1) = E(S)
1/λ = ρ. So the chain Q(D) has an invariant distribution, and hence

is positive recurrent iff ρ < 1, and the invariant distribution has pgf G(s) as we
derived. In addition, when ρ = 1 we have null recurrence and when ρ > 1 the
chain is transient.

4.1 Waiting time

Let ρ < 1, and suppose the embedded queue Q(D) is in equilibrium. Let
W denote the (random) waiting time of a typical customer (service time not
included).
Number of people left behind on this person’s departure is the number of arrivals
during my total time W +S. By strong Markov Property, this (random) number
is independent of arrivals prior to this person.
SoG(s) = E(eλ(W+S)(s−1)) = E(eλW (s−1))E(eλS(s−1)) = MW (λ(s−1))MS(λ(s−
1)), where MW and MS are the mgf of W and S respectively; here we also used
the tower law E(SU ) = E(E(SU |W,S)). Hence we get MW (λ(s− 1)) in terms
of G and MS .

Remember we are considering M/G/1 queue.

A busy period is a maximal interval of time during which the server is continuously
busy. Let B be the length of a busy period. Then E(B) <∞ iff Q(D) is positive
recurrent iff ρ < 1.
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Arriving customer finds queue empty, and is served for a length S. Let j = 1, 2, ...
be the arrivals during this time S. first customer is a progenitor of a branching
process, in which the family an individual is the set of arriving customers during
I’s service time (think of number of people that arrive during the first waiting
customer, then the number of people arrive during the first among those...)
This is a branching process. Let µ be the mean familty size, E(E(number of
arrivals|S)), the branching process is a.s. finite iff ρ ≤ 1. So P(B <∞) = 1 iff
ρ ≤ 1 where B is the sum of the service times of the individuals in the population.

Let B = S +
∑A
i=1Bi, where A is the number of arrivals during first service

time. Given A, B1, ..., BA are independent copies of B.

The moment generating function, MB = E(esSeλS(MB−1)) = E(eS[s+λ(MB−1)]).

Theorem: MB = MS(s+ λ(Mb − 1).

It can be shown that, when ρ < 1, the equation has a unique solution which is a
mgf.

4.2 Networks of queues

We have a finite set S = {s1, ..., sc} of ’stations’. At time t, station si has Qi(t).
Overall state at itme t is Q(t) = (Q1(t), ..., Qc(t)). We will assume that service
times are exponentially distributed.

A typical state is a vector n = (n1, n2, ..., nc) ∈ {0, 1, ...}c. Let ei = (0, 0, ..., 0, 1, ..., 0),
where the 1 is in the ith position. State space is set of all n.

Generator:
gn,n−ei+ej = λi,jφi(ni),
gn,n+ej = vj ,
gn,n−ei = µiφi(ni).

Otherwise gm,n = 0 when m 6= n.

Example. At each station there are r(≥ 1) servers, and at station i, the service
time distribution is Exp(γi). A departing customer at i, goes to station j
with probability pi,j , and it departs queueing system entirely with probability
1−

∑
j pi,j = qi. (and independence, and no immigration).

φi(n) = min{n, r}, λi,j = γipi,j , µi = γiqi, vj = 0.

Consider a closed network where νi = µj = 0 and irreducible (for a single
particle). Suppose first that total number of individuals is N = 1, and in
addition Qi(1) = 1 ∀i. The individual’s position is a continuous-time MC with
gij = λij , i 6= j. The invariant distribution α = (αi : i ∈ S), αG = 0 where G is
the generator matrix. Then∑

j

αjλji = αi
∑
j

λij , i ∈ S
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In the general case we hhave N ≥ 1 and general Qi. Assume the MC is irreducible.
State space is N = {n ∈ {0, 1, ..., }c}, or more precisely, NN = {n :

∑
i ni = N}

(since we can’t gain or lose anyone). The unique invariant distribution γ =
(γ(n) : n ∈ NN) satisfies∑

i,j

γ(n− ei + ej)λjiφj ∗ nj) = γ(n)
∑
i,j

λijφi(ni)

Try to solve the above equation with
∑
i removed, i.e. |S| = c separate equations,

called the partial balance equations.

Claim: the following solve the partial balnace equations:

γ(n) = B

c∏
i=1

[
αnii∏ni

r=1 φi(r)

]
where B is chosen so that

∑
n γ(n) = 1, where the αi is the previous invariant

distribution.

Proof.
γ(n−ei+ej

γ(n) =
αjφi(ni)

αiφj(nj+1) . Do we have
∑
j αjλji =

∑
j αiλij?

Example. Let’s conside a telephone switchboard, where we have K of incoming
lines. Calls arrive, each requires Exp(λ) time by the receptionist, and are
then part through to target, who stays on the line for an Exp(µ) time, and
independence where neccesary. Calls arrive as a PP with parameter ν.

Assume there are infinitely many porters. Model this via the lines (a word not
recognisable?). States are: (1) empty (n1), (2) connected to reception (n2), (3)
connected to target individual (n3). Then n1 + n2 + n3 = K. So we get

λ12 = ν, λ23 = λ, λ31 = µ,

φ1(n1) = 1{n1≥1},

φ2(n2) = n2,

φ3(n3) = n3

It’s easy to get α1 : α2 : α3 = 1
ν : 1

λ : 1
ν .

So the unique invariant distribution is

γ(n) = B(1/νn1)(1/λn2n2!)(1/µn3n3!)

where n1 + n2 + n3 = k.

Now let’s consider open systems (still, assume irreducibility).

Device: Add an extra station labelled ∞, with rates as follows: there is a unique
individual with jump rates

gij =

 λi,j 1 ≤ i, j ≤ c
µi i ≤ c, j =∞
νj i =∞, j ≤ c



4 QUEUEING THEORY 26

The unique invariant distribution satisfies

β = (βj : j = 1, 2, ..., c,∞) :

β∞vi +
∑
j 6=∞

βjλji = βi(µi +
∑
j∈S

λij)

Let αi = βi/β∞.

Theorem. The open mutaiton system has unique invariant distribution

π(n) =

c∏
i=1

πi(ni)

where πi(ni) = Bi
α
ni
i∏ni

r=1 φi(r)
, and Bi are constants such that

∑
ni
πi(ni) = 1.

Note: for open system in equilibrium, the queue length at different stations are
independent.

Renewal processes:

Let x1, x2, ... be iid, xi ∼ lifetime of ith object (think light bulbs). Assume
P(X1 > 0 = 1, E(X1) <∞.

Time of nth change is Tn = X1 + ...+Xn, renewal process N(t) = max{n : Tn ≤
t}, N = (N(t) : t ≥ 0).

If X1 ∼ Exp(λ), N is a PP of rate λ.

Fact: N(t) ≥ n iff Tn ≤ t.

Let Fk be the distribution function of Tk, i.e. Fk(x) = P(Tk ≤ x). Tk+1 =
Tk +Xk+1. Hence

Fk+1(x) =

∫ ∞
0

Fk(x− y)dF (y)

where F = F1.

Notation:∫
h(y)dF (y) =

{ ∫
h(y)f(y)dy F ′ = f density function∑
H(y)P(x = y) F discrete distribution of X

P(N(t) = k) = P(Tk < t ≤ Tk+1) = Fk+1(t)− Fk(t) (issue!).

Renewal function: m(t) = E(N(t)). m(t) =
∑∞
k=1 P(N(t) ≥ k) =

∑∞
k=1 Fk(t).

Theorem. m satisfies the ’renewal equation’,

m(t) = F (t) +

∫ ∞
0

m(t− x)dF (x)
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Proof. m(t) = E(E(N(t)|X1)). We consider two cases:

E(N(t)|X1 = x) =

{
1 +m(t− x) x ≤ t
0 x > t

So

m(t) =

∫ t

0

(1 +m(t− x))dF (x)

= [F (t)− F (0)] +

∫ t

0

m(t− x)dF (x)

but F (0) = 0. So done.

Renewal-type equation:

µ(t) = H(t) +

∫ t

0

µ(t− x)dF (x) (∗)

Theorem. The function µ(t) = H(t) +
∫ t

0
H(t − x)dF (x) (**) satisfies (*).

Furthermore, if H is bounded on finite intervals, then µ has the same property
and it is the unique solution with this property. (proof omitted).

We introduce F ∗(θ) =
∫
e−θxdF (x), i.e. if f : [0,∞) → R, then f̂(θ) =∫∞

0
e−θxf(x)dx. This is the Laplace-Stieltjes transform.

We have

(h ∗m)(t) =

∫ t

0

h(t− x)dm(x)

(h ∗ F )(t) =

∫ t

0

h(t− x)dF (x)

(different from previous convolution operations).

Check: (h ∗m) ∗ F = h ∗ (m ∗ F ) (so we can write h ∗m ∗ F ).

We know m = F +m ∗ F , Fk+1 = Fk ∗ F = F ∗ Fk.

By (**), µ = H + H ∗ m, µ ∗ F = H ∗ F + H ∗ m ∗ F = H ∗ m = µ − H,
µ = H + µ ∗ F , i.e. (*).

Theorem. m(t)
t

t→∞−−−→ 1
E(x) .

Last time we had X1, X2, ... iid, P (X > 0) = 1, E(X) < ∞, Tn =
∑n

1 Xi,
N(t) = max{n : Tn ≤ t.

Limit theorems:

Theorem. (1)
N(t)
t

a.s.−−→ 1
µ as t→∞. Here |mu = E[X].
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Proof.
TN(t)

N(t) ≤
t

N(t) <
tN(t)+1

N(t)+1 (N(t)+1
N(t) )

as t→∞ N(t)→∞ a.s.. But TN(t)/N(t)→ µ, so t/N(t)→ 1
µ a.s..

Theorem. (2, Renewal theorem)
m(t)
t →

1
µ as t→∞.

Recall X = (X1, X2, ...) i.i.d., M taking values in {1, 2, ...} is a stopping time for
X if {M ≤ m} ∈ σ(X1, X2, ..., Xm) i.e. the occurence of the event is determined
by (?) of X1, ..., Xm.

Claim: M = N(t) + 1 is a stopping time. To prove this, just note {M ≤ m} =
{N(t) ≤ m− 1} = {

∑m
1 Xi > t}.

Note: N(t) is not a stopping time.

Wald’s equation: If M is a stopping time for X, then E(
∑M
i=1Xi) = E(M)µ.

Proof.

E(

M∑
1

xi) = E(

∞∑
1

Xi1M≥i)

=

∞∑
1

E(Xi1M≥i)

=

∞∑
1

µP(M ≥ i)

= µ

∞∑
1

P(M ≥ i) = µE(M)

Proof of renewal theorem:
t < E(TN(t)+1) = µ(m(t) + 1) since N(t) + 1 is a stopping time (and by Wald).
Nowm(t)/t > 1/µ − 1/t → 1/µ as t → ∞. So t ≥ E(TN(t)+1 − XN(t)+1) =
µ(m(t) + 1)− E(XN(t)+1) (*).

With a > 0, Xa
i = min{Xi, a} (truncated rv). This leads to a new renewal process

with ma, T ak ,... . Now use (*) to new process: t ≥ µa(ma(t)+1)−E(Xa
N(t)a+1) ≥

µa(ma(t) + 1) − a. So we get m(t)/t ≤ ( t+aµa − 1) 1
t → 1/µa

a→∞−−−→ 1
µ , and

E(Xa)→ E(X) by MCT (as a→ 1?).

Excess life:

Excess life E(t) = TN(t)+1 − t: current life C(t) = t − TN(t), total life T (t) =
C(t) + E(t) = XN(t)+1.

Waiting time paradox:

Let N be a Poisson process rate λ. Consider E(E(t)):
(correct) (a) Since N is a MC, E(E(t)) = E(X1) = 1

λ ;
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(wrong) (b) t is likely to be near the middle of the relevant interarrival time, so
E(E(t)) = 1

2
1
λ .

In fact E(XN(t)+1) = (2− e−λt) 1
λ .

The next thing we are going to study is about excess life, P(E(t) > y|X1 = x).
It’s obviously 0 if t < x ≤ t+y. Now if x < t, then it is equal to P(E(t−x) > y);
otherwise, if x > t+ y, it’s 1. We therefore have

P(E(t) > y) =

∫
P(E(t) > y|X1 = x)dF (x)

=

∫ t

0

P(E(t− x) > y)dF (x) +

∫ ∞
t+y

dF (x)

Fix y, we then get
µ(t) = P(E(t) > y)

or µ(t) = 1− F (t+ y) +
∫ t

0
µ(t− x)dF (x).

Solution is µ(t) = H(t) +
∫ t

0
H(t−x)dm(x). Hence, in principle, the distribution

of E(t).

Study the distribution of E(t) in the limit as t→∞.

A random variable X is said to be arithmetic (or its distribution is arithmetic)
if ∃λ > 0 s.t. P(X ∈ λZ) = 1. In this case, λ is the span of the random
variable/distribution, or more precisely, the span is the maximal such λ.

Theorem. If X1 is non-arithmetic, and µ = E(X1) <∞, then

P(E(t) ≤ y)
t→∞−−−→ 1

µ

∫ y

0

[1− F (x)]dx

Proof. Use key renewal theorem. (not done here)

Example: Consider instead the case when X1 is arithmetic with span 1. Then

P(X = n) = αn, n ≥ 1,
∑
n

αn = 1

E = (E(n) : n ≥ 0) is a discrete-time MC. pi,i−1 = 1(i ≥ 2), pi,n = αn (n ≥ 1).

Invariant distribution π satisfies

πn = πn+1 + π1αn(n ≥ 1),

π2 = π1(1− α1),

π3 = π2 − π1α2 = π1(1− α− 1− α2)

hence πn = π1P(X ≥ n) =
∑∞
n αi. So

∑
πn = 1 = π1µ, i.e. πn = 1

µ

∑∞
i=n αi.

If E(0) has distribution π, then E(n) as well ∀n. And in this sense, the process
is stationary.
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Renewal-reward processes: each Xi corresponds to a reward Ri.

Costs count as negative rewards.

Assume the pairs (Xi, Ri) are independent of one another.

Accumulated reward by time t is

C(t) =

N(t)∑
i=1

Ri

Renewal function m(t) = E(N(t)), reward function is c(t) = E(C(t)) (note the
different cases of c).

Renewal-reward theorem: if 0 < E(X1) <∞, E|R1| <∞, then

C(T )

t

a.s.−−→ E(R)

E(X)
,

c(t)

t
→ E(R)

E(X)

as t→∞.

Proof. C(t)
t =

∑N(t)
1 Ri/N(t) ·N(t)/t, while the two terms in RHS converge to

E(R) and E(X) a.s C(t)
t =

∑N(t)
1 Ri/N(t) ·N(t)/t, while the two terms in RHS

converge to E(R) and 1/E(X) a.s., as t→∞, N(t)→∞. So LHS → E(R)
E(X) a.s..

For the second part,

c(t) = E(

N(t)+1∑
1

Ri)− E(RN(t)+1)

= (Wald)(m(t) + 1)E(R)− E(RN(t)+1)

Need that
E(RN(t)+1)

t → 0.

(missing one lecture on 2018/03/07)

Queueing system:

Something happens at each Ti (’regeneration’?)

t ≥ 0, Q(t) (reward? lecturer didn’t write anything here); Intervals [Ti, Ti+1) are
called cycles.
The processes Pi = {Q(t) : Ti ≤ t < Ti+1} are iid.

Ni :=number of arriving customers in ith cycle, Ni iid with N = N0. Write
T = T1.

Assume E(N) <∞, E(T ) <∞, E(NT ) <∞.
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(A) Consider renewal process with arrival times T1, T2, .... Reward Ri =∫ Ti
Ti−1

Q(t)dt. Typical reward R = R1, E(R) ≤ E(NT ) < ∞. By RR theo-
rem,

1

t

∫ t

0

Q(u)du
a.s.−−→ E(R)

E(T )
:= L

and L is known as the ’long-run average length’.

(B) Arrival times T1, T2, ..., Reward in ith cycle is Ni, N(t) is the number of
arrivals up to t. RR theorem:

N(t)

t
→ E(N)

E(T )
:= λ

λ is called the ’long-run arrival’.

(C) Inter-arrival times N1, N2, .... Reward: the sum of the waiting times (includes

any service time) of the Ni customers in the ith cycle, i.e.
∑Ni
j=1 Vj , where Vj is

the waiting time of jth arrival in ith cycle. RR theorem:

1

n

n∑
i=1

Wk
a.s.−−→ E(S)

E(N)
:= W

where S =
∑N
j=1 Vj , and Wk := waiting time of the kth arrival in the entire

process.

Little’s theorem: L = λW .

Proof.
L

λW
=
E(R)

E(T )

E(T )

E(N)

E(N)

E(S)

but

E(

∫ T

0

φ(n)dn) = E(

N∑
1

Vi)

(two ways of counting the same thing).

Example: Carwash.
Cars arrive as a PP (v). Space for ≤ k waiting cars (plus the one being washed).
The wash time are iid with distribution function F , mean θ. Let pi be the
proportion of time that there are i cars in the line waiting for washing. The
existence of pi is immediate by renewal theory. Apply Little’s theorem to the
machine itself. Regeneration times are times of departing cars leaving no car
behind.

We have L = 1 − p0, λ = v(1 − pk), W = θ. L = λW , so 1 − p0 = v(1 − pk)θ.
So vpk represents disappointment and 1− p0 represents cost.

Population genetics:
Wright-Fisher model: Xn is number of A at time n, the number of individuals is
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constantly 2N . Note: (n+ 1) th generation is obtained from nth by sampling
2N times with replacement. The genotypes are A and a. So (Xn) is a discrete
time MC with transition probabilities

pij =

(
2N

j

)
αji (1− αi)

2N−j

P (get A on one sample is i/2N = αi if we have i copies of A at some time.

Recall that last itme we talked about Wright-Fisher model, and we had transition
probabilities for the discrete MC Xn. ”fixation” means hitting one of the two
absorbing staes all a or all A. Let τ be the time to fixation. Then Pi(τ <∞) =
1∀i.

What is Pi(Xτ = 2N) = Pi(fixation in state A2N?

Theorem. Pi(Xi = A) = i/2N .

Proof. Ei(Xi) = 2Npi = i, more generally, Ei(Xn) = Ei(E(Xn|Xn−1)) = ... = i
(martingale). Ei(Xτ ) = Ei(Xτ1{τ<n}) +Ei(Xn1{T≥n})→ Ei(Xτ ) + 0 as n→∞.
So Ei(Xτ ) = i = 0, Pi(Xi = 0) + 2NPi(Xi = 2N), so Pi(Xi = 2N) = i/2N .

We need a further explanation:

0 ≤ Ei(Xn1{τ≥N})

=

∫ 2N

0

x1τ≥ndF (x)

= 2N

∫ 2N

0

1ΘdF (x)

= 2NPi(τ ≥ n)

→ 0

as n→∞. Here F is the distribution function of Xn.

Moran model (without separation of generations):
We have N particles, and continuous time mutation. When an individual dies,
every other particle compete for the place and replace it with a copy of the
winning particle. For convenience we allow the dying particle to compete as well.
Each individual is replaced at rate 1.
Let Xt =unmber of a’s at time t. X is a continuous-time MC with generator:
gi,i+1 = (N − i) iN , gi,i−1 = iN−iN , and gi,j = 0 for |i− j| ≥ 2. The jump chain
is symmetric RW on {0, 1, ..., N}. Let Tk =time of 1st passage to k. Then
Pi(Tn < T0 = i < N .

Let τ = inf{t : Xt ∈ {0, N}}, ki = Ei(τ). Then (ki) is the least non-negative
solution to

ki = 0i ∈ {0, N}
i(N − i)

N
ki+1 +

i(N − i)
N

ki−1 = −1i 6= 0, N (maybe)
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So the answer should be

ki =

i−1∑
j=1

N − i
N − j

+

N−1∑
j=1

i/j

Note: let τj :=total time spent in state j. Ej(τj) = 1 for 1 ≤ j ≤ N − 1. Note:
as i,N →∞ with i/N = p ∈ (0, 1), then Ei(τ) ∼ N(−p log p− (1− p) log(1− p))
where H(p) is entropy.

The Moran model may be constructed in terms of indepnedent Poisson processes
{N i,j : i, j = 1, ..., N} with rates 1/N . When there is an arrival in N i,j , j is
replaced by a copy of i.

Infinite sites model: ”Moran model with mutation”. N individuals at any time
t.

Mutaiton rate u > 0.

Each individual suffers mutation at rate u. When mutation occurs, it changes
the acid base at a locus of that individual that has never before been changed
for any individual.

At each time and given locus, either there is exactly one acid base present, or
two.


	Miscellaneous
	Poisson process
	Continuous-time Markov chains
	Birth Process
	Strong Markov Property
	Reversibility

	Queueing theory
	Waiting time
	Networks of queues


