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0. INTRODUCTION

These notes have been prepared for students studying the Part II (C) course
Automata and Formal Languages. They serve as the backbone of the course. As
such, they contain all the essential definitions, theorems, and proofs. However,
they do not form the body of the course; that is best obtained from attending
the lectures. In particular, there are very few examples in these notes. The
reason that they have been omitted is because examples should be built and
worked through in front of the reader for maximum effect. Merely seeing the
final product does not impart the same intuition and insight as seeing the ex-
ample being worked through in real time. With this in mind, students are
encouraged to keep a copy of the notes on-hand to ensure that they have tran-
scribed definitions and theorems correctly, but not to learn from. These notes
are a memory aid, not a learning tool. Treat them as such.
These notes contain material on all three sections of the course. To remove

any ambiguity, the course content (i.e., examinable material) will be hereby
defined as the material that is lectured.
For those of you who are reading this in digital format, you can click on items

in the table of contents to go directly to that part in the text. Also, when you
click on a definition number, you will go directly to the statement. The same
applies for lemmata, theorems, etc.
For those of you reading this in printed format, yet yearning to enter the digi-

tal age, the pdf notes reside in an encrypted container called Automata2018.tc,
which can be found by following the teaching link from my homepage at

https://www.dpmms.cam.ac.uk/~mcc56/

To open the container, you’ll need to use the cryptographic software TrueCrypt
or VeraCrypt (the latter might be better for Mac users; if you do use VeraCrypt,
then you need to select ‘TrueCrypt mode’ when decrypting). Downloads for
most operating systems, and instructions, can be found at

https://www.grc.com/misc/truecrypt/truecrypt.htm

https://www.veracrypt.fr/en/Home.html

You will also need the following password1 to open the container:

HandTakeAlsoFreight2018CableNorthCloud

1Or a lot of spare CPU power.

https://www.dpmms.cam.ac.uk/~mcc56/
https://www.grc.com/misc/truecrypt/truecrypt.htm
https://www.veracrypt.fr/en/Home.html
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0.1. List of reference texts.
Each of the three sections of this course was designed from a different reference

text2. These are:

(1) Register machines and computability theory:
P.T. Johnstone, Notes on logic and set theory (Chapter 4), Cambridge
University Press, 1987.

(2) Regular languages and finite-state automata:
J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to automata
theory, languages and computation (Chapters 2–4), 2nd edn, Addison-
Wesley, 2001. (Note that this is not the edition stated in the course
description).

(3) Pushdown automata and context-free languages:
D.C. Kozen, Automata and computability (Lectures 19–25), Springer,
1997.

If you insist on obtaining only one text for the course then the book by Kozen
will serve you best, but by no means fully.

0.2. Shorthand conventions.
Throughout the lectures I will make use of certain shorthand conventions.

Some of these are standard, others are not. For clarity, here is a list of those
which I will be using.

b/c = because
c/f = comes from
w/ = with
w/o = without
wts = want to show
wlog = without loss of generality
thm = theorem
defn = definition
lem = lemma
cor = corollary
pf = proof
eg = example
ex = exercise
RM = register machine
PC = partial computable
PR = partial recursive
Prim R = primitive recursive
s.t. = such that
rec = recursive
iff = if and only if

2Because life is never as straightforward as it should be.
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1. REGISTER MACHINES AND COMPUTABILITY THEORY

To explore what is incomputable, we first need a robust definition of what it
means for a problem to be computable. There are many equivalent ways to do
this; we present one of them here.

1.1. Register machines and computable functions.

Definition 1.1 (Register machines).
A register machine consists of two parts: a sequence of registers R1, R2, . . .,
and a finite program.
A register is a place to hold, at any time, an arbitrary natural number (in-

cluding 0). Think of these as ‘buckets’, each holding a single integer.
A program (often denoted P ) is defined by specifying a finite number of states

S0, S1, . . . , Sn, and, for (not necessarily all) i ∈ {0 . . . , n}, an instruction to be
carried out when the machine is in state i. These instructions are of two types:

(1) add 1 to register Rj and move to state Sk (written Si : (j,+, k));
(2) test whether Rj holds the integer 0: if it does, move to state Sl; other-

wise, subtract 1 from it and move to state Sk (written Si : (j,−, k, l)).
The input of a register machine is a finite (ordered) set of registers (R1, . . . , Rn),

each containing a non-negative integer, and by convention we set all other reg-
isters {Rj}j>n to contain 0.
S1 is the initial state, and it is from this state that we begin applying the

program to the registers. S0 is the terminal state; upon reaching it, the machine
ceases to operate, so there is no need to have an instruction associated to S0.
The machine is permitted to move to a (non-terminal) state with no instruc-

tion associated to it (written Si : ∅). If this occurs, the machine simply sits in
limbo forever; neither terminating, nor performing further computation.

Of course, a register machine can only ever change the entries in finitely many
of the registers, as there are only finitely many states in a program, and each
state can only modify at most one specific register. We continue to use an
infinite sequence of registers R1, R2, . . . to save having to specify how many are
needed.
We can describe a register machine in many ways. Two such ways, which we

give here, are via a sequence of instructions or a program diagram.

Definition 1.2 (Sequence of instructions).
A sequence of instructions for a register machine with program P is simply
the collection of instructions of P , written Si : (j,+, k) or Si : (j,−, k, l). By
writing out the triples (j,+, k) and quadruples (j,−, k, l) in an ordered list, is
it assumed that S1 corresponds to the first instruction in the list, S2 to the
second, and so on, thus we usually omit the prefix Si on each instruction. This
completely describes the register machine with program P .

Definition 1.3 (Program diagrams).
A program diagram for a register machine with program P is a graph Γ with
directed edges (some of which are labelled) and labelled vertices. The vertex
set of Γ consists of the states of P . We then generate edges as follows: For each
instruction of type (1) (when in state Si, add 1 to register Rj and move to state
Sk), we include a directed edge from Si to Sk, with label Rj + 1. That is,

Si
Rj+1
−→ Sk
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For each instruction of type (2) (when in state Si, test whether Rj holds the
integer 0: if it does, move to state Sl; otherwise, subtract 1 from it and move
to state Sk), we include two edges. One is a directed edge from Si to Sk with
label Rj−1. The other is an unlabelled directed edge (often written as a dotted
edge) from Si to Sl. That is,

Sl L99 Si
Rj−1
−→ Sk

This completely describes the register machine with program P .

Notice that we have not specified the registers at all in the above two def-
initions. This is because they are not needed in order to define the register
machine. We give the machine an input (a finite sequence of ‘filled’ registers),
and the rest are set to 0 by default. However, the machine itself does not
care which registers we pre-set to non-0 entries. The machine could, in fact,
commence will all registers set to 0 (so with no external input).
Each of the above two definitions can be used to completely describe a register

machine. A program diagram is more intuitive, but harder to write down. A
sequence of instructions is easy to write down, but difficult to follow. From one
such description, we can always convert to the other.
We have specified an initial state S1 and a final state S0 in our register

machines. However, it might be the case that the machine never reaches the
final state S0; an easy example of this is a program with two states S0, S1, and
the instruction for S1 is ‘add 1 to register R1, then move into state S1 again’
(i.e., with sequence of instructions S1 : (1,+, 1)). This machine just keeps
adding 1 to register R1, and never reaches state S0. The key idea here is that
we care about the inputs on which the register machine eventually reaches S0.

Definition 1.4 (Halting sets).
A register machine with program P is said to halt on input (m1, . . . ,mk) ∈ Nk

if, when given an input of registers (R1, . . . , Rk) with each Ri holding integer
mi (and all others holding 0), the machine eventually reaches state S0 after
application of finitely many instructions. We write this as P (m1, . . . ,mk) ↓.
The halting set of P , written Ω(P ), is the set of inputs on which P halts. That
is,

Ω(P ) :=
∪
k>0

{(m1, . . . ,mk) ∈ Nk | P (m1, . . . ,mk) ↓}

If P does not halt on input (m1, . . . ,mk), then we write P (m1, . . . ,mk) ↑.

Definition 1.5 (Upper register of a program).
There will be some finite k, for each program P , for which all registers after
the kth are ‘ignored’ (or ‘not touched’) by P . That is, if we set

upper(P ) := max{i ∈ N | (i,+, j) or (i,−, j, l) is in P}
then no register Rj with index j > upper(P ) will ever be modified by P . We
call this index upper(P ), the upper register index of P .

So each program P has a maximum number of input registers it can process.
Of course, we want our machines to actually take an input and give an output;
that is, we want them to compute something.

Definition 1.6 (Partial computable functions).
A partial function f : Nk → N is said to be partial computable by a program



PART II AUTOMATA AND FORMAL LANGUAGES 7

P if, for all (m1, . . . ,mk) ∈ Nk where f(m1, . . . ,mk) is defined, we have that
P (m1, . . . ,mk) ↓ with f(m1, . . . ,mk) in register R1 when it halts.

We allow our definition to include partial functions (those defined on a subset
of Nk). When this happens, we require that P (m1, . . . ,mk) ↑ for the inputs
on which f(m1, . . . ,mk) is undefined. Thus, every program P for a register
machine defines an n-variable partial function for each n > 0 (though different
programs can define the same function).
We now introduce some basic techniques for register machine operations. We

will use these several times in later proofs, so it helps to establish their existence
now.

Lemma 1.7 (Addition of registers). We can write a program P (or a subroutine
of a program) to add the contents of Ri to Rj, leaving Ri unchanged at the end.

Proof. A program that does this is given by the sequence of instructions:
S1 : (i,−, 2, 4)
S2 : (n,+, 3) where n is larger than both i and j
S3 : (j,+, 1)
S4 : (n,−, 5, 0)
S5 : (i,+, 4)
If instead we were wanting to add the above subroutine to a program P , we

would need to choose n to be larger than both the upper register index for P ,
and the largest input register for P . �

Note that, in the above proof, we have specified which instruction corresponds
to which state. Usually we just write out the instructions in a list, and take
the ith instruction in the list to correspond to state Si.
The process described in Lemma 1.7 would be much easier if we just wanted

to transfer the contents of Ri to Rj (that is, emptying Ri in the process). We
leave this as an exercise.

Lemma 1.8 (Emptying registers). We can write a program P (or a subroutine
of a program) to empty the register Ri.

Proof. A program that does this is given by the sequence of instructions:
S1 : (i,−, 1, 0). �

1.2. Partial recursive functions.
We can now give a large class of functions which are partial computable.

Theorem 1.9 (Closure properties of partial computable functions).
a) (Basic functions) For each i ≤ k, the projection function (n1, . . . , nk) 7→ ni
is partial computable.
b) (Basic functions) The constant function with value 0 (that is, n 7→ 0), and
the successor function n 7→ n+ 1, are partial computable.
c) (Composition) If f is a partial computable function on k variables, and
g1, . . . , gk are partial computable functions each on l variables, then the function
h on l variables given by

h(n1, . . . , nl) := f(g1(n1, . . . , nl), . . . , gk(n1, . . . , nl))

is also partial computable. Note that we take h as being defined on (n1, . . . , nl)
when each gi is defined on (n1, . . . , nl) and f is defined on (g1(n1, . . . , nl), . . . ,
gk(n1, . . . , nl)).
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d) (Recursion) If f and g are partial computable functions on k and k + 2
variables respectively, then the following function h on k + 1 variables defined
inductively by

h(n1, . . . , nk, 0) := f(n1, . . . , nk)

h(n1, . . . , nk, nk+1 + 1) := g(n1, . . . , nk, nk+1, h(n1, . . . , nk, nk+1))

is partial computable (and defined if and only if f and g are appropriately
defined).
e) (Minimalisation) If f is a partial computable function on k + 1 variables,
then the following partial function g on k variables defined by

g(n1, . . . , nk) :=

{
n if f(n1, . . . , nk, n) = 0 and f(n1, . . . , nk,m) > 0 ∀m < n
undefined otherwise

is partial computable.

Parts a) and b) of this theorem say that the basic functions are partial
computable, part c) says that partial computable functions are closed under
composition, part d) says that partial computable functions are closed under
recursion, and part e) says that partial computable functions are closed under
minimalisation.
Our proof will make use of the subroutines given in Lemmata 1.7 and 1.8, so

we won’t write them out again explicitly.

Proof.
a) For i = 1, the projection function can be computed by a program which

does nothing to register R1, and enters the halt state immediately. For example,
the 1-line program (2,+, 0) will suffice. For i > 1, we take the program which
first empties R1, then transfers Ri to R1, then halts. For example, the following
program will suffice: (1,−, 1, 2), (i,−, 3, 0), (1,+, 2).
b) These two functions can be computed by the one-line programs (1,−, 1, 0)

and (1,+, 0) respectively.
c) We construct a program to compute h as follows. First, let M1 be the

supremum of the upper register indices of the gj ’s and of f . Now set M =
M1 + k + l (so none of the registers after RM will ever be non-zero). Let
n = (k + 1)M , and now transfer the contents of R1, . . . , Rl to Rn+1, . . . , Rn+l

respectively, setting each R1, . . . , Rl to 0 in the process; this is to ‘store them
safely’ so that they are not affected by the rest of our computation. Now, for
each 1 ≤ i ≤ k, we copy (without deletion) the registers Rn+1, Rn+2 . . . , Rn+l to
RiM+1, RiM+2, . . . , RiM+l, then perform the computation of gi with all registers
shifted iM places to the right, then store the output in Ri (Observe thatM was
chosen sufficiently large so that at no time in the computation will we reach, or
pass, register R(i+1)M . Moreover, the computation will not touch any register
below RiM+1, as the original computation never tries to touch a register below
R1). Note that, starting with registers containing (n1, . . . , nl, 0, . . .), we now
have registers with contents

(g1(n1, . . . , nl), . . . , gk(n1, . . . , nl),

M − k 0’s︷ ︸︸ ︷
0, . . . , 0, other entries )

Finally, perform the computation for f . Note that upper(f) ≤ M1, and both
M1, l ≤M . Thus the entries beyond register RM will be irrelevant to the com-
putation of f . So, after computing f we will be left with f(g1(n1, . . . , nl), . . . ,
gk(n1, . . . , nl)) in R1, as required.



PART II AUTOMATA AND FORMAL LANGUAGES 9

d) This is similar to the previous case. We first copy (without deletion) the
entries in registers R1, . . . , Rk+1 to Rn+1, . . . , Rn+k+1, with n chosen to ‘store
these entries safely’ as follows: let M1 be the supremum of the upper register
indices of f and g, and set n = M1 + k + 2. Now, set register Rk+1 to 0,
run the computation for f , take the output (the contents of R1) and copy it
to register Rn+k+2. (*) Subtract 1 from register Rn+k+1 (which counts the
number of steps of the recursion remaining). Now set registers R1, . . . , Rn to
0, then copy Rn+1, . . . , Rn+k to R1, . . . , Rk, copy Rn+k+3 (which counts the
number of steps j done so far in the recursion) to Rk+1, and copy Rn+k+2 (the
current value h(n1, . . . , nk, j)) to Rk+2. Now run g, to end up with the value
g(n1, . . . , nk, j, h(n1, . . . , nk, j)) = h(n1, . . . , nk, j+1) in R1. Empty Rn+k+2 and
replace it with the contents of R1, and add one to register Rn+k+3. Then go back
to (*) and repeat. If, however, Rn+k+1 was already 0 when we tried to subtract
1 from it, then instead just enter state S0; R1 will contain h(n1, . . . , nk+1) at
this point.
e) This is similar to the previous case. We first copy the entries in registers

R1, . . . , Rk to Rn+1, . . . , Rn+k, with n chosen to ‘store these entries safely’ as fol-
lows: set n = upper(f)+k+1. Now enter a subroutine where we empty the regis-
ters R1, . . . , Rk+1 and then replace them with the contents of Rn+1, . . . , Rn+k+1

respectively, and then perform the computation of f . At the end of this sub-
routine, we obey (1,−, j, j′); from Sj we add 1 to Rn+k+1 and return to the
beginning of the subroutine; from Sj′ we empty R1 and then copy Rn+k+1 to
R1, and then halt. �

In fact, by using the above functions, we can define an interesting class:

Definition 1.10 (Partial recursive functions).
We define the class of partial recursive functions as the smallest class of partial
functions from Nn → N (for all n) which is closed under the properties of
Theorem 1.9. That is, such a function f can be constructed from the basic
functions and applications of composition, recursion, and minimalisation a finite
number of times. If f can be constructed without minimalisation, then we say
that it is primitive recursive.

Lemma 1.11. Every primitive recursive function f : Nn → N is total (that is,
defined on all of Nn).

Proof. The projection, constant, and successor functions are obviously total.
The composition of total functions is again total. Finally, performing primitive
recursion on total functions is again total. �

We point out (without proof) that not every total recursive function is prim-
itive recursive; the Ackermann function3 is one such example.

Example 1.12. Addition and multiplication of integers are both primitive re-
cursive functions.

Proof. For addition, we can use the recursive definition

h(n1, 0) := n1

h(n1, n2 + 1) := g(n1, n2, h(n1, n2)) = h(n1, n2) + 1

3A very interesting function, which we do not have time to cover.
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where g(n1, n2, h(n1, n2)) := h(n1, n2) + 1 is projection onto the 3rd factor,
followed by successor. Thus we see that h is primitive recursive, and h(n1, n2) =
n1 + n2.
For multiplication, we can use the recursive definition

h(n1, 0) := 0

h(n1, n2 + 1) := g(n1, n2, h(n1, n2)) = h(n1, n2) + n1

where g(n1, n2, h(n1, n2)) := h(n1, n2) + n1 is projection onto the 3rd factor,
followed by addition of n1. Thus we see that h is primitive recursive, and
h(n1, n2) = n1 ∗ n2. �
Example 1.13. (n1, n2) 7→ nn2

1 is primitive recursive.

Proof. We can use the recursive definition

h(n1, 0) := 1

h(n1, n2 + 1) := g(n1, n2, h(n1, n2)) = h(n1, n2) ∗ n1
where g(n1, n2, h(n1, n2)) := h(n1, n2) ∗ n1 is projection onto the 3rd factor,
followed by multiplication by n1. Thus we see that h is primitive recursive, and
h(n1, n2) = nn2

1 . �
Theorem 1.9 shows that all partial recursive functions are partial computable.

We will soon show the converse. First, we need to introduce the following
notation.

Definition 1.14. Let n > 0 and i ≥ 0. We write pi for the (i+ 1)th prime (so
p0 = 2), and we write (n)i for the largest power of pi which divides n.

Lemma 1.15. The function (·)i : N → N given above, sending n 7→ (n)i if
n > 0 (and 0 7→ 0), is primitive recursive, for each fixed i ≥ 0.

The proof of this result involves showing that several intermediate functions
are primitive recursive. Many of these are useful in their own right, and some
will be used explicitly in later proofs.

Proof. We build this up in stages. In each stage, we define a family of functions
over all k > 1 (note that k is an index of these functions, not a variable within
the functions). We show that each individual function in each family is primitive
recursive.

(1) Step functions:

stepk(n) =

{
1 if 0 ≤ n ≤ k − 2
0 if n > k − 2

We prove this inductively on k. First, we show step2 is primitive recur-
sive. This follows from the fact that we can define step2 via recursion
by

step2(0) := 1

step2(n+ 1) := 0

Now assume stepj is primitive recursive for all j < k. We can define
stepk via recursion by:

stepk(0) := 1

stepk(n+ 1) := stepk−1(n)
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(2) Delta functions (also defined for k = 0, 1):

δk(n) =

{
1 if n = k
0 if n ̸= k

We can define δk(n) via composition and product, using stepk, by:

δk(n) := stepk+2(n) · step2(stepk+2(n+ 1))

(3) Truncated successor functions:

slopek(n) =

{
n+ 1 if 0 ≤ n ≤ k − 2
0 if n > k − 2

We can define slopek via recursion, using stepk, by:

slopek(0) := 1

slopek(n+ 1) := stepk(n+ 1) · (slopek(n) + 1)

(4) Remainder functions:

remk(n) = n mod k

We can define remk via recursion, using slopek, by:

remk(0) := 0

remk(n+ 1) := slopek(remk(n))

(5) Floor functions:

floork(n) =
⌊n
k

⌋
We can define floork(n) via recursion, using δ0 and remk, by:

floork(0) := 0

floork(n+ 1) := floork(n) + δ0(remk(n+ 1))

(6) Division functions:

dividek(n) =

{
n
k if n ≡ 0 mod k
0 otherwise

We can define dividek(n) via composition and product, using δ0, remk

and floork, by:

dividek(n) := floork(n) · δ0(remk(n))

(7) Division by powers:

powerk(n,m) =

{
n
km if n ≡ 0 mod km

0 otherwise

We can define powerk(n,m) via recursion, using dividek, by:

powerk(n, 0) := n

powerk(n,m+ 1) := dividek(powerk(n,m))

(8) Maximum powers dividing an integer:

maxpowk(n) =

{
the largest power of k dividing n, if n ̸= 0
0 if n = 0
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We can define maxpowk using δ0 and powerk. First we define an auxil-
iary function h by recursion via:

h(n, 0) := 0

h(n,m+ 1) := h(n,m) + δ0(δ0(powerk(n,m+ 1)))

Now we define maxpowk via composition by:

maxpowk(n) := h(n, n)

Observe that h(n, n) = 0+δ0(δ0
(
powerk(n, 1)

)
)+δ0(δ0

(
powerk(n, 2)

)
)+

. . . + δ0(δ0
(
powerk(n, n)

)
), and that kn > n (as k > 1). Also observe

that

δ0(δ0
(
powerk(n, j)

)
) =

{
1 if kj divides n and n > 0
0 otherwise

Thus, for n > 0, we have h(n, n) = Σm
j=11 = m if m > 0 (or 0 if m = 0),

where m is the largest power of k dividing n. Moreover, h(0, 0) = 0.

Finally, we take (n)i := maxpowpi(n), which is primitive recursive. �

1.3. Equivalence of partial recursive and partial computable func-
tions.
We showed in Theorem 1.9 that partial recursive functions are partial com-

putable. Now we show that partial computable functions are partial recursive.

Theorem 1.16. Every partial computable function is partial recursive.

In this proof we make use of the functions defined in the proof of Lemma
1.15.

Proof. Let f : Nk → N be a partial computable function on k variables, with
program P . We define an auxiliary function g : Nk+2 → N as follows:
• g(n1, . . . , nk, 0, t) is the number of the state of P reached after t computa-

tional steps, starting at state S1 with input (n1, . . . , nk, 0, . . .). If P halts (i.e.,
reaches S0) in fewer than t steps on this input, then we take this to be 0.
• g(n1, . . . , nk, i, t) is the contents of register Ri after P has run t computa-

tional steps, starting at state S1 with input (n1, . . . , nk, 0, . . .). If P halts in
fewer than t steps on this input, then we take the contents of Ri when P halted.
Clearly g is total; we now show that it is actually primitive recursive. Set

r := upper(P )+k+1. Then g(n1, . . . , nk, i, t) can only be non-zero if 0 ≤ i ≤ r.
So, for each fixed n1, . . . , nk, t, we can express the values of g(n1, . . . , nk, i, t)
for 0 ≤ i ≤ r by the finite sequence (g0, . . . , gr) (where each gi depends on
(n1, . . . , nk, t)), and then we can code this to the integer 2g03g1 · · · pgrr . Then
this coding function c : (g0, . . . , gr) 7→ 2g03g1 · · · pgrr is primitive recursive (by
Examples 1.12 and 1.13). Note that the function (·)i does the following to
integers of the form 2g03g1 · · · pgrr :

(2g03g1 · · · pgrr )i =

{
gi if 0 ≤ i ≤ r
0 if i > r

So (·)i is the component-wise inverse to c. That is, (c(g0, . . . , gr))i = gi is
projection onto the i+ 1 entry. Moreover, (·)i is primitive recursive, as shown
in Lemma 1.15. We now proceed to define g via primitive recursion on the last
variable. First, we define a function h : Nk+2 → N via recursion, starting with

h(n0, . . . , nk, 0) = 2n03n1 · · · pnk
k
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So when given the index n0 of the initial state of P (which will be 1), as well as
the contents (n1, . . . , nk) of the first k registers, h(n0, . . . , nk, 0) is the integer
which codes these (and is primitive recursive, just like c). Now we need a
‘transition function’ for these coded integers to simulate the steps of P , which
will give us our recursive definition of h. This will be a function which ‘computes
one step of P ’, and gives us the code for all the new register values and the new
state. We call this function s : N → N, with s(2n03n1 · · · pnr

r p
nr+1

r+1 · · · pnm
m ) :=

2n
′
03n

′
1 · · · pn

′
r

r p
nr+1

r+1 · · · pnm
m (so nl is unchanged for all l > r), and where

n′0 :=


β if Sn0 ⇒ (j,+, β)
β if Sn0 ⇒ (j,−, β, γ) and nj > 0
γ if Sn0 ⇒ (j,−, β, γ) and nj = 0
0 if n0 = 0
n′0 if Sn0 ⇒ ∅ (no instruction for Sn0)

(where ‘if Sa ⇒ (j,+, β)’ means ‘if the instruction for state Sa in P is (j,+, β)’,
and so on). And, for 1 ≤ j ≤ r, we have

n′j :=


nj if Sn0 ⇒ (l,+, β) or (l,−, β, γ), where l ̸= j
nj + 1 if Sn0 ⇒ (j,+, β)
nj − 1 if Sn0 ⇒ (j,−, β, γ) and nj > 0
0 if Sn0 ⇒ (j,−, β, γ) and nj = 0
nj if Sn0 ⇒ ∅ (no instruction for Sn0)

Starting with α := 2n03n1 · · · pnm
m we first observe that we can compute, in a

primitive recursive way, p
nr+1

r+1 · · · pnm
m as we have

p
nr+1

r+1 · · · pnm
m = powerpr(. . . powerp1( powerp0(α, (α)0), (α)1 ) . . . (α)r)

Computing nj for 0 ≤ j ≤ r is primitive recursive, as it is just the func-
tion (·)j . Moreover, computing n′j (for 0 ≤ j ≤ r) is also primitive recursive,
because we have a finite number of ‘non-trivial exceptions’ in the definitions
of n′j so we can use functions like δk and stepk to compute these. So we

can compute n′0, . . . , n
′
r, and the product p

nr+1

r+1 · · · pnm
m . Thus, as c is primi-

tive recursive, we see that s(α) = 2n
′
03n

′
1 · · · pn

′
r

r p
nr+1

r+1 · · · pnm
m = c(n′0, . . . , n

′
r) ·

powerpr(. . . ( powerp0(α, (α)0), . . . (α)r) is also a primitive recursive function.
Finally, we finish the recursive definition of h with

h(n0, . . . , nk, t+ 1) := s(h(n0, . . . , nk, t))

So h(1, n1, . . . , nk, t) is the coded integer giving the state and registers of pro-
gram P , on input (n1, . . . , nk), after t computational steps. So we see that
g : Nk+2 → N is primitive recursive, as

g(n1, . . . , nk, i, t) =
(
h(1, n1, . . . , nk, t)

)
i
=

r∑
j=0

δj(i) ·
(
h(1, n1, . . . , nk, t)

)
j

Now let q(n1, . . . , nk) be the smallest t such that g(n1, . . . , nk, 0, t) = 0, if such a
t exists (interpret this as the number of steps that P takes to reach the halting
state). Thus q is defined via minimalisation (on the primitive recursive function
g), and is therefore partial recursive. Then we see that the partial computable
function f is given by

f(n1, . . . , nk) = g(n1, . . . , nk, 1, q(n1, . . . , nk))

which is partial recursive (but not necessarily primitive recursive). �
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From hereon, we will interchangeably refer to functions as ‘partial recursive’
or ‘partial computable’; there is no difference as the two classes of functions are
the same.

1.4. Algorithms and encodings.
We now have a large class of functions, partial computable functions, de-

finable both ‘mechanically’ and algebraically. It turns out that many of the
functions we come across in mathematics are partial computable, or even total
computable. These include:
• Arithmetic functions (addition, subtraction, multiplication, division with re-
mainder).
• Computing reductions mod n.
• Primality testing.
• Computing gcd and lcm.
These functions are, in a sense, the ‘nicest’ functions, from a computational

standpoint. They are the ones that we can simulate via our computational
device (register machines).

Definition 1.17 (Recursive functions and recursive sets).
A function f : Nk → N is said to be recursive, or computable, if it is total
recursive. A set X ⊆ N is said to be recursive, or computable, or decidable4, if
its characteristic function

XX(n) :=

{
1 if n ∈ X
0 if n /∈ X

is a total recursive (= computable) function. This extends to subsets of Nk.

Thus a function f is recursive (= computable) if we can always compute it,
and a set X is recursive (= computable, decidable) if we can always compute
whether or not a given integer (or tuple) lies in X. So such functions, and such
sets, can be completely understood and ‘computed’ with register machines.
We will now flip this idea, and say that register machines are the way to do

computation.

Definition 1.18 (Algorithms).
An algorithm is any process which takes as input some recursive subset of
Nk, and which can be simulated by a register machine. A total algorithm is
one which will always terminate on every element in its input set. A partial
algorithm is one which may fail to terminate on some elements in its input set.

It is important that the input set of the algorithm is recursive, so that we can
pre-test inputs to check that the algorithm can process them5. Usually (but
not always), the algorithms we will describe will have Nk as input set. Just
as it is nonsensical to input the pair (1, 2) into an algorithm which takes as
input a single integer, we must also be careful not to ‘break’ our algorithms in
other ways. For example, if we have an algorithm which takes as input a square
number n, and outputs the square root of n, then we cannot input 5 into this
algorithm. However, the set of square numbers is recursive. In general, we need
to ensure that our input is suitable for the algorithm to start ‘working on’.

4Most of the time we are interested in deciding if an integer has a certain property or not,
hence the alternate name decidable.

5A blender is an excellent machine for mincing food, but you wouldn’t want to put a brick
in it.
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It turns out that not all functions are computable. Moreover, not all functions
are partial computable; we call such functions incomputable.

Lemma 1.19 (Incomputable functions).
There exists an incomputable function from Nk → N, for each k ≥ 1.

Proof. Each partial computable function comes from a finite program of a regis-
ter machine (alternatively, from a finite number of applications of composition,
recursion and minimalisation with the finite set of basic functions). Thus there
are at most countably many partial computable functions, yet there are un-
countably many functions from Nk → N for any k ≥ 1. �
Observe that the above proof actually shows that there are uncountably many

incomputable functions from Nk → N, for each k ≥ 1.
One problem with our definition of an algorithm is that it only takes in to

account computations from Nk to N. Thus, strictly speaking, we can’t consider
the process ‘take a word in the English language, and compute the number of
letters in it’ as a computable function; the input is not a k-tuple of integers.
Similarly for the process ‘take an integer n, and compute the first word in the
English dictionary with n letters’, as the output is not an integer. As we will
soon see, we need ways to encode our inputs as k-tuples, and our outputs as
integers. We start with ways of encoding tuples as integers.
It helps to have a notion of how to produce an ordered list of the elements

of Nm. There are many ways to do this; one such way is called the shortlex
ordering.

Definition 1.20 (Shortlex ordering).
We define the shortlex ordering on Nm as follows: (n1, . . . , nm) < (n′1, . . . , n

′
m)

if Σm
i=1ni < Σm

i=1n
′
i or Σ

m
i=1ni = Σm

i=1n
′
i and for some k we have ni = n′i for all

1 ≤ i ≤ k but nk+1 < n′k+1.

We can use shortlex to produce an ‘indexed list’ of Nm: Take all elements
(n1, . . . , nm) with sum of entries Σm

i=1ni = 0, and order these by shortlex. Then
take all elements (n1, . . . , nm) with sum of entries Σm

i=1ni = 1, and order these
by shortlex. And so on. Thus, for each n ∈ N, we can construct the nth element
of Nm in this list. This ‘indexing’ and its inverse (onto the ith component for
each 1 ≤ i ≤ m) are all computable; we will show how in the next section with
the aid of Church’s thesis.
We can use this idea to encode words as integers. Consider the set Σ∗ of all

words over the finite alphabet Σ. By placing an ordering {σ1, . . . , σn} on Σ, we
can represent each letter σi of Σ by the integer i. By restricting the shortlex
ordering to {1, . . . , n}m for each m, we get an induced ordering of Σm (words
of length m) for each m: given a word w ∈ Σm , we can associate to it an
m-tuple (i1, . . . , im) representing the sequence of letters in w, and then we use
the shortlex ordering on these associated tuples. Now, to produce an indexed
list of Σ∗, we first take all words in Σ and order them (via their tuples) by the
induced shortlex. Then take all words in Σ2 and order them by the induced
shortlex, and then Σ3, and so on. Thus, for each n ∈ N, we can construct the
nth element of Σ∗ in this list.
Using this, we may re-interpret our previous question of ‘take a word in the

English language, and compute the number of letters in it’ as ‘take the index
for a word in the English language, and compute the number of letters in it’.
So it now makes sense to ask ‘is this function computable?’ We will always
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require our inputs/outputs to be integers. Thus,

From hereon we will take it as a given that the inputs/outputs of our al-
gorithms are given by codes of various objects, either by explicitly giving an
encoding, or implicitly without going in to the details.

So when we ask for “an algorithm to count the number of letters in a word”,
it is clear what we mean.
We now give a way of encoding machines as integers, as later we will want to

compute things about machines. There are various ways to uniformly encode
programs for register machines as integers. Some of these are bijective (one
program ↔ one integer). We give an encoding here which is not bijective (in
particular, there are integers which do not correspond to programs).

Definition 1.21 (Encoding programs as natural numbers).
For each line in the register machine program Q (a triple or quadruple) corre-
sponding to state Si (1 ≤ i ≤ r; we disregard S0), we take the triple (j,+, k)
and encode it to the integer 2j ·5k, or the quadruple (j,−, k, l) and encode it to
the integer 2j · 3 · 5k · 7l. Call this integer ti. Now take this sequence t1, . . . , tr
and form the integer n = 3t1 · · · ptrr . Write Pn for the program encoded by the
integer n.

Given that a register machine program P has no intrinsic arity (that is, has
no intrinsic ‘number of variables’ which it needs to take as input), we see that
if P computes a k-variable function f then it also computes the (k−1)-variable
function f ′ given by

f ′(n1, . . . , nk−1) := f(n1, . . . , nk−1, 0)

by simply inputting (n1, . . . , nk−1, 0) into P . We now remove this ambiguity:

Definition 1.22 (Functions from register machines).
We write fn,k for the k-variable function computed by the register machine with
program Pn, if Pn exists (that is, if n actually encodes a program).

We can now adapt Cantor’s diagonal argument to construct an explicit func-
tion which is not partial recursive:

Lemma 1.23 (An explicit function which is not partial recursive).
Define the function g : N → N via

g(n) :=

{
fn,1(n) + 1 if n codes a program and fn,1(n) is defined
0 otherwise

Then this is an explicit definition of a function which is not partial recursive.

Proof. We proceed by contradiction. Suppose g were partial recursive. Then
there must be some code N for which g = fN,1. Now observe what happens if
we try and compute g(N). We see that, as N is a code, if fN,1(N) were defined
then we would have g(N) = fN,1(N) + 1 ̸= fN,1(N) = g(N). Thus fN,1(N)
is not defined. So by the definition of g we have g(N) = 0, thus giving that
fN,1(N) = 0, and so fN,1(N) is defined; a contradiction. �
Note that we need the clause ‘g(n) = 0 if fn,1(n) is undefined’. If instead

we had that ‘g(n) is undefined if fn,1(n) is undefined’, then g would indeed be
partial recursive, and we will prove this later in Lemma 1.24. To understand
why this is true, we first need to introduce Church’s thesis.
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1.5. Church’s thesis.
We have given our definition of an algorithm in the previous section, in terms

of register machines (and, equivalently, partial recursive functions). But this
was not simply an arbitrary definition; it reflects some of our intuition of what
an algorithm should do. We could, for example, have said that an algorithm is
something that can be computed by a linear function. But it should be clear
that this is far to restrictive a definition, and does not capture all the properties
that we would want ‘algorithms’ to exhibit.
The intuitive idea we have tried to reflect when giving the definition of an

algorithm is the following: an executable process, in the intuitive sense, is a step-
by-step deterministic process with a finite description at every step, a finite set
of rules, and finite input/output. This, of course, is not a formal definition,
and so is unsatisfactory to mathematicians. But it is the idea that we want to
axiomatise, by defining ‘algorithms’ in a suitable way.
We have seen that two seemingly independent definitions of ‘functions we can

compute’, namely partial recursive functions and partial computable functions,
actually yield the same set of functions. Alonzo Church6 made the assertion
(known as Church’s thesis) that any abstract theory of finite computation (i.e.,
a theory of computation whose processes are executable processes, in the above
intuitive sense) will always yield a set of partial computable functions which
is contained in the set of partial recursive functions defined in Definition 1.10.
Later in the course we will see theories of finite computation which define a
strictly smaller set of partial computable functions. Church himself defined
finite computation via the λ–calculus, whose set of partial computable functions
is also identical to the set of partial recursive functions.
That is to say, Church asserted that the definition of an algorithm from

Definition 1.18 is indeed the ‘correct’ definition to take, as it most accurately
represents our intuitive understanding7.
Of course, we cannot prove that all theories of finite computation lead to the

same set of partial computable functions, as we don’t know them all! However,
every abstract theory of finite computation which has been proposed so far has
been verified (mathematically) to compute at most the set of partial recursive
functions (and this includes quantum computers; they are faster, but not better,
than existing computing machines8).
So we now state the first (of three) parts of Church’s thesis. Think of this as

the “definition” part, where we have argued (philosophically) that our definition
of an algorithm accurately reflects our intuitive understanding.

Church’s thesis 1.
Any abstract theory of finite computation C will give at most the set of partial
recursive functions as its set of C partial computable functions from Nk to
N. Thus the most powerful theory of finite computation is given by register
machines and their many equivalents.
That is, the definition of an algorithm from Definition 1.18 is the ‘correct’
definition to work with.

6Alan Turing made the same assertion, hence this is often referred to as the Church-Turing
thesis. For brevity, we shall continue to call it Church’s thesis.

7Just like the definition of a continuous function; something that was the subject of (100
years of) debate, but is accepted now as the ‘correct’ definition to work with.

8They still use finitely-many bits in their computation, so are a high-tech variation on a
classical theme, in the same way that a nuclear reactor is a high-tech kettle.
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Next, consider the encoding of register machines as natural numbers, as done
in Definition 1.21. As mentioned, this encoding is not bijective; if integer n
encodes a program Pn then (n)i can only have prime divisors 2, 3, 5, 7. But
we can describe an executable process to determine if an integer represents a
program; the reverse of Definition 1.21 where we break down n into products
of distinct prime powers, then break down those powers and make sure they
only have prime factors 2, 3, 5, 7 (where the power of 3 is at most 1). A long
and tedious exercise would be to verify, either by constructing a suitable register
machine, or by composing suitable partial recursive functions, that the following
(characteristic) function f : N → N given by:

f(n) :=

{
1 if n codes a program
0 otherwise

is indeed a computable function.
But even without seeing a full proof that such a register machine / total

recursive function exists, you probably already have a good idea of how one
might go about building such an algorithm, from the description of it given
above: “Break down n into products of distinct prime powers, then break down
those powers and make sure they only have prime factors 2, 3, 5, 7 , where the
power of 3 is at most 1.” In fact, you may already feel that such a description
would actually be sufficient proof that there is an algorithm to do it; you don’t
need to see it written out in complete detail.
Well, Alonzo Church felt the same way. And so this brings us to the second

part of Church’s thesis; the idea that having a full step-by-step description of
an executable process is sufficient proof that there exists an algorithm to carry
out the process (given a suitable encoding). Think of this as the “my arguments
should be enough to convince you” part of Church’s thesis.

Church’s thesis 2.
Any informal written description of a step-by-step deterministic process with a
finite description at every step, a finite set of rules, and finite input/output,
starting with some tuple in Nk and with only integer output, is equivalent to
some register machine computation.

This may seem counter-intuitive at first; how can a description of an ex-
ecutable process be enough to prove that there is an algorithm (= register
machine) that performs the computation? Surely such a ‘proof’ is not rigorous,
as it is simply a convincing argument. But most ‘proofs’ that we see in mathe-
matics are exactly that: a convincing argument. Unless you’re in the habit of
doing all your proofs via predicate logic9, they are no more than ‘convincing
arguments’. So that is what you have seen here. The description of the process
should be enough to convince you that it can (with some effort) be simulated
by a register machine.
But we can say even more than this. Thinking back to the example above

again, of checking if an integer n encodes a register machine, we see that the
verbal/written description given doesn’t just show that process can be made
algorithmic; it describes what the algorithm does, in sufficient detail to allow
us to write down the register machine program explicitly (albeit with a bit of
effort). In the same way that we encoded words over alphabet Σ as integers, we

9Do not do all your proofs via predicate logic, unless you want to spend the next 1000
years completing tripos.
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can also encode all finite phrases in the English language as integers (we omit
the details here; it is very similar to the previous example). Thus we can now
state the last part of Church’s thesis; think of this as the “If I can describe it,
I can build it” part of Church’s thesis.

Church’s thesis 3.
There is a total algorithm (= recursive function h : N → N) that, given a code
n for such a finite English description of a process as in part 2 of Church’s
thesis, will produce a code h(n) for a register machine Ph(n) that carries out the
process so described.

So what we’ve said here is that having a complete verbal/written description
of an executable process is as good as having the actual register machine that
carries out the computation; we can always recover one from the other in a
computable manner. Thus, producing the explicit register machine is equivalent
to producing a verbal/written description of the process.
We summarise the three parts of Church’s thesis here.

Church’s thesis.

(1) Any abstract theory of finite computation C will give at most the set of
partial recursive functions as its set of C partial computable functions
from Nk to N. Thus the most powerful theory of finite computation is
given by register machines and their many equivalents.
That is, the definition of an algorithm from Definition 1.18 is the ‘cor-
rect’ definition to work with.

(2) Any informal written description of a step-by-step deterministic process
with a finite description at every step, a finite set of rules, and finite in-
put/output, starting with some tuple in Nk and with only integer output,
is equivalent to some register machine computation.

(3) There is a total algorithm (= recursive function h : N → N) that, given
a code n for such a finite English description of a process as in part 2
of Church’s thesis, will produce a code h(n) for a register machine Ph(n)

that carries out the process so described.

Now we can start to appeal to Church’s thesis to show that certain functions
are indeed partial recursive. First, in a slight abuse of notation, and making use
of part 2 of Church’s thesis, when we say things like “We describe an algorithm
to compute XYZ...”, we really mean “We describe a step-by-step deterministic
process with a finite description at every step, a finite set of rules, and finite
input/output, to compute XYZ...” Observe that, by part 2 of Church’s thesis
and our previous discussion on encodings, we know that this is equivalent to
having built a register machine to carry out the process. Thus, even though
we have defined ‘algorithm’ in a very strict sense via register machines, we can
interpret it more broadly now.
We previously showed some of the following functions to be recursive:

• Arithmetic functions (addition, subtraction, multiplication, division with re-
mainder).
• Computing reductions mod n.
• Primality testing.
• Computing gcd and lcm.
All the above processes have deterministic step-by-step descriptions with all

the necessary finiteness conditions, and so we can simply argue by Church’s
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thesis that there exist register machines which can compute them. This is sub-
stantially simpler than explicitly constructing the necessary register machines
or partial recursive functions.
Recall that we earlier stated, without proof, that recognising whether an

integer represented a register machine code was computable. Well, now we can
simply argue this by Church’s thesis. The reverse of Definition 1.21, where we
break down n into products of distinct prime powers, then break down those
powers and make sure they only have prime factors 2, 3, 5, 7 (where the power of
3 is at most 1), is a step-by-step deterministic process with a finite description
at every step, a finite set of rules, and finite input/output, starting with some
integer and with only integer output. Thus, by Church’s thesis, we see that the
following function

f(n) :=

{
1 if n codes a program
0 otherwise

is indeed a computable function.
However, Church’s thesis cannot be applied to a description of a process if

it contains an ‘existential step’. For example, consider the description ‘Take
a register machine program P defining a function on 1 variable and, if it has
a non-empty domain, output the smallest integer on which it halts’. Such an
integer is, if it exists, well-defined. However, this does not translate into a
step-by-step process for computation.
We can now use Church’s thesis to clarify some of the claims we made in

the previous section. For example: when we defined the shortlex ordering
(Definition 1.20) to produce an indexed list of Nm, we said that this indexing and
its inverse (onto the ith component for each 1 ≤ i ≤ m) are all computable. This
is now immediate; we gave a step-by-step deterministic process for producing
the indexing, and thus by Church’s thesis we see that there is thus an algorithm
(= register machine) which computes this, and so the indexing function and its
m inverses are all computable (and obviously total).
Here is another example, which is a variant of Lemma 1.23.

Lemma 1.24 (An explicit function which is partial recursive).
Define the function g : N → N via

g(n) :=

{
fn,1(n) + 1 if n codes a program and fn,1(n) is defined
undefined otherwise

Then this give a function which is partial recursive.

Proof. To see this, we again appeal to Church’s thesis: we have a description of
a process to compute the values of g(n) when it is defined (that is, we simply
check if n codes a program, and if it does, take the program Pn and run it with
input n). If this process eventually terminates, then add one to R1 and output
its contents. This is a description of a process to compute g, and so g is partial
recursive (but not necessarily total). �
Note that, in the above example, we have used Church’s thesis to show that

the function g is partial recursive. We have not shown that g is computable (=
total recursive), and indeed g is definitely not total. Church’s thesis can be used
to show that a function is partial recursive (= can be simulated by a register
machine), but often we need to use some additional mathematical argument(s)
to verify when such functions are total.
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1.6. Recursively enumerable sets and diagonalisation.
We have looked at recursive sets; thoseX for which the characteristic function

XX is total recursive. But what if we only had a partial recursive function f
which, if defined, matches XX , but whose domain of definition merely contains
X (but not necessarily N \ X)? That is, f can tell us if n ∈ X, but doesn’t
always say when n /∈ X.
Now that we know that the partial recursive functions are precisely the par-

tial computable functions, we will write f(n) ↑ to mean ‘f(n) is undefined’,
and f(n) ↓ to mean ‘f(n) is defined’, matching the notion of when a partial
computable function doesn’t/does halt.
We now need the notion of diagonalising an algorithm. Suppose we have a

partial recursive function f : N → N. Suppose also that we would like to know
if f(7) is defined. Then we simply take a register machine with program Pn

which computes f , and start running Pn(7). That is, we put 7 in register R1,
then apply the instructions of Pn step-by-step. If we reach the halting state
S0 in some finite number of steps, then we stop and can conclude that f(7)
is defined. In actual fact, we have just described an algorithm which takes as
input a register machine Pm for any code m and, if Pm(7) ↓, will halt and
confirm this (but will not halt if Pm(7) ↑) Thus, by Church’s thesis, there is
some register machine with program Q which simulates this. That is,

Q(m) =

{
1 if m codes a program and Pm(7) ↓
↑ otherwise

Now suppose we take the same partial function f , and we want to know if
either f(7) or f(9) is defined. We could do as before, and take Pn with input
7 and run the register machine. If Pn(7) ↓ then this process will halt and tell
us ‘yes’. But what if Pn(7) ↑ but Pn(9) ↓? Then we would need to ‘wait until
infinity’ for Pn(7) to finish, before moving on to computing the steps of Pn(9).
What we need to do is to diagonalise the algorithms. That is, do one step of
Pn(7), then one step of Pn(9), then another step of Pn(7), then another step of
Pn(9), and so on. If either of these eventually halt (and say it is Pn(9) after 1460
steps), the our algorithm will terminate after 2 ∗ 1460 steps with the answer
‘yes’, which is what we want! It helps to write P t

n(k) to mean ‘the register
machine Pn, on input k, after t computational steps’ (this would be completely
described by the integer h(1, k, t) from the proof of Theorem 1.16 ).
Here is a picture of the order of the computational steps in the process we

described:

P 1
n(7) // P 1

n(9)

{{vvv
vv
vv
vv

P 2
n(7) // P 2

n(9)

{{vvv
vv
vv
vv

P 3
n(7) // P 3

n(9)

Now suppose we wanted to know ‘does f halt on any input?’ Again, we can
diagonalise. But this time we need an infinite diagonal process, which explores
infinitely many computational processes at once. To do this, we first need to
do one step of Pn(1), then one step of Pn(2) followed by one more step of
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Pn(1), then one step of Pn(3) followed by one more step of Pn(2) followed by
one more step of Pn(1), and so on. This is a much larger diagonal process,
but can still be simulated by one register machine as we have given a complete
verbal description of the algorithm. Here is a diagram of the first 10 steps of
this process. To make it clearer, we have written [t] next to the tth step of the
process.

[1] P 1
n(1) [2] P 1

n(2)

wwooo
ooo

ooo
ooo

o
[4] P 1

n(3)

wwppp
ppp

ppp
ppp

[7] P 1
n(4) . . .

wwppp
ppp

ppp
ppp

[3] P 2
n(1) [5] P 2

n(2)

xxppp
ppp

ppp
ppp

p
[8] P 2

n(3) . . .

xxqqq
qqq

qqq
qqq

q

...

[6] P 3
n(1) [9] P 3

n(2) . . .

xxppp
ppp

ppp
ppp

p

...

[10] P 4
n(1) . . .

...

...

In general, when we have several register machines with an input each, and
we want to run them all at the same time until one of them halts, we can do
so via diagonalisation. Moreover, this is an algorithmic process (we have given
a full description of the algorithm, above). So by Church’s thesis there is a
register machine to do this computation, and we can construct such a machine
from the description given.

Definition 1.25 (Recursively enumerable sets).
A set E ⊆ N is said to be recursively enumerable10 (abbreviated to r.e.) if the
function ϕE defined by

ϕE(n) :=

{
0 if n ∈ E
↑ otherwise

is partial recursive.

So ϕE will always tell us if n ∈ E, but won’t say anything about when n /∈ E.
We will now show why recursively enumerable sets are named so; it because we
can enumerate them in a recursive manner (that is, start a recursive process
which eventually outputs each element in the set).

Theorem 1.26 (Equivalent definitions of recursively enumerable sets).
For a set E ⊆ N, the following are equivalent:
a) E = {fn,k(m1, . . . ,mk) | (m1, . . . ,mk) ∈ Nk} for some fixed k ≥ 1 and some
fixed n. That is, E is the range of some partial recursive function on some
number of variables.
b) E = {m ∈ N | fn,1(m) ↓} for some fixed n. That is, E is the domain of

10Computability theorists sometimes call these computably enumerable, abbreviated to c.e.
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definition of some partial recursive function on 1 variable.
c) The function ϕE defined by

ϕE(n) :=

{
0 if n ∈ E
↑ otherwise

is partial recursive. That is, E is recursively enumerable.
d) The function ψE defined by

ψE(n) :=

{
n if n ∈ E
↑ otherwise

is partial recursive.

Proof.
(b) ⇒ (c): Given a program Pn for computing the function fn,1 with domain

E, we modify it by inserting an instruction which is ‘triggered’ before the halting
state; this empties register R1 and then proceeds to the halting state. Explicitly,
we add a state Sn+1 (where S0, . . . , Sn are the existing states). Then, for each
instruction of the form (j,+, 0) or (j,−, k, 0) or (j,−, 0, l), we replace it with
(j,+, n+1) (resp. (j,−, k, n+1), (j,−, n+1, l)). Then we add the instruction
(1,−, n+ 1, 0) for state Sn+1.
(c) ⇒ (d): Given a program P for computing ϕE , let r be the upper register

index of P . Now insert a new state/instruction pair which copies R1 to Rr+1

at the beginning of the computation, and another state/instruction pair which
adds Rr+1 to R1 just before the program reaches the halting state.
(d) ⇒ (a): This is immediate.
(a) ⇒ (b): Given the program Pn for computing the function fn,k : Nk → N

with range E, we describe the following algorithm Q. For each t ∈ N, we start a
diagonal process which starts computing fn,k for all of its inputs (recall that we

have an ordered listing of all the elements of Nk). Each time fn,k(m1, . . . ,mk)
halts in this diagonal process, compare the output to t; if we eventually find one
such output is equal to t, then Q terminates on t and outputs 1 (if we never find
such an output, then Q is undefined on t). As we have given a full description
of the algorithm for Q, then by Church’s thesis we can find a register machine
which computes Q, and thus a partial computable function whose domain is
E. �

Since the definition of r.e. is one of the conditions above (c), then all the above
conditions are equivalent to being r.e. We will make use of these conditions
interchangeably in later proofs, depending on which is more convenient to work
with at the time.

1.7. Properties of recursively enumerable sets.
There is actually a stronger form of Theorem 1.26 (a) when considering non-

empty r.e. sets:

Theorem 1.27. Let E ⊆ N be non-empty. Then E is r.e. if and only if it is
the range of some total recursive function on some number of variables.

Proof. By Theorem 1.26 (a), the range of a total recursive function will be
r.e. and non-empty. So we need only show that, if E is r.e. and non-empty,
then it is the range of some total recursive function. If E is finite, then it can
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be written E = {e1, . . . , ek} for some k ≥ 1. So we can define a total recursive
function f : N → N whose range is E by:

f(n) :=

{
en if n ≤ k
ek if n > k

If E is infinite, then it is the domain of some partial recursive function g : N →
N. So we start a diagonal process which starts computing g(n) for each n ∈ N.
Then we define a new function f as follows: we assign f(1) to be the first such n
for which the diagonal process gives that g(n) halts, f(2) to be the second such
n for which the diagonal process gives that g(n) halts, and so on. By Church’s
thesis, we have defined a total recursive function f on 1 variable whose range
is precisely E.
Note that when we say ‘first such n’ when defining f , we mean ‘when run-

ning the diagonal process, the n for which the diagonal process give the first
conclusive halting of g’. For example, we might have that g(5) and g(8) both
halt, but in the diagonal process we see g(8) halt long before we see g(5) halt;
in this case we would have f(a) = 8 and f(b) = 5 for some pair a < b. �
Given condition (b) of Theorem 1.26, we see that each register machine pro-

gram Pn corresponds to a recursively enumerable set, and in particular this set
is the domain of definition of fn,1. For simplicity, we will write the domain of
definition of fn,1 from hereon as

Wn := {x ∈ N | fn,1(x) ↓}
We call Wn the nth recursively enumerable set. Of course, this definition is only
valid when n actually encodes a register machine program Pn.
It turns out that recursive sets and recursively enumerable sets are closely

related:

Theorem 1.28. Let E ⊆ N. Then E is recursive if and only if both E and
N \ E are recursively enumerable.

Proof. If E is recursive then its characteristic function XE is a total recursive
function. Thus the functions ϕE and ϕN\E from Definition 1.25 are partial
recursive. This can be seen by defining an algorithm which takes an integer n
and computes XE(n); if this is 1 then the algorithm outputs 0, and if this is 0
then the algorithm enters a non-terminating loop. By Church’s thesis, we have
given a description of ϕE , which means that it is partial recursive. A similar
argument works for ϕN\E .
Conversely, if both E and N \ E are recursively enumerable, then ϕE and

ϕN\E are partial recursive. So, for each n ∈ N, start a diagonal process which
computes ϕE(n) and ϕN\E(n); if (and only if) ϕE(n) halts, then XE(n) = 1,
and if (and only if) ϕN\E(n) halts then XE(n) = 0. Moreover, precisely one of
these will halt for each n. As we have given a full description of an algorithm
computing XE , then by Church’s thesis it is a total recursive function, and
hence E is recursive. �
There are many interesting examples of r.e. sets.

Definition 1.29 (Diophantine sets).
A set X ⊆ Nk is Diophantine if there is an integer polynomial P on k + l
variables such that

X = {(n1, . . . , nk) ∈ Nk | (∃(m1, . . . ,ml) ∈ Nl)(P (n1, . . . , nk,m1, . . . ,ml) = 0)}
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Lemma 1.30. Every Diophantine set is r.e.

Proof. Let X ⊆ Nk be diophantine, with associated integer polynomial P on
k + l variables. Then, given (n1, . . . , nk) ∈ Nk, we can start a diagonal process
which starts computing P (n1, . . . , nk,m1, . . . ,ml) for every (m1, . . . ,ml) ∈ Nl

(recall that we have an ordered listing all elements of Nl). If any of these
parallel processes ever terminate, then we say that (n1, . . . , nk) ∈ X. This is a
complete description of an algorithm which halts iff (n1, . . . , nk) ∈ X, and thus
by Church’s thesis we have that X is r.e. �

Surprisingly, the converse statement to the above theorem is also true. It is
a deep result, posed as one of Hilbert’s famous problems from 1900 (his 10th

problem) and solved by Matijasevič, but is beyond the scope of this course. We
state it here for completeness.

Theorem 1.31 (Matijasevič’s theorem). Every r.e. set is Diophantine.

Recursively enumerable sets satisfy some useful closure properties.

Lemma 1.32. Let E ⊆ N be an r.e. set. Then the set C ⊂ E given by

C(E) := {e ∈ E | e is a code for a register machine }
is also r.e. Moreover, given an index n such that Wn = E, we can construct an
index m such that Wm = C(E).

Proof. Recall that the function f : N → N given by

f(n) :=

{
1 if n codes a program
0 otherwise

is recursive. So, take an enumeration for E (the domain of some partial recursive
function g). Begin a diagonal process which starts computing g(n) for each
n ∈ N. For each n on which g(n) halts, test if n is a code using f . If so, output
0; if not, enter some non-terminating loop. As this is a complete description of
an algorithm which computes ϕC , we can apply Church’s thesis to conclude that
ϕC is partial recursive, and thus that C is r.e. Moreover, a further application
of Church’s thesis allows us to compute an index m for a register machine Pm

which computes ϕC . That is, ϕC = fm,1, and so C =Wm. �

Theorem 1.33 (Unions and intersections of r.e. sets).
1. Let I ⊆ N be a (possibly infinite) r.e. set of integers, and I ′ ⊂ I those which
are codes for register machines. Then the union of r.e. sets∪

n∈I′
Wn

is again r.e.
2. Let J ⊆ N be a finite set of integers, and J ′ ⊂ J those which are codes for
register machines. Then the intersection of r.e. sets∩

n∈J ′

Wn

is again r.e. This does not extend to an infinite intersection, even if the index
set recursive.
In both case 1 and 2, we can construct an index for the union/intersection of

these r.e. sets.
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Proof.
1. For each x ∈ N, begin a diagonal process which starts computing fn,1(x) for

each n ∈ I ′, and look to see if any of these halt. This process will terminate iff
x lies in at least one Wn. As this is a description of an algorithm to enumerate∪

n∈I′ Wn, we have that it is thus r.e. by Church’s thesis, and moreover this
explicit description allows us to construct an index for the r.e. set

∪
n∈I′ Wn.

2. For each x ∈ N, begin a diagonal process which starts computing fn,1(x)
for each n ∈ J ′, and look to see if all of these halt. This process will terminate
iff x lies in all the Wn (n ∈ J ′). As this is a description of an algorithm
to enumerate

∩
n∈I′ Wn, we thus have that it is r.e. by Church’s thesis, and

moreover this explicit description allows us to construct an index for the r.e. set∩
n∈J ′ Wn. �

1.8. Universality and undecidability.
We saw, in Lemma 1.23, a function g that was constructed to ‘contradict’

every partial computable function on 1 variable at least once. We will now invert
this idea, to construct a function u which simulates every partial computable
function, simultaneously.

Theorem 1.34 (Universal partial recursive function).
There exists a partial recursive function u : N3 → N such that

u(n, k,m) =


r if: n codes a program

and m codes a k-tuple of integers ((m)1, . . . , (m)k)
and fn,k((m)1, . . . , (m)k) is defined and equals r.

↑ otherwise

Such a partial recursive function is said to be universal, as it is capable of
simulating any program for a register machine, and thus simulating any partial
recursive function.

Proof. We describe an algorithm to compute u; by Church’s thesis this will
suffice. On input (n, k,m), we first check if n is a code; if not, enter some non-
terminating loop. If so, decode m as a k-tuple ((m)1, . . . , (m)k) if possible (i.e.,
if m > 0 and the largest prime dividing m is at most pk); if this is unsuccessful,
enter a non-terminating loop. Otherwise, simulate the computation of pro-
gram Pn with input registers ((m)1, . . . , (m)k, 0, 0, . . .). If Pn((m)1, . . . , (m)k)
eventually halts, then we output the contents of register R1. �
The implications of the existence of a universal partial recursive function

(equivalently, a universal computing device) are what underpin the last 80 years
of human technological advancements. To make this clear: a universal partial
recursive function is often referred to as a programmable computer. With this,
it is possible to construct one physical computation device, and then on it have
the ability to simulate all possible computer programs, without any need to
modify the hardware11.
We now show that not every recursively enumerable set is recursive.

Theorem 1.35 (Undecidability and the halting set).
The set

K := {n ∈ N | fn,1(n) ↓}
11If you are still unconvinced of the importance of universal computation, imagine a world

where every update of your favourite operating system (Windows, macOS, Ubuntu, Android,
etc.) ships with a screwdriver.
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is known as the halting set. It is recursively enumerable, but not recursive.

Proof. Given any n ∈ N, we start computing fn,1(n); this halts iff n ∈ K. As
this is a description of a partial algorithm, then by Church’s thesis we see that
K is r.e.
Now, suppose that N \ K were r.e.; we proceed by contradiction. For if it

were, then there would exist some N such that WN = N \ K (that is, N \ K is
the domain of fN,1). So now we ask whether N is in K or its complement. But
we see that

N ∈ K ⇔ fN,1(N) ↓
⇔ N ∈WN

⇔ N ∈ N \K
⇔ N /∈ K

which is a contradiction. �
What this is telling us is the following: Given a partial recursive function

fn,1, and an input t, we cannot compute in advance whether or not fn,1(t) is
defined (that is, whether or not the computation fn,1(t) halts). If it is defined,
we can verify this computationally. But if it is not defined, then there are cases
when we can never ‘be sure’ that this is indeed the case. So even though fn,1
completely defines Wn (existentially), we can’t always compute membership in
Wn algorithmically.
It is important to note that universality implies undecidability. That is, just

using the statement ‘there is a universal register machine’, it is possible to
prove the statement ‘there is an r.e. set which is not recursive’. One might
lament the fact that we encounter undecidability in the study of computation,
but it is this very fact which allows us to build universal (also known as pro-
grammable) computers; if we did not have undecidability, then we could not
have universality12.

1.9. Reductions.
We now look at another way to show that certain sets are not recursive (or

even r.e.), and that is via reductions. Intuitively, we look for ways to conclude,
in a computational manner, membership in one set X from membership in
another set Y . Thus, if we know that we can’t decide membership in X, then
it means we can’t decide membership in Y .

Definition 1.36 (Many-one reductions).
Given two sets A,B ⊆ N, a many-one reduction of A to B is a total recursive
function f : N → N such that, for all n ∈ N, we have

n ∈ A⇔ f(n) ∈ B

If there is a many-one reduction of A to B, then we say that Amany-one reduces
to B, or A is many-one reducible to B, and we write this as A ≤m B.

So in order to compute membership of n in A, we evaluate the function
f(n) and then ‘ask B one question: Is f(n) in B or not?’ If so, n ∈ A, if
not, n /∈ A; in either case, we cannot do any computation after this question.
The name ‘many-one reduction’ comes from the fact that membership in A of
several elements n1, n2, . . . can reduce to testing if one element lies in B (that

12Undecidability is not only interesting, but also inherently useful.
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is, we might have f(n1) = f(n2) = . . .). This differs from the notion of Turing
reductions (which is beyond the scope of this course), where we are allowed to
ask B whether several elements lie inside or outside it, and we can carry out
computational steps in between these questions.

Lemma 1.37. A ≤m B ⇔ N \A ≤m N \B.

Proof. This follows immediately from the definition of many-one reductions. �

Many-one reductions help us identify sets which are/aren’t recursive or r.e.

Lemma 1.38.
a) If A ≤m B, and B is r.e., then so is A.
b) If A ≤m B, and B is recursive, then so is A.

Proof.
a) Let A ≤m B via the total recursive function f . As B is r.e., it is the

domain of some partial recursive function g (that is, x ∈ B ⇔ g(x) ↓). So A is
thus the domain of g ◦ f , which is partial recursive. Hence A is also r.e.
b) Let A ≤m B via the total recursive function f . Then the same map f is a

many-one reduction of N \ A to N \B (as x /∈ A⇔ f(x) /∈ B). Thus, by a), A
and N \A are both r.e. (as B and N \B are both r.e.). So A is recursive. �

We now introduce a useful idea, which shows that holding some of the vari-
ables of a partial recursive function fixed gives us another partial recursive
function (which we can construct a register machine for). This is often re-
ferred to as currying, named after Haskell Curry. The theorem itself is called
the ‘s-m-n theorem’, named after the notation used in the original proof by
Kleene13.

Theorem 1.39 (The s-m-n theorem).
For all m,n > 0, a partial function h : Nm+n → N is partial recursive if
and only if there is a total recursive function g : Nm → N such that, for all
(e1, . . . , em, x1, . . . , xn) ∈ Nm+n, we have that

h(e1, . . . , em, x1, . . . , xn) = fg(e1,...,em),n(x1, . . . , xn)

Here ‘=’ is interpreted to include ‘one side is defined iff the other side is’.

Proof. Suppose h satisfies the hypotheses of the theorem; we show that it is
partial recursive. Given input (e1, . . . , em, x1, ..., xn), we first compute the to-
tal recursive function g(e1, . . . , em) = M , and then start the computation of
fM,n(x1, . . . , xn) via the register machine with program PM (if M is not a
code then we simply say that h is undefined for this input). If the compu-
tation of fM,n(x1, . . . , xn) ever halts, then we take the output as the value of
h(e1, . . . , em, x1, . . . , xn). Given that we have completely described an algo-
rithm to partially compute h, then by Church’s thesis we have that h is partial
recursive.
Now, suppose that h is partial recursive. For each (e1, . . . , em) ∈ Nm, we

describe a function k(e1,...,em) : Nn → N as follows: given input (x1, . . . , xn),
start the computation of h(e1, . . . , em, x1, . . . , xn), and if this halts, take the
output as k(e1,...,em)(x1, . . . , xn). Thus we have a complete description of an
algorithm which partially computes k(e1,...,em), thus by Church’s thesis we can

13And not for any deeper or more insightful reason.
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construct, from (e1, . . . , em), a code (call it g(e1, . . . , em)) for a register machine
Pg(e1,...,em) which partially computes the function k(e1,...,em). That is,

k(e1,...,em) = fg(e1,...,em),n : Nn → N

But this is a total algorithm which describes how to construct the (total) func-
tion g : Nm → N, and so by another application of Church’s thesis we see that
g is total recursive. As h(e1, . . . , em, x1, . . . , xn) = fg(e1,...,em),n(x1, . . . , xn) by
definition, we have that h satisfies the required conditions. �

We use this to show that the halting set K is the strongest r.e. set under
many-one reductions, in the following sense.

Theorem 1.40. A set X ⊆ N is r.e. if and only if X ≤m K.

Proof. From Lemma 1.38, we see that if X ≤m K then X must be r.e. (as K
is). Now, suppose that X is r.e. Define the partial function f : N2 → N via

f(e, n) :=

{
1 if e ∈ X
↑ otherwise

Then f is partial recursive; given an input (e, n) we begin computing ϕX(e),
and this will halt iff e ∈ X. When it does, output 1 for f(e, n). Thus, by
Church’s thesis, f is partial recursive. So by Theorem 1.39, there is a total
recursive function g : N → N with f(e, n) = fg(e),1(n) for all (e, n) ∈ N2. So
now we see that

e ∈ X ⇔ f(e, g(e)) ↓
⇔ fg(e),1(g(e)) ↓
⇔ g(e) ∈ K

So e ∈ X ⇔ g(e) ∈ K, where g is a total recursive function. Thus X ≤m K. �

The idea here is that, with absolute knowledge of K, we have absolute knowl-
edge of each r.e. set, in a computable way.
We can also apply the s-m-n theorem to prove that every computable function

has a ‘fixed point’. This is known as the recursion theorem.

Theorem 1.41 (The recursion theorem).
For each total recursive function h : N → N, there is some n ∈ N with fn,1 =
fh(n),1 as functions.

Proof. Consider the function g : N2 → N given by

g(x, y) := u( h(u(x, 1, 3x)), 1, 3y )

where u is the universal partial recursive function from Theorem 1.34. By the
s-m-n theorem, we can ‘curry’ this, and find a total recursive function on one
variable (say fm,1) for which

g(x, y) = ffm,1(x),1(y) ∀x, y ∈ N
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Let n = fm,1(m); this will be our fixed point. Then for all y with fn,1(y) ↓ we
have

fn,1(y) = ffm,1(m),1(y)

= g(m, y)

= u( h(u(m, 1, 3m)), 1, 3y )

= u( h(fm,1(m))), 1, 3y ) by definition of u

= u( h(n), 1, 3y )

= fh(n),1(y)

The above reasoning also shows that fn,1(y) ↑⇒ fh(n),1(y) ↑.
Thus fn,1 = fh(n),1 as functions. �
1.10. Rice’s theorem.
One would, of course, like to compute things about r.e. sets. It would be

useful, for example, to be able to determine (in a computable way) whether or
not Wn is all of N, as this would tell us precisely when fn,1 is total. We will
soon see that this is not possible; moreover, there is no (non-trivial) property
of r.e. sets that we can compute!

Definition 1.42. A property of r.e. sets is a map

ρ : {X ⊆ N | X is r.e.} → {0, 1}
where 0, 1 represent ‘false’ and ‘true’ respectively.

For example, the property of ‘being empty’ is represented by the map

ρ(X) :=

{
1 if X = ∅
0 if X ̸= ∅

In order to compute whether an r.e. set has a particular property or not, we
need a finite way to describe this r.e. set. We can take a code n for the register
machine Pn which describes the characteristic function of the r.e. set, but note
that it is the set which does or doesn’t have the property, independent of which
register machine we pick to describe it (and there may be many). So really, we
are computing ρ(Wn) (and actually, we can view this as computing ρ(n)). So
which properties can we compute?

Example 1.43. The property ‘being non-empty’ is r.e. but not recursive. That
is, the set I = {n ∈ N | n codes a program and Wn ̸= ∅} is r.e., but not
recursive.

Proof. Take n and compute if it is a code for a program. If so, start a diagonal
process to begin computing fn,1(1), fn,1(2), . . .. One of these will terminate iff
Wn is non-empty, and so this index set is r.e. by Church’s thesis.
On the other hand, take an integer n, and define a partial function g via

g(n, x) :=

{
1 if n ∈ K
↑ otherwise

So by Church’s thesis g is partial recursive, and by Theorem 1.39 there is a
recursive function h : N → N such that g(n, x) = fh(n),1(x) ∀(n, x) ∈ N2. If
n ∈ K then Wh(n) = N ̸= ∅. If n /∈ K then Wh(n) = ∅. Thus n ∈ N \ K ⇔
Wh(n) = ∅ ⇔ h(n) ∈ N \ I, and so we have a many-one reduction from a
non-r.e. set N \ K to the set N \ I, and so the latter is not r.e. Hence I is not
recursive. �
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Definition 1.44. A property of r.e. sets ρ is said to be nontrivial if there exist
two r.e. sets A,B such that ρ(A) = 0 and ρ(B) = 1. That is, not all sets have
(or do not have) the property described.

It turns out that the only properties of r.e. sets we can algorithmically recog-
nise are the trivial ones14.

Theorem 1.45 (Rice’s theorem).
Let C be a non-trivial class of r.e. sets, and I the set of indices which code
programs and give r.e. sets in C. That is,

I = {n ∈ N | n encodes a register machine and Wn ∈ C}
If ∅ /∈ C then K ≤m I; if ∅ ∈ C then K ≤m (N \ I).

Proof. There are two cases to consider here.
Case 1: ∅ /∈ C. In this case, fix any r.e. set ∅ ̸= A ∈ C. Now define the following
partial recursive function g : N2 → N by

g(n, x) =

{
1 if n ∈ K and x ∈ A
↑ otherwise

This is a description of how to compute if g halts on a given input, and so
by Church’s thesis g is partial recursive. So by Theorem 1.39 there is a total
recursive function h : N → N such that g(n, x) = fh(n),1(x) ∀(n, x) ∈ N2. Notice
that n ∈ K ⇒Wh(n) = A⇒Wh(n) ∈ C, and n /∈ K ⇒Wh(n) = ∅ ⇒Wh(n) /∈ C.
Thus n ∈ K ⇔ h(n) ∈ I, and so we have a many-one reduction K ≤m I.
Case 2: ∅ ∈ C (analogous to the first case). In this case, fix any r.e. set
∅ ̸= A /∈ C. Now define the following partial recursive function g : N2 → N by

g(n, x) =

{
1 if n ∈ K and x ∈ A
↑ otherwise

This is a description of how to compute if g halts on a given input, and so
by Church’s thesis g is partial recursive. So by Theorem 1.39 there is a total
recursive function h : N → N such that g(n, x) = fh(n),1(x) ∀(n, x) ∈ N2. Notice
that n ∈ K ⇒Wh(n) = A⇒Wh(n) /∈ C, and n /∈ K ⇒Wh(n) = ∅ ⇒Wh(n) ∈ C.
Thus n ∈ K ⇔ h(n) ∈ N \ I, and so we have a many-one reduction K ≤m

N \ I. �
Corollary 1.46. Every non-trivial property of r.e. sets is undecidable (i.e.,
nonrecursive). That is, if ρ is a non-trivial property of r.e. sets, then the set

{n ∈ N | n encodes a register machine and ρ(Wn) = 1}
is not recursive.

Thus, if you are given an r.e. set Wn and asked some non-trivial question
about it (i.e., Is it finite? Is it empty? Does it contain more than 55 elements?
Does it contain 9 but not 6? Is it recursive? Is it co-finite? Are all its elements
even?), then you have no way of answering in an algorithmic manner. You may
be able to answer the question for some particular cases of n, but not for all
cases.

14Hopefully by now this does not come as a surprise to you.
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2. REGULAR LANGUAGES AND FINITE-STATE AUTOMATA

We have seen the most general types of computing machines. Now we turn
our attention to some more restrictive machines, which are less powerful but
easier to work with.

2.1. Deterministic finite-state automata.

Definition 2.1 (Languages).
Let X = {x1, . . . , xn} be a finite set. Then we define X∗ to be the set of all
finite strings of elements of X (including the empty string ϵ). We often refer to
elements of X∗ as words. A language over X is any subset of X∗.

Sometimes we can describe languages in a nice way. For example, take X =
{0, 1}. Then the following are all languages over X:

(1) All words that start with 0.
(2) All words that contain the same number of 0’s and 1’s.
(3) All words which, for some fixed n, are the binary expansion for an

integer which lies in Wn.

As we can see, some languages (like (3) above) will thus be undecidable! We
can also take a different finite set, such as A = {a, b, c, . . . , x, y, z}, and take our
language to be all strings which give English words. We now give another way
to describe some languages.

Definition 2.2 (Deterministic finite-state automata).
A deterministic finite-state automaton (DFA) is a structure D = (Q,Σ, δ, q0, F )
consisting of the following:

(1) A finite set of states Q.
(2) A finite input alphabet Σ.
(3) A transition function δ : Q× Σ → Q which is total.
(4) A designated start state q0 ∈ Q.
(5) A finite set of accept states F ⊆ Q.

The input of a DFA is any finite string w = σ1 . . . σk ∈ Σ∗. The DFA takes
w, reads the first symbol σ1 whilst ‘in’ the start state q0, and then evaluates
the transition function δ(q0, σ1) = p1 to ‘move to’ a new state. The DFA then
reads the next symbol σ2 of w, and evaluates δ(p1, σ2), and moves to the next
state. This continues for the entire string w.
If at the end of this process the DFA is in one of the accept states F , then

we say that w is accepted by A. Otherwise, we say that w is rejected.

The above description is not very intuitive. There are more convenient ways
to describe DFA’s, such as transition diagrams and transition tables.

Definition 2.3 (Transition diagrams).
A transition diagram for a DFA D = (Q,Σ, δ, q0, F ) is a directed graph ΓD with
the following properties:

(1) The vertex set of ΓD is precisely the set of states Q, labelled as such.
(2) For each (q, σ) ∈ Q× Σ, we add a directed edge from q to δ(q, σ), and

label this with σ.
(3) We add one additional directed edge from ‘nowhere’ to the vertex q0,

and label this ‘start’.
(4) For clarity, we draw each vertex as the state q with a circle drawn around

it; if q ∈ F then we instead draw two circles around q.
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Notice that every vertex will have precisely |Σ| edges leading out of it; one
for each σ ∈ Σ. Hence the name deterministic: our next move is completely
determined. Now, to process an input w = σ1 . . . σk ∈ Σ∗, we place a small
movable marker at q0, then read the first symbol σ1 of w and move the marker
along the edge out of q0 labelled by σ1 and to the adjacent vertex δ(q0, σ1).
Then read the next symbol σ2 of w and repeat the process. Upon reaching
the end of the string w, note on which state the marker has reached. This
completely describes the given DFA.

Transition diagrams are very intuitive, and give a clear ‘picture’ of what that
DFA does. However, they take up a lot of space on a page. There is a more
compact way to describe a DFA.

Definition 2.4 (Transition tables).
A transition table for a DFA D = (Q,Σ, δ, q0, F ) is a table TD with:

(1) Labels down the left of the table; one for each state in Q.
(2) Labels across the top of the table; one for each symbol in Σ.
(3) Entries in the middle of the table; position (q, a) is given value δ(q, a).
(4) For clarity, we place a star ∗q next to the states down the left of the

table which correspond to accepting states, and we place an arrow → q0
next to the state on the left of the table which is the start state.

As you can see, from this table we can read off the transition function δ, as
well as the states Q, the accept states F , the start state q0, and the alphabet
Σ. This completely describes the given DFA.

2.2. Regular languages.
Given a DFA D = (Q,Σ, δ, q0, F ), we often want to know ‘where does w end

up when input into D?’ We can define a function to do this.

Definition 2.5 (Extended transition function).
Let D = (Q,Σ, δ, q0, F ) be a DFA. We define the extended transition function

of D, δ̂ : Q× Σ∗ → Q, inductively via:

δ̂(q, ϵ) := q for q ∈ Q

δ̂(q, σ) := δ(q, σ) for q ∈ Q, σ ∈ Σ

δ̂(q, σ1 . . . σk) := δ(δ̂(q, σ1 . . . σk−1), σk) for q ∈ Q, σ1, . . . , σk ∈ Σ

In particular, for any w ∈ Σ∗, δ̂(q0, w) tells us the state that we end up at when
we input w into D.

Lemma 2.6. Let D = (Q,Σ, δ, q0, F ) be a DFA. Then, for all 1 ≤ l ≤ k, all
σ1 . . . σk ∈ Σ∗, and all q ∈ Q, we have that

δ̂(q, σ1 . . . σk) = δ̂
(
δ̂(q, σ1 . . . σl), σl+1 . . . σk

)
Proof. We proceed by induction. Clearly the statement is true for k = 1; assume
it is true for all k < m. Then we have

δ̂(q, σ1 . . . σm) = δ(δ̂(q, σ1 . . . σm−1), σm) (definition of δ̂)

= δ(δ̂(δ̂(q, σ1 . . . σl), σl+1 . . . σm−1), σm) (induction)

= δ̂(δ̂(q, σ1 . . . σl), σl+1 . . . σm) (definition of δ̂)

�
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Definition 2.7 (Regular languages).
Let D = (Q,Σ, δ, q0, F ) be a DFA. We define the language of D, L(D), to be
the words which are accepted by D. That is,

L(D) := {w ∈ Σ∗ | δ̂(q0, w) ∈ F}
This is the language of words over Σ which are taken to an accepting state in
D. We say a language L is regular if L = L(D) for some DFA D.

2.3. Nondeterminism.
We now define a (seemingly) more general form of finite state automaton:

one which can ‘explore’ several possibilities simultaneously. The only difference
between these and the DFA’s that we saw before is that these new automata
have a non-deterministic transition function δ. We adopt the notation P(X)
for the power set of a set X.

Definition 2.8 (Nondeterministic finite-state automata).
A nondeterministic finite-state automaton (NFA) is a structureN = (Q,Σ, δ, q0, F )
consisting of the following:

(1) A finite set of states Q.
(2) A finite input alphabet Σ.
(3) A transition function δ : Q× Σ → P(Q) which is total.
(4) A designated start state q0 ∈ Q.
(5) A finite set of accept states F ⊆ Q.

The input of an NFA is any finite string w = σ1 . . . σk ∈ Σ∗. The NFA takes
w, reads the first symbol σ1 whilst ‘in’ the start state q0, and then evaluates
the transition function δ(q0, σ1) = {p1, . . . , pm} to simultaneously ‘move to’ all
the new states. The NFA then reads the next symbol σ2 of w, and evalu-
ates δ(p, σ2) for all p ∈ δ(q0, σ1), and simultaneously moves to all these states∪

p∈δ(q0,σ1)
δ(p, σ2). This continues for the entire word w.

If at the end of this process the NFA is in a configuration that contains at least
one of the accept states F , then we say that w is accepted by N . Otherwise,
we say that w is rejected.

Be aware that the transition function δ might give the empty set on certain
inputs. That is, we might have δ(q, σ) = ∅ for some σ ∈ Σ. This is fine.
The utility of having a nondeterministic transition function is that we can

‘explore’ many possibilities for an input word at once.

Definition 2.9 (Transition diagrams and transition tables for NFA’s).
We define the transition diagram ΓN and transition table TN for the NFA N in
essentially the same way that we define them for a DFA. The only differences
are:

(1) For the transition diagram of an NFA, we might have several directed
edges out of the same state with the same label, or even none at all.

(2) For the transition table of an NFA, the entries in the interior of our
table will be sets of states (including possibly the empty set).

NFA’s are best understood via their transition diagrams. To see how an NFA
N processes an input w = σ1 . . . σk ∈ Σ∗, we place a small marker at q0, then
read the first symbol σ1 of w. Now we take more markers and move them along
all the edges out of q0 labelled by σ1 and to the adjacent vertex set δ(q0, σ1),
and then we remove the original marker. Then read the next symbol σ2 of w
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and repeat the process (It helps to have two colours of markers: red and blue.
For each iteration, we take the new markers to be the opposite colour to the
old markers, and then remove the old markers). Upon reaching the end of the
word w, note on which states the markers are on; if any of these are accept
states, the N accepts w, otherwise it is rejected. This completely describes the
given NFA.
Be aware that, in the above description, we might reach state q, read symbol

σ, and have that there is no edge out of q labelled σ (that is, δN (q, σ) = ∅).
This is fine. In this case, the marker in question merely ‘drops off’.

Definition 2.10 (Extended transition function for NFA’s).
Let N = (Q,Σ, δ, q0, F ) be an NFA. We define the extended transition function

of N , δ̂ : Q× Σ∗ → P(Q), inductively via:

δ̂(q, ϵ) := {q} for q ∈ Q

δ̂(q, σ) := δ(q, σ) for q ∈ Q, σ ∈ Σ

δ̂(q, σ1 . . . σk) :=
∪

p∈δ̂(q,σ1...σk−1)

δ(p, σk)

In particular, for any w ∈ Σ∗, δ̂(q0, w) gives us the set of states we end up at
when we input w into N .

With this, we can say what the language of an NFA is.

Definition 2.11 (Language of an NFA).
Let N = (Q,Σ, δ, q0, F ) be an NFA. We define the language of N , L(N), to be
the words which are accepted by N . That is,

L(N) := {w ∈ Σ∗ | δ̂(q0, w) ∩ F ̸= ∅}

This is the language of words over Σ for which δ̂(q0, w) contains at least one
accepting state of N .

2.4. Equivalence of DFA’s and NFA’s.
It is straightforward to show that any regular language is the language ac-

cepted by some NFA. What is less obvious is that the converse is true: every
language accepted by an NFA is also accepted by some DFA. To do this, we
employ what is known as the subset construction which takes an NFA N and
produces a DFA D on the same alphabet such that L(N) = L(D).

Definition 2.12 (The subset construction).
Let N = (QN ,Σ, δN , q0, FN ) be an NFA. We define the following construction
of a DFA D = (QD,Σ, δD, {q0}, FD), called the subset construction, as follows:

(1) QD := P(QN ); the power set of QN .
(2) FF := {S ⊆ QN | S ∩ F ̸= ∅}; the set of subsets of QN which intersect

the accepting states FN of N .
(3) For each S ⊆ QN and each a ∈ Σ, we define

δD(S, σ) :=
∪
p∈S

δN (p, σ)

which is the set of states reached from the states in S by going along
an edge labelled σ in ΓN .
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Observe that the start state of D constructed above is {q0}; that is, the set
containing q0. This is because the set of states is P(QN )
It is usually easiest to give the subset construction as a transition table, as it

often becomes complicated when trying to draw the transition diagram.

Theorem 2.13 (Extended transition function in the subset construction).
Let D = (QD,Σ, δD, {q0}, FD) be the DFA constructed from the NFA N =
(QN ,Σ, δN , q0, FN ) via the subset construction (Definition 2.12). Then, for any
w ∈ Σ∗, we have

δ̂D({q0}, w) = δ̂N (q0, w)

Proof. We proceed by induction on |w|. Clearly, if |w| = 0 (that is, w = ϵ),

then δ̂D({q0}, ϵ) = {q0}, and so δ̂N (q0, ϵ) = {q0}.
Now suppose that δ̂D({q0}, v) = δ̂N (q0, v) for all v with |v| ≤ n. Let w be

a word of length n + 1. Then w = xσ, where σ ∈ Σ is the final symbol of w.
By induction, as x = n, we have that δ̂D({q0}, x) = δ̂N (q0, x). Call this set

{p1, . . . , pk} ⊆ QN . By definition of δ̂ for NFA’s, we have

δ̂N (q0, xσ) =
∪

q∈δ̂N (q0,x)

δN (q, σ) =
k∪

i=1

δN (pi, σ)

Now, the subset construction gives that

δD({p1, . . . , pk}, σ) =
k∪

i=1

δN (pi, σ)

So we have that

δ̂D({q0}, w) = δ̂D({q0}, xσ)

= δD(δ̂D({q0}, x), σ)
= δD({p1, . . . , pk}, σ)

=

k∪
i=1

δN (pi, σ)

Thus we have that δ̂D({q0}, w) = δ̂N (q0, w), and the induction is complete. �
We can now use this to say something about the accepted languages of these

automata.

Theorem 2.14 (Equivalence of language in the subset construction).
Let D = (QD,Σ, δD, {q0}, FD) be the DFA constructed from the NFA N =
(QN ,Σ, δN , q0, FN ) via the subset construction. Then L(D) = L(N).

Proof. From the previous theorem, we see that, for any w ∈ Σ∗,

D accepts w ⇔ δ̂D({q0}, w) contains a state in FN

⇔ δ̂N (q0, w) contains a state in FN

⇔ N accepts w

Thus L(D) = L(N), as both D and N have the same alphabet Σ. �
Theorem 2.15. A language L is accepted by some DFA if and only if it is
accepted by some NFA.
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Proof. We showed in Theorem 2.14 that, from any NFA, we can construct a
DFA on the same alphabet which accepts the same language.
So now suppose we have that L is accepted by some DFAD = (Q,Σ, δD, q0, F ).

Take a transition diagram for D. Then this also defines a transition diagram
for an NFA N with the same states, same alphabet, and same accepting states.
We need only remark that the transition function δN for N will be given by

δN (q, σ) := {δD(q, σ)}

That is, if δD(q, σ) = p, then δN (q, σ) = {p}. We prove by induction on |w|
that, if δ̂D(q0, w) = p, then δ̂N (q0, w) = {p}:
Basis: Let |w| = 1, so w = σ ∈ Σ. We have defined δN (q0, σ) = {δD(q0, σ)}, so
we’re done.
Induction: Suppose, for all v with |v| ≤ n, we have δ̂N (q0, v) = {δ̂D(q0, v)}.
Take w with |w| = n + 1, then w = xσ for some x ∈ Σ∗, σ ∈ Σ. Now we have
that:

δ̂N (q0, xσ) =
∪

p∈δ̂N (q0,x)

δN (p, σ)

=
∪

p∈{δ̂D(q0,x)}

δN (p, σ)

= δN (δ̂D(q0, x), σ)

= {δD(δ̂D(q0, x), σ)}

= {δ̂D(q0, xσ)}

Thus D and N = (Q,Σ, δN , q0, F ) accept the same words, so L(D) = L(N). �

So we see that, whenever we want to show that a language L is regular, it
suffices to produce a DFA or an NFA which accepts L.

2.5. ϵ-transitions on NFA’s.
An NFA allows us to ‘explore’ many paths through a transition diagram

simultaneously. However, we are constrained to not change the states that
we are ‘in’ until we read the next letter of the input word. By modifying
things slightly and introducing ϵ-transitions, we give ourselves an extra degree
of flexibility.

Definition 2.16 (ϵ-NFA).
An ϵ-NFA is very similar to an NFA, in that it consists of:

(1) A finite set of states Q.
(2) A finite input alphabet Σ.
(3) A transition function δ : Q× (Σ ∪ {ϵ}) → P(Q) which is total (that is,

we now have transitions on the empty word ϵ).
(4) A designated start state q0 ∈ Q.
(5) A finite set of accept states F ⊆ Q.

We write this as E = (Q,Σ, δ, q0, F ).

Definition 2.17 (Transition diagrams and transition tables for ϵ-NFA’s).
We define the transition diagram ΓE and transition table TE for the ϵ-NFA E in
essentially the same way that we define them for an NFA. The only differences
are:
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(1) For the transition diagram of an ϵ-NFA, we might have directed edges
out of a state labelled with ϵ.

(2) For the transition table of an ϵ-NFA, ϵ is now one of the symbols at the
top of the table.

So basically, a ϵ-NFA looks just like an NFA, but with ϵ acting as an extra
‘symbol’. It still takes as input words w ∈ Σ∗, but processes them in a slightly
different way to an NFA. To describe this, we first need the notion of ϵ-closure.

Definition 2.18 (ϵ-closure).
Let E = (Q,Σ, δ, q0, F ) be an ϵ-NFA, and q ∈ Q. We define the ϵ-closure of q,
eclose(q), to be the set of all states that can be reached from q by sequences of
transitions of the form δE(p, ϵ) (such transitions are called ϵ-transitions). That
is, we inductively define sets of states Si(q) by

S0(q) := {q}
S1(q) := {q} ∪ δ(q, ϵ)

Si+1(q) := Si(q) ∪
( ∪
r∈Si(q)

δ(r, ϵ)
)

When this series stabilises (that is, when we find an n with Sn+1(q) = Sn(q);
and it will stabilise as there are only finitely many states in E), then we set

eclose(q) :=
∞∪
i=0

Si(q) = Sn(q)

If S ⊆ Q is an arbitrary set of states, then we define

eclose(S) :=
∪
s∈S

eclose(s)

We say that R ⊆ Q is ϵ-closed if eclose(R) = R.

Lemma 2.19 (ϵ-closure is a closure property).
Let S ⊆ Q. Then eclose(S) is ϵ-closed.

Proof. We need to show that eclose(eclose(S)) = eclose(S) for any S ⊆ Q. So
take any r ∈ eclose(eclose(S)). Then r ∈ eclose(t) for some t ∈ eclose(S), and
moreover t ∈ eclose(s) for some s ∈ S. So:
1. We can reach t from s by following a sequence of ϵ-transitions (that is,
transitions of the form δE(p, ϵ)).
2. We can reach r from t by following a sequence of ϵ-transitions.
Thus we can reach r from s by ϵ-transitions, and thus r ∈ eclose(s) ⊆

eclose(S). Our choice of r was arbitrary, so eclose(eclose(S)) ⊆ eclose(S).
Finally, it is clear that eclose(S) ⊆ eclose(eclose(S)), as s ∈ eclose(s) for any

state s.
Thus we have that eclose(eclose(S)) = eclose(S). �

The idea of including ϵ as a symbol to be processed by the transition function
is that we can ‘explore’ all transitions labelled by ϵ without reading the next
symbol in the input word. We now define the extended transition function of
an ϵ-NFA.
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Definition 2.20 (Extended transition fuction for ϵ-NFA).
Let E = (Q,Σ, δ, q0, F ) be an ϵ-NFA. We define the extended transition function

of E, δ̂ : Q× Σ∗ → P(Q), inductively. Firstly, for each q ∈ Q, we set

δ̂(q, ϵ) := eclose(q)

Now, suppose w = xσ ∈ Σ∗ for some σ ∈ Σ. Then we do the following:

(1) Let {p1 . . . , pk} be δ̂(q, x).

(2) Let {r1, . . . , rm} =
∪k

i=1 δ(pi, σ).

(3) Define δ̂(q, xσ) :=
∪m

j=1 eclose(rj).

In particular, the inductive definition looks like this:

δ̂(q, xσ) :=
∪

r∈
∪

p∈δ̂(q,x) δ(p,σ)

eclose(r)

So for any w ∈ Σ∗, δ̂(q0, w) gives us the set of states we end up at when we

input w into E. We say that E accepts w if δ̂(q0, w) contains at least one state
from F .

The above definition is somewhat confusing, so here is a description of what
happens when we input a word w into an ϵ-NFA E = (Q,Σ, δ, q0, F ) (and it is
best to picture a transition diagram ΓE for E when doing this):
E first computes eclose(q0) and places a red marker on all the states in

eclose(q0); that is, places a red marker on all states which can be reached
from q0 by following edges labelled ϵ. Then E takes w, reads the first symbol
σ1 whilst ‘in’ the set of states eclose(q0), and then evaluates the transition func-
tions to get a set of states

∪
q∈eclose(q0) δ(q, σ1); this is done on the transition

diagram by following all edges labelled σ1 out of red-marked states and plac-
ing a blue marker on all the new states. E then computes the ϵ-closure of all
these states, and simultaneously ‘moves to’ this closure; so we place extra blue
markers on all states which can be reached from the current blue-marked states
by following edges labelled ϵ. Now remove all red markers. E then reads the
next symbol σ2 of w, evaluates δ(q, σ2) for all q in the states that it is currently
in, and then takes the ϵ-closure of these new states (this is the same process as
before, interchanging the roles of red and blue markers). Once E has read all
the symbols in w, we are left with a transition diagram ΓE with several markers
(all of the same colour) on states; if any of these markers lie on a state in F ,
then E accepts w.

Definition 2.21 (Language of an ϵ-NFA).
Let E = (Q,Σ, δ, q0, F ) be an ϵ-NFA. We define the language of E, L(E), to
be the words which are accepted by E. That is,

L(E) := {w ∈ Σ∗ | δ̂(q0, w) ∩ F ̸= ∅}

This is the language of words over Σ for which δ̂(q0, w) contains at least one
accepting state of E.

If we had a transition diagram for an ϵ-NFA E containing no ϵ’s (that is,
δE(q, ϵ) = ∅ for all q ∈ Q), then what we have is an NFA. Thus, all definitions
and results on ϵ-NFA’s from Section 2.5 carry to NFA’s. Thus Section 2.3 is
somewhat redundant; we included it only to develop the intuition in a more
natural way.
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It would seem as though ϵ-NFA’s are much more general than NFA’s and
DFA’s. However, we will again see that we do not get any new languages by
considering ϵ-NFA’s over NFA’s or DFA’s.

2.6. Equivalence of DFA’s and ϵ-NFA’s.
We show that regular languages are precisely those accepted by an ϵ-NFA. To

do this, we describe a process of converting an ϵ-NFA into a DFA, very similar
to the subset construction.

Definition 2.22 (The subset construction with ϵ-transitions).
Let E = (QE ,Σ, δE , q0, FE) be an ϵ-NFA. We define the following construc-
tion of a DFA D = (QD,Σ, δD, qD, FD), called the subset construction with
ϵ-transitions, to have:

(1) States QD := P(QE); the power set of QE .
(2) Start state qD := eclose(q0); the set of states in the ϵ-closure of q0.
(3) Accept states FD := {S ⊆ QE | S ∩ F ̸= ∅}; the set of subsets of QE

which intersect the accepting states FE of E.
(4) Transition function: for each S ⊆ QE and each σ ∈ Σ, we define

δD(S, σ) as follows:
a) Let S = {p1, . . . , pk}
b) Let

∪k
i=1 δE(pi, σ) = {r1, . . . , rm}

c) Define δD(S, σ) :=
∪m

j=1 eclose(rj)
That is,

δD(S, σ) := eclose
( ∪
p∈S

δE(p, σ)
)

which is the set of states reached from the states in S by going along
an edge labelled σ followed by some number of edges labelled ϵ.

Observe that the start state of D constructed above is the ϵ-closure of q0,
rather than the set containing just q0. Also observe that, if S is ϵ-closed, then
so is δD(S, σ) (as a subset of QE) for every σ ∈ Σ. Thus, given that our start
state of D, eclose(q0), is ϵ-closed, then we can only ever reach other ϵ-closed
sets via the transition function δD.

Definition 2.23 (Accessible states of an automaton).
Let A be any finite-state automaton (DFA, NFA, ϵ-NFA). The accessible states
of A are those which are reachable from the start state by a finite number
of applications of the transition function δA; that is, states q for which q =
δ̂A(q0, w) (or q ∈ δ̂A(q0, w); whichever is relevant) for some word w. The rest
of the states are said to be inaccessible.

Thus we see that the accessible states of D in Definition 2.22 must be ϵ-closed,
as the start state is.

Theorem 2.24 (Extended transition function in the subset construction with
ϵ-transitions).
Let D = (QD,Σ, δD, qD, FD) be the DFA constructed from the ϵ-NFA E =
(QE ,Σ, δE , q0, FE) via the subset construction with ϵ-transitions (Definition
2.22). Then, for any w ∈ Σ∗, we have

δ̂D(qD, w) = δ̂E(q0, w)
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Proof. We proceed by induction on |w|. If |w| = 0 (that is, w = ϵ), then we

have that δ̂E(q0, ϵ) = eclose(q0). But for a DFA, we know that δ̂D(p, ϵ) = p for

any state p. Thus δ̂D(qD, ϵ) = qD = eclose(q0), and so δ̂E(q0, ϵ) = δ̂D(qD, ϵ).

Now suppose that δ̂D(qD, v) = δ̂E(q0, v) for all v with |v| ≤ n. Let w be
a word of length n + 1. Then w = xσ, where σ ∈ Σ is the final symbol of
w. By induction, as |x| = n, we have that δ̂D(qD, x) = δ̂E(q0, x). Call this set

{p1, . . . , pk} ⊆ QN . By definition of δ̂ for ϵ-NFA’s (Definition 2.20), we compute

δ̂E(q0, xσ) by

(1) Let {r1, . . . , rm} =
∪k

i=1 δE(pi, σ).

(2) Then δ̂E(q0, xσ) =
∪m

j=1 eclose(rj).

Now, we know that δ̂D(qD, xσ) = δD(δ̂D(qD, x), σ) = δD({p1, . . . , pk}, σ). So
by definition of the subset construction with ϵ-transitions (Definition 2.22), we

compute δ̂D(qD, xσ) as follows:

(1) Let {r1, . . . , rm} =
∪k

i=1 δ(pi, σ).

(2) Then δ̂D(qD, xσ) =
∪m

j=1 eclose(rj).

But this is exactly the same set as δ̂E(q0, xσ). Thus we have that δ̂D(qD, w) =

δ̂E(q0, w), and the induction is complete. �
We can now use this to say something about the accepted languages of these

automata.

Theorem 2.25 (Equivalence of language in the subset construction with ϵ-
transitions).
Let D = (QD,Σ, δD, qD, FD) be the DFA constructed from the ϵ-NFA E =
(QE ,Σ, δE , q0, FE) via the subset construction with ϵ-transitions. Then L(D) =
L(E).

Proof. From Theorem 2.24, we see that, for any w ∈ Σ∗,

D accepts w ⇔ δ̂D(qD, w) contains a state in FE

⇔ δ̂E(q0, w) contains a state in FE

⇔ E accepts w

Thus L(D) = L(E), as both D and E have the same alphabet Σ. �
Theorem 2.26 (Equivalence of DFA’s and ϵ-NFA’s).
A language L is accepted by some DFA if and only if it is accepted by some
ϵ-NFA.

Proof. We showed in Theorem 2.25 that, from any ϵ-NFA, we can construct a
DFA on the same alphabet which accepts the same language.
So now suppose we have that L is accepted by some DFAD = (Q,Σ, δD, q0, F ).

Take a transition diagram for D. Then this also defines a transition diagram for
an ϵ-NFA E with the same states, same alphabet, and same accepting states,
provided we define δE(q, ϵ) := ∅ for all q ∈ Q. We need only remark that the
transition function δE for E will be given by

δE(q, σ) = {δD(q, σ)} ∀q ∈ Q, σ ∈ Σ

That is, if δD(q, σ) = p, then δE(q, σ) = {p}. Thus the transitions of D and E
are the same. Moreover, there are no transitions out of any state on ϵ. Thus
E is genuinely an ϵ-NFA. We prove by induction on |w| that, if δ̂D(q0, w) = p,
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then δ̂E(q0, w) = {p}:
Basis: Let |w| = 1, so w = σ ∈ Σ. We have defined δE(q0, σ) = {δD(q0, σ)}, so
we’re done.
Induction: Suppose, for all v with |v| ≤ n, we have δ̂E(q0, v) = {δ̂D(q0, v)}.
Take w with |w| = n + 1, then w = xσ for some x ∈ Σ∗, σ ∈ Σ. Now we have
that:

δ̂E(q0, xσ) =
∪

p∈δ̂E(q0,x)

δE(p, σ)

=
∪

p∈{δ̂D(q0,x)}

δE(p, σ)

= δE(δ̂D(q0, x), σ)

= {δD(δ̂D(q0, x), σ)}

= {δ̂D(q0, xσ)}

Thus D and E = (Q,Σ, δE , {q0}, F ) accept the same words, so L(D) = L(E).
�

Again, as all NFA’s are ϵ-NFA’s, we see that the subset construction in Section
2.4 has now been made redundant, as we need only do things for ϵ-NFA’s.
So now we see that, whenever we want to show that a language L is regular,

it suffices to produce a DFA or an NFA or an ϵ-NFA which accepts L. For
clarity, we will usually use D to denote a DFA, N to denote an NFA, and E to
denote an ϵ-NFA (though we may, on occasions, us other letters also).

2.7. Regular expressions.
In the previous sections we saw various ‘mechanical’ ways of defining lan-

guages, all of which define the same set of languages. We now give an algebraic
way to define languages, called regular expressions. Though seemingly differ-
ent to our mechanical definitions of DFA’s, NFA’s, and ϵ-NFA’s, we will show
that regular expressions define precisely the set of regular languages, hence the
name. We first need some algebraic operations on languages.

Definition 2.27 (Operations on languages).

(1) The union of two languages L and M , denoted L ∪M , is the set of all
words which lie in either L or M .

(2) The concatenation of two languages L andM , denoted LM , is the set of
all words which are the concatenation of one word in L followed by one
word in M . We adopt the notation L0 := {ϵ}, L1 := L, Ln+1 := LnL
(the concatenation of n+ 1 copies of L).

(3) The closure of a language L, denoted L∗, is the set of all words formed
by taking a finite number of words in L (possibly with repetition), and
concatenating them. In particular, this is given by

L∗ =
∪
n≥0

Ln

Observe that ∅∗ = {ϵ}, and {ϵ}∗ = {ϵ}; these are the only two languages
whose closure is not infinite.
We will now describe the algebra of regular expressions. If R is a regular

expression, then we write L(R) for the language defined by R.
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Definition 2.28 (Regular expressions).
A regular expression is any expression built from the following basis set with
the following inductive rules:
Basis:

(1) The constants ϵ and ∅ are regular expressions, denoting the languages
L(ϵ) := {ϵ} and L(∅) := ∅.

(2) If a is a symbol, then a is a regular expression denoting the language
L(a) := {a}. We will always use boldface to denote the expression
corresponding to the symbol.

(3) A variable, written as a capital letter such as M , denotes a variable
representing any language.

Induction:

(4) If E,F are regular expressions, then E + F is a regular expression de-
noting the union of their languages; L(E + F ) := L(E) ∪ L(F ).

(5) If E,F are regular expressions, then EF is a regular expression denoting
the concatenation of their languages; L(EF ) := L(E)L(F ).

(6) If E is a regular expression, then E∗ is a regular expression denoting
the closure of its language; L(E∗) := L(E)∗.

(7) If E is a regular expression, then (E) is a regular expression denoting
the same language; L((E)) := L(E). This is used to remove ambiguity
when writing expressions such as (E+F )∗, which is different to E+F ∗.

Definition 2.29 (Order of precedence). The order of precedence for regular
expressions is:

(1) Parentheses ( )
(2) Closure ∗

(3) Concatenation
(4) Union +

For example, the expression 01∗ + 1 should be read (0(1∗)) + 1.

2.8. Equivalence of DFA’s and regular expressions.
We can now show that regular expressions give us precisely the set of regular

languages. First, we show how to construct an ϵ-NFA from a regular expression.

Theorem 2.30 (Constructing an ϵ-NFA from a regular expression).
For each regular expression R there is an associated ϵ-NFA E such that L(E) =
L(R).

Proof. We will construct an ϵ-NFA E with the following properties:

(1) Exactly one accepting state.
(2) No arcs into the initial state.
(3) No arcs out of the accepting state.

We build up such an ϵ-NFA inductively, in the same way that we defined regular
expressions inductively.
Basis:
We construct an ϵ-NFA for each of the basis regular expressions. We do this
for ϵ in Figure 1, ∅ in Figure 2, and a (for a some symbol) in Figure 3. There is
no need for us to label the states, but observe that each ϵ-NFA in Figures 1–3
satisfy each of the three properties listed above.
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ϵ

Figure 1: An ϵ-NFA which accepts the language {ϵ}.

Figure 2: An ϵ-NFA which accepts the language ∅.

a

Figure 3: An ϵ-NFA which accepts the language {a}.

Induction:
We assume that we are given regular expressions R and S with corresponding
ϵ-NFA’s which satisfy properties (1), (2), (3) above, and now we show how to
construct ϵ-NFA’s with the same language as R + S, RS and R∗ respectively.
We demonstrate in Figure 4 how we will represent the ϵ-NFA for a regular
expression R (which satisfies properties (1), (2), (3) above) within a larger ϵ-
NFA. As each ϵ-NFA for our basis regular expressions has precisely one start
and one accept state, we take these as the two ‘end points’ of the ϵ-NFA, and
use these to join them into larger ϵ-NFA’s. All the ϵ-NFA’s that we will now
construct also have precisely one start and one accept state, so this ‘joining’
process will always work.

R

Figure 4: Representing the ϵ-NFA for the regular expression R within a larger
ϵ-NFA.
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An ϵ-NFA for R+ S:
The ϵ-NFA E in Figure 5 gives precisely the same language as R + S. First,
take a word w ∈ L(R) ∪ L(S). If we start at the start state of E, then we can
simultaneously ϵ-transit to the beginning of the ϵ-NFA for R, and the beginning
of the ϵ-NFA for S. As w lies in the language of either R or S, then after reading
all of w we will eventually reach the accept state of that respective ϵ-NFA (or
both). Then we can ϵ-transit to the accept state of E.
Conversely, suppose w is accepted by E. Then, starting from the start state of
E, we ϵ-transit to the start state of the ϵ-NFA’s of R and S, simultaneously.
Then we will reach the accept state of one of the ϵ-NFA’s of R and S, and in
doing so we must read all of w. There are no more symbols of w to read, and
so we take the final ϵ-transition to the accept state of E, and so w is accepted
by E.
Thus the language of E is L(R) ∪ L(S).

An ϵ-NFA for RS:
The ϵ-NFA E in Figure 6 gives precisely the same language as RS. First, take
a word w ∈ L(R)L(S), so w = uv for some u ∈ L(R), v ∈ L(S). If we start at
the start state of E, then we can ϵ-transit to the start state of the ϵ-NFA for
R. After reading all of u we will eventually reach the accept state of the ϵ-NFA
for R. Then we can ϵ-transit to the start state of the ϵ-NFA for S, with v still
to read. But after reading all of v we will eventually reach the accept state of
the ϵ-NFA for S, which is the accept state of E.
Conversely, suppose w is accepted by E. Then, starting from the start state
of N , we ϵ-transit to the start state of the ϵ-NFA for R. Then, to reach the
accept state of this, we first have that w has some prefix u ∈ L(R) which we
read and get to the accept state of R. Then we ϵ-transit to the start state of
the ϵ-NFA for S. But to reach the accept state of the ϵ-NFA for S (that is, the
accept state of N), we must have that the entire remaining suffix v of w lies in
L(S). That is, w = uv for some u ∈ L(R), v ∈ L(S).
Thus the language of E is L(R)L(S).

An ϵ-NFA for R∗:
The ϵ-NFA N in Figure 7 gives precisely the same language as R∗. First, take
a word w ∈ L(R∗). If w = ϵ then we can ϵ-transit directly to the accept state
of E. If w ̸= ϵ, then we have that w = u1 . . . um for some m > 0 and some
collection of non-empty ui ∈ R. So start at the start state of E, then ϵ-transit
to start state of the ϵ-NFA for R. After reading all of u1 we will eventually
reach the accept state of the ϵ-NFA for R. Then we can ϵ-transit back to the
start state of the ϵ-NFA for R, with u2 . . . um still to read. Repeat this process
a total of m times; then we’re left at the accept state of the ϵ-NFA for R with
nothing left to read, and thus can ϵ-transit to the accept state of E.
Conversely, suppose w is accepted by E. Then, starting from the start state of
E, we either ϵ-transit to the accept state of E and are accepted (thus giving
w = ϵ ∈ L(R∗)), or we ϵ-transit to the start state of the ϵ-NFA for R. Then, to
reach the accept state of the ϵ-NFA for R, we must have that w has some prefix
u1 ∈ L(R) (so w = u1v). So we read such a prefix, and then reach the accept
state of the ϵ-NFA for R with the remaining suffix left to read. If this suffix v
is empty we are done (we ϵ-transit to the accept state of E and are accepted).
Otherwise, the only other option is to ϵ-transit back to the start state of the
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ϵ-NFA for R, with v still to read. We keep repeating this process, and the only
way for w to be accepted by E is if, after m such cycles, we have reached the
accept state of the ϵ-NFA for R and have nothing left to read (so that we can
ϵ-transit to the accept state of E), and thus w = u1 . . . um for ui ∈ L(R), and
so w ∈ L(R∗).
Thus the language of E is L(R∗).

ϵ

ϵ

ϵ

ϵ

R

S

Figure 5: An ϵ-NFA which accepts the language L(R) + L(S).

ϵ ϵ
R S

Figure 6: An ϵ-NFA which accepts the language L(R)L(S).

ϵ

ϵ

ϵ

ϵ

R

Figure 7: An ϵ-NFA which accepts the language L(R)∗.

All the ϵ-NFA’s we constructed in Figures 5–7 satisfy properties (1), (2), (3)
(assuming the ϵ-NFA’s for R and S also satisfy these). Thus our induction is
complete; we can build up an ϵ-NFA for any regular expression. �

We now show how to construct a regular expression from a DFA.
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Theorem 2.31 (Constructing a regular expression from a DFA).
For each DFA D there is an associated regular expression R such that L(D) =
L(R).

Proof. For each DFA D = (Q,Σ, δ, q0, F ), we construct a regular expression R
as follows:
First we number the states of D by {1, . . . , n} (this re-naming will be helpful

later). Now we will inductively define regular expressions R
(k)
ij (1 ≤ i, j ≤ n,

0 ≤ k ≤ n) whose languages are the words w which begin at state i and end at
state j without passing through any intermediate state whose number is more
than k (think of w as giving a path in a transition diagram for D). Note that
the beginning and end points are not intermediate, so we may have i and/or j
being greater than k.
We first consider the case k = 0. Note that every state is numbered greater

than 0, so R
(0)
ij is only paths from i to j with no intermediate states. That is,

direct edges from i to j. If i ̸= j, then this will be single edges from i to j. If
i = j, then this is the path of length 0 (that is, ϵ), as well as all loops from i to
itself. So let {a1, . . . , al} be all the symbols labelling arcs from i to j (that is,
all the symbols a ∈ Σ for which δ(i, a) = j). Then we define

For i ̸= j, R
(0)
ij :=

{
a1 + . . .+ al if l > 0
∅ if l = 0

For i = j, R
(0)
ii :=

{
a1 + . . .+ al + ϵ if l > 0
ϵ if l = 0

We have added the ϵ in the case i = j to cover the situation where we have the

path of length 0 from i to itself. Thus we have a regular expression for R
(0)
ij

which gives us the language we desire.

Now we must inductively define the expression R
(k)
ij , assuming we have de-

fined R
(t)
ij for all t < k and all i, j. So, suppose we have a path from state i to

state j that does not pass through any intermediate state higher than k. This
falls in to one of two cases:
Case 1. The path does not pass through state k at all, in which case the path

gives a word which lies in the language of R
(k−1)
ij .

Case 2. The path passes through state k (as an intermediate state) some num-
ber of times. In this case, we can break up the path into three pieces:
Piece 1. A ( nonempty) path from state i to state k that does not pass through

state k in any intermediate step. This will lie in the language of R
(k−1)
ik .

Piece 2. A (possibly empty) path from state k to state k which does not pass
through state k in any intermediate step, followed by another such path, and

so on (finitely many times). These sub-pieces will lie in the language of R
(k−1)
kk ,

and so the entire piece will be concatenations of these, and thus lie in the lan-

guage of
(
R

(k−1)
kk

)∗
.

Piece 3. A ( nonempty) path from state k to state j that does not pass through

state k in any intermediate step. This will lie in the language of R
(k−1)
kj .

So in case 2, our word lies in the concatenation of the languages from piece 1,

then piece 2, then piece 3. That is, it lies in the language ofR
(k−1)
ik

(
R

(k−1)
kk

)∗
R

(k−1)
kj .

Adding the regular expressions from the two cases (that is, taking the union of

the two languages), we have the regular expressionR
(k−1)
ij +R

(k−1)
ik

(
R

(k−1)
kk

)∗
R

(k−1)
kj
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whose language contains all words w which begin at state i and end at state j
without passing through any intermediate state whose number is more than k.
But clearly this defines all such words, as its language is no more than these
words. Thus we define the regular expression

R
(k)
ij := R

(k−1)
ij +R

(k−1)
ik

(
R

(k−1)
kk

)∗
R

(k−1)
kj

for the language of all words representing paths from state i to state j which
do not pass through any intermediate state higher than k.
Now, given that we only have n states in total, we see that the language

of R
(n)
ij will be all words representing paths which start at state i and end

at state j. Now assume that state 1 is the start state (our initial numbering
was arbitrary, so we could have easily defined it that way). Take the sum of

all expressions of the form R
(n)
1j for j an accepting state, and the associated

language will be the language of D. That is, we have just proved that

L(D) = L
(
R

(n)
1j1

+ . . .+R
(n)
1js

)
where F = {j1, . . . , js}

�
So now we see that, whenever we want to show that a language L is regular,

it suffices to produce a DFA or an NFA or an ϵ-NFA or a regular expression
whose associated language is L. For clarity, we will usually use D to denote a
DFA, N to denote an NFA, E to denote an ϵ-NFA, and R to denote a regular
expression (though we may, on occasions, us other letters).
Having all these equivalent definitions at our disposal may seem confusing at

first. But ultimately it is quite helpful, as there are various languages which are
very easily shown to be regular with one definition, but not the others. Also,
keep in mind that it is not always obvious which definition will be the easiest
to use to show that a language is regular.

2.9. Closure properties of regular languages.
We will now use the various definitions of regular languages to show some

closure properties.

Theorem 2.32 (Closure under union).
Let L,M be regular languages over Σ,Γ respectively. Then L ∪M is a regular
language over Σ ∪ Γ.

Proof. Let RL, RM be regular expressions for L,M respectively. Then RL+RM

is a regular expression, and L
(
RL +RM

)
= L(RL) ∪ L(RM ) = L ∪M . �

Theorem 2.33 (Closure under complementation).
Let L be a regular language over Σ. Then the complement of L, L := Σ∗ \L, is
a regular language over Σ.

Proof. Let D = (Q,Σ, δ, q0, F ) be a DFA such that L = L(D). Now define a
new DFA D := (Q,Σ, δ, q0, Q \ F ). Notice that, for any w ∈ Σ∗, we have

w ∈ L⇔ w ∈ Σ∗ \ L
⇔ w /∈ L

⇔ δ̂(q0, w) /∈ F

⇔ δ̂(q0, w) ∈ Q \ F
⇔ w ∈ L(D)
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�

Observe that the above proof only works because D and D are deterministic
(if not, then we could not conclude that δ̂(q0, w) /∈ F ⇔ δ̂(q0, w) ∈ Q\F ). Thus
the above argument would not work (as written) if we were using an NFA to
describe L. This is an example of where one description of regular languages is
more convenient than another.

Theorem 2.34 (Closure under concatenation).
Let L,M be regular languages over Σ,Γ respectively. Then LM is a regular
language over Σ ∪ Γ.

Proof. Let RL, RM be regular expressions for L,M respectively. Then RLRM

is a regular expression, and L
(
RL +RM

)
= L(RL)L(RM ) = LM . �

Theorem 2.35 (Closure under closure operator).
Let L be a regular language over Σ. Then L∗ is a regular language over Σ.

Proof. Let R be a regular expression for L. Then (R)∗ is a regular expression,
and L

(
(R)∗) = L(R)∗ = L∗. �

Theorem 2.36 (Closure under intersection).
Let L,M be regular languages over Σ,Γ respectively. Then L ∩M is a regular
language over Σ ∩ Γ.

Proof. First observe that L = Σ∗\L andM = Γ∗\M are both regular over Σ,Γ
respectively (by Theorem 2.33). So L∪M is regular over (Σ∪Γ)∗ (by Theorem

2.32). Thus L ∪M is also regular over (Σ ∪ Γ)∗ (by Theorem 2.33). But by

DeMorgan’s laws, we have that L∩M = L ∪M (taking the final complement in
(Σ∪Γ)∗), so L∩M is regular over Σ∪Γ. But clearly L∩M ⊆ Σ∗∩Γ∗ = (Σ∩Γ)∗,
so L ∩M is a regular language over Σ ∩ Γ. �

Definition 2.37. Let σ1 . . . σm ∈ Σ∗ be some word. We define its reverse by

(σ1 . . . σm)R := σm . . . σ1

(that is, the word σ1 . . . σm written in reverse). If L is a language, we define
the reverse of L, LR, to be

LR := {vR | v ∈ L}

(that is, the language consisting of the reverses of all the words in L).

Theorem 2.38. Let L be a regular language. Then LR is also regular.

Proof. Take a DFA D = (QD,Σ, δD, q0, FD) for which L(D) = L. From this we
construct a ‘reverse ϵ-NFA’ E from D with

(1) States QE := QD ∪ {z} (same as D, with one extra state z added).
(2) Alphabet Σ (same as D).
(3) Start state z.
(4) Accept states FE := {q0}; the start state of D.
(5) Transition function: δE : QE × (Σ ∪ {ϵ}) → P(QE) given by

δE(q, ϵ) :=

{
FD if q = z
∅ if q ̸= z

δE(q, σ) := {p ∈ QD | δD(p, σ) = q}
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That is, we reverse all existing transitions in D, then add a new state z, and
finally add ϵ-transitions from z to all states in F . Thus w ∈ L(D) ⇔ wR ∈
L(E), so LR is regular. �

2.10. The pumping lemma and non-regular languages.
Now that we have a long list of ways to show that languages are regular, it is

time to develop some more tools, this time to show that certain languages are
not regular.
Suppose we have a DFA D = (Q,Σ, δ, q0, F ), and a word w which is accepted

by D. Suppose moreover that |w| > |Q|, that is, w has more symbols than
D has states. Consider the transition diagram ΓD of D. By the pigeonhole
principle, we must have that w defines a path in ΓD which visits the same
state twice. So we can break up w into 3 subwords w = xyz, with y defining a
non-empty path from some state q back to itself. So y gives us a ‘loop’ in the
transition diagram. Now consider what would happen if we were to remove y
from w, to have the word xz. Or if we were to ‘do y again’, to have the word
xyyz. Would these new words be accepted by D?

Theorem 2.39 (The pumping lemma for regular languages).
Let L be a regular language. Then there exists a constant n (depending on L)
such that for every word w ∈ L with |w| ≥ n we can break up w into 3 words
w = xyz such that:

(1) y ̸= ϵ.
(2) |xy| ≤ n.
(3) For all k ≥ 0, we have that the word xykz is also in L.

This theorem is named the pumping lemma because for each word w of suffi-
cient length we can find a subword y which we can pump; that is, we can repeat
y as many times as we like.

Proof. As L is regular, we have that L = L(D) for some DFAD = (Q,Σ, δ, q0, F ).
Suppose that D has n states (|Q| = n). Now, take any accepted word w ∈ L
with |w| ≥ n, say w = σ1 . . . σm; m ≥ n, where each σj ∈ Σ. Let pi be the
state that D is in after reading the subword σ1 . . . σi (1 ≤ i ≤ m). That is,

pi := δ̂(q0, σ1 . . . σi). Define p0 := δ̂(q0, ϵ) = q0.
By the pigeonhole principle, the n + 1 pi’s {p0, . . . , pn} must have some re-

peated state, as there are only n different states of D. So we can find two
integers 0 ≤ l < r ≤ n with pl = pr. So we now break up w as w = xyz, where

x = σ1 . . . σl (or ϵ if l = 0)

y = σl+1 . . . σr (and so |xy| ≤ n and y ̸= ϵ)

z = σr+1 . . . σm (or ϵ if r = n)

That is, x traces a path from p0 to pl, y traces a loop from pl back to itself
(as pl = pr), and z takes us to some accepting state qt as w is an accepted word.
Note that x and/or z are permitted to be empty, but by definition we have that
y is non-empty (as l < r). Now consider what happens when we input xykz
into D:
If k = 0, then we go from q0 (which is p0) to pl on a path traced by x. We
then go from pr (which is pl) to the accepting state qt (which is pm) on a path
traced by z. Thus xz traces a path from q0 to the accept state qt (the same
accept state that w ends at), and so xz ∈ L.



52 PART II AUTOMATA AND FORMAL LANGUAGES

If k ≥ 1, then we go from q0 (which is p0) to pl on a path traced by x. We
then loop from pl back to itself k times on a path traced by y (recalling that
pl = pr). We then go from pr to the accepting state qt (which is pm) on a path
traced by z. Thus xykz traces a path from q0 to the accept state qt (the same
accept state that w ends at), and so xykz ∈ L. �

Here is a typical way of using the pumping lemma to show that a language
is not regular:

Example 2.40. The language L = {0n1n | n ≥ 1}, of all words consisting of
some number of 0’s followed by the same number of 1’s, is not regular.

Proof. Suppose L were regular; we proceed by contradiction using the pumping
lemma. If L were regular, then we would have some constant N satisfying the
hypotheses of the pumping lemma. So consider the word w = 0N1N . Then
w ∈ L. Moreover, by the pumping lemma, we can break up w = xyz such that:
1. y ̸= ϵ.
2. |xy| ≤ N .
3. For all k ≥ 0, we have that the word xykz is also in L.
As |xy| ≤ N , we must have that xy = 0m for some m ≤ N (as the first N
symbols in w are all 0’s), and moreover that y = 0l for some 0 < l ≤ m ≤ N .
Thus, by the pumping lemma, we must have that xz ∈ L. But xz = 0N−l1N ,
which is not in L as N − l ̸= N . �

We could have also argued that, by the pumping lemma, we must have that
xy2z ∈ L. But xy2z = 0N+l1L, which is again not in L.
The pumping lemma will be the usual tool we will use to show certain lan-

guages are not regular. The standard technique for this is:

(1) Take a language L and assume that it is regular.
(2) Suppose there is an N which satisfies the hypothesis of the pumping

lemma.
(3) Choose a word w in L and suppose it has a decomposition w = xyz as

per the pumping lemma.
(4) For any such decomposition of w as above, show that there is a suitable

power k ≥ 0 of y such that xykz /∈ L.

2.11. Equivalence relations and minimisation of DFA’s.
We now describe a way to find a minimal version of any given DFA D; that

is, a DFA D′ which accepts the same language but has the smallest possible
number of states. The underlying idea is that we take our original DFA D and
group together states which are equivalent.

Definition 2.41 (State equivalence in DFA’s).
Let D = (Q,Σ, δ, q0, F ) be a DFA. We call two states p, q ∈ Q equivalent or

indistinguishable if, for all w ∈ Σ∗, we have that δ̂(p, w) ∈ F if and only if

δ̂(q, w) ∈ F . We write this as p ∼ q. That is,

p ∼ q if and only if ∀w ∈ Σ∗(δ̂(p, w) ∈ F ⇔ δ̂(q, w) ∈ F )

If two states p, q are not equivalent, then we say they are distinguishable, and
we say that they are distinguished by w if one of δ̂(p, w), δ̂(q, w) is accepting
but the other is not.
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We do not require δ̂(p, w) = δ̂(q, w) for all words w in order for p, q to be equiv-
alent, just that they are always either both accepting or both non-accepting.

Lemma 2.42.
The relation ∼ on states given in Definition 2.41 is an equivalence relation. In
other words, it is:

(1) Reflexive: p ∼ p ∀p ∈ Q
(2) Symmetric: if p ∼ q then q ∼ p
(3) Transitive: if p ∼ q and q ∼ r, then p ∼ r.

Thus we can define the equivalence class of a state p, written [p], as all the
states equivalent to p. That is,

[p] := {q ∈ Q | q ∼ p}

This gives a partition of Q into disjoint equivalence classes.

Proof. 1 and 2 are immediate.
To prove 3: Let w be a word on the alphabet of the DFA. If p ∼ q then
δ̂(p, w), δ̂(q, w) are either both accepting or both non-accepting. Similarly, if

q ∼ r then δ̂(q, w), δ̂(r, w) are either both accepting or both non-accepting.

Thus δ̂(p, w), δ̂(r, w) are either both accepting or both non-accepting, and so
p ∼ r. �

Definition 2.43 (The table-filling algorithm for DFA’s).
We describe the following algorithm, called the table-filling algorithm, for de-
termining which states of a DFA D = (Q,Σ, δ, q0, F ) are distinguishable.
We begin by drawing a table T , with the rows and columns indexed by ele-

ments of Q. The point is to mark, in entry with coordinates (p, q), whether p
and q are distinguishable or not. As this is a reflexive property, we need only
consider the lower-left triangle of the table. We start with all entries being
‘empty’, and mark later entries by the following inductive process.
Basis:
We place a mark ‘x’ in every entry labelled by a pair of states (p, q) with one
of p, q accepting and the other non-accepting. These states are distinguishable;
ϵ will distinguish them.
Inductive step:
Take the table T at the current point in the algorithm. Take any pair of states
p, q where entry (p, q) is unmarked. If there is some symbol σ with δ(p, σ) = r
and δ(q, σ) = s with (r, s) already marked in T (which corresponds to r, s be-
ing distinguished states in D), then we know that p and q are distinguished
states. This is because r, s are distinguished (say by w), and thus precisely one

of δ̂(r, w), δ̂(s, w) is accepting. But δ̂(p, σw) = δ̂(r, w), and δ̂(q, σw) = δ̂(s, w),
and thus σw distinguishes p and q. So we place a new mark ‘x’ at entry (p, q).
Now repeat the inductive step.
Conclusion:
If we have filled the table T sufficiently so that, for every pair of states p, q where
entry (p, q) is unmarked, there is no symbol σ with δ(p, σ) = r and δ(q, σ) = s
with (r, s) already marked in T , then our algorithm halts.

Theorem 2.44 (Proof of the table-filling algorithm).
Let D be a DFA. Then two states p, q correspond to a marked entry in the
table-filling algorithm if and only if they are distinguished states in D.
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Proof. Let D = (Q,Σ, δ, q0, F ), and T the table at the end of the table-filling
algorithm. Clearly, if entry (p, q) is marked in T , then p and q are distinguished
states in D. This is because through the algorithm we can inductively construct
a distinguishing word for p and q.
We call a pair of states p, q a bad pair if (p, q) is unmarked in T but p, q

are distinguished states in D. We will proceed by contradiction to show there
are no bad pairs. So, assume a bad pair exists. Now, over all possible bad
pairs, take one such pair p, q with the shortest possible distinguishing element
w = σ1 . . . σn (that is, if p′, q′ are a bad pair distinguished by word w′, then

|w′| ≥ |w|). So precisely one of δ̂(p, w), δ̂(q, w) is accepting.
Clearly, w is not ϵ, for if it were then (p, q) would be marked in the basis step

of the table-filling algorithm, and thus not be a bad pair. So n ≥ 1.
Now consider the states r = δ(p, σ1) and s = δ(q, σ1). Thus r, s are distin-

guished by the word σ2 . . . σn which is of length n−1, and so by the minimality
of n we have that r, s is not a bad pair. Thus the entry (r, s) is marked in T .
But once entry (r, s) is marked, the table-filling algorithm will then eventually
mark entry (p, q), as δ(p, σ1) = r and δ(q, σ2) = s, with entry (r, s) already
marked.
Thus there are no bad pairs, and so every pair of states corresponding to an

unmarked entry in T are actually indistinguishable in D. �

Part of the reason for studying equivalence of states is to take a DFA D and
‘group together’ the equivalent state, to construct a new DFA with fewer states
but which accepts the same language. We do that now.

Lemma 2.45. Let p, q be two equivalent states of a DFA D = (Q,Σ, δ, q0, F ),
and take any σ ∈ Σ. Then δ(p, σ), δ(q, σ) are equivalent.

Proof. Suppose δ(p, σ) � δ(q, σ). Then they are distinguished by some word
w. But then p, q would be distinguished by the word σw; a contradiction since
p ∼ q. �

So we see that if we start with any two equivalent states p, q, then the tran-
sition function δ must take them to equivalent states for every symbol σ ∈ Σ.

Lemma 2.46. Let p, q be two equivalent states of a DFA D = (Q,Σ, δ, q0, F ).
Then p is accepting if and only if q is accepting (p ∈ F ⇔ q ∈ F ).

Proof. If one of p, q were accepting but the other not, then the word ϵ would
distinguish them. �

Definition 2.47 (DFA minimisation).
Given a DFA D = (Q,Σ, δ, q0, F ), we define the minimal DFA for D, written
D/ ∼, as the DFA with:

(1) Alphabet Σ (the same as D).
(2) States Q′ := {[p] | p ∈ Q}.
(3) Transition function δ′ defined by δ′([p], σ) := [δ(p, σ)].
(4) Start state q′0 := [q0].
(5) Accepting states F ′ := {[p] | p ∈ F}.

By Lemma 2.45, we have that δ′ is indeed well-defined. That is, to decide
where to send the state [p] when reading symbol σ, we just need to pick out one
state in [p] (p itself will suffice), and see which equivalence class δ(q, σ) lies in.
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Lemma 2.45 ensures that this always gives us precisely one equivalence class:
[δ(p, σ)].
Observe that, by Lemma 2.46, the equivalence relation ∼ partitions F into

disjoint sets which do not intersect Q \ F . So the states of D/ ∼ consist
of collections of (equivalent) states which are either all accepting or all non-
accepting.

Lemma 2.48. Let w be a word in a DFA D, q a state in D, and take D/ ∼
as constructed above. Then

δ̂′([p], w) = [δ̂(p, w)]

Proof. We induct on |w|. Clearly, if |w| = 0 (i.e., w = ϵ), then we have

δ̂′([p], ϵ) = [p] = [δ̂(p, ϵ)].

Now suppose δ̂′([p], v) = [δ̂(p, v)] for all v with |v| ≤ n, for some fixed n. Take
w with |w| = n+ 1. Then w = uσ for some u with |u| = n. So

δ̂′([p], uσ) = δ′(δ̂′([p], u), σ) (definition of δ̂′)

= δ′([δ̂(p, u)], σ) (induction, as |u| = n)

= [δ(δ̂(p, u)], σ)] (definition of δ′)

= [δ̂(p, uσ)] (definition of δ̂)

�

Thus the extended transition function δ̂′ works as a natural extension of the
extended transition function δ̂.

Theorem 2.49 (Equivalence of languages of minimal DFA’s).
Let D be a DFA, and D/ ∼ be its minimal DFA. Then L(D/ ∼) = L(D).

Proof. Observe that D and D/ ∼ have the same alphabet (call it Σ). So take
any word w ∈ Σ∗. Then:

w ∈ L(D/ ∼) ⇔ δ̂′(q′0, w) ∈ F ′ (definition of acceptance)

⇔ δ̂′([q0], w) ∈ F ′ (definition of q′0)

⇔ [δ̂(q0, w)] ∈ F ′ (Lemma 2.48)

⇔ δ̂(q0, w) ∈ F (Lemma 2.46)

⇔ w ∈ L(D) (definition of acceptance)

�
Lemma 2.50. Let D be a DFA, and D′ = D/ ∼ be its minimal DFA. Then
no two states of D/ ∼ are equivalent.

Proof. Suppose [p] ∼ [q] in D′. Then, for every word w, we have that δ̂′([p], w),

δ̂′([q], w) are either both accepting or both non-accepting in D′. Thus, [δ̂(p, w)],

[δ̂(q, w)] are either both accepting or both non-accepting in D′ (Lemma 2.48).

So then δ̂(p, w), δ̂(q, w) are either both accepting or both non-accepting in D
(Lemma 2.46). So p ∼ q in D, and thus [p] = [q] in D′. �
Definition 2.51. Let A,B be DFA’s. We say A and B are equivalent, writ-
ten A ≡ B, if, up to possible re-labelling of states, they have same alphabet,
transition function, set of states, start state, and accept states.



56 PART II AUTOMATA AND FORMAL LANGUAGES

So equivalent DFA’s are ‘functionally’ identical; they only differ on state
names (which are only arbitrary labels). Given that we can count how many
states there are in a DFA, and moreover that there are only finitely many ways
to permute state names, we see that we can algorithmically compute whether
two DFA’s are equivalent or not.

Corollary 2.52. Let D be a DFA. Then (D/ ∼)/ ∼ ≡ D/ ∼ as DFA’s.

Proof. Performing DFA minimisation on a DFA gives a new DFA whose states
are a partitioning of the states of the old DFA into disjoint equivalence classes.
But no two distinct states in D/ ∼ are equivalent (Lemma 2.50). So performing
DFA minimisation on D/ ∼ partitions its states into sets of size 1, which gives
the exact same set of states (up to re-labelling). Thus the alphabet, transition
function, and states remain unchanged (modulo this state re-labelling). �

Theorem 2.53 (Removing inaccessible states from a DFA).
There is an algorithm which takes a DFA D = (QD,Σ, δD, q0, FD) and produces
a DFA A = (QA,Σ, δA, q0, FA) with no inaccessible states, for which L(A) =
L(D).

Proof. Let n = |QD|. Then form the sequence Si of subsets of QD, 1 ≤ i ≤ n,
via

S0 := {q0}

Si+1 :=
∪
q∈Si

( ∪
σ∈Σ

δD(q, σ)
)

So Si+1 is the set of states which can be reached from Si with one transition
step. At most n steps are needed to reach any state, and so Sn will be the set
of all accessible states of D. So define QA := QD ∩ Sn, FA := FD ∩ Sn, and δA
as the restriction of δD to QA × Σ. �

We now prove that minimal DFA’s uniquely define regular languages, up to
re-naming of states.

Theorem 2.54 (Minimality of minimal DFA’s).
Let D be a DFA with no inaccessible states, and suppose that A is another DFA
on the same alphabet as D and for which L(D) = L(A). Then A has at least
as many states as D/ ∼.
Moreover, if A has the same number of states as D/ ∼, then A ≡ D/ ∼.

Proof. Suppose that A has fewer states than D′ := D/ ∼ ; we proceed by
contradiction. Take some DFA B on the same alphabet as D with the least
number of states for which L(B) = L(D). Now form the ‘disjoint union’ of the
DFA’s D′, B as follows: With B = (S,Σ, δ, p0, G), and D′ = (Q′,Σ, δ′, q′0, F

′)
respectively, form a new DFA U := (Q′⊔S,Σ, ρ, q′0, G⊔F ′), where the transition
function ρ is defined via δ and δ′. (We need to mark the states of B by an
overline, to ensure that they are disjoint from those of D′, so that Q′⊔S are all
unique.) Picture this as taking the transition diagrams for D′, B and drawing
them next to each other to get a new transition diagram (we take q′0 as our
start state, but it doesn’t really matter).
Now run the table-filling algorithm on this disjoint union U , and observe that

the start states of D′ and B are equivalent as L(D′) = L(D) = L(B) (Theorem
2.49). Observe that if p, q are equivalent states (in any DFA), then by Lemma
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2.45 their successors δ(p, σ), δ(q, σ) are also equivalent for any symbol σ. By

induction, δ̂(p, w), δ̂(q, w) are also equivalent for any word w.
Since D has no inaccessible states, then neither does D′. To see this, take a

state [q] in D′; there is some word w with δ̂D(q0, w) = q as D has no inaccessible

states, and thus δ̂D′([q0], w) = [δ̂D(q0, w)] = [q]. Moreover, B has no inaccessible
states, or else we could form a new DFA C with the inaccessible states of B
removed, for which L(C) = L(B) (Theorem 2.53); this would contradict the
minimality of B.
So far we have:
• The start states of D′ and B are equivalent in their disjoint union DFA U .
• The successors of any pair of equivalent states in U are again equivalent.
• Neither D′ nor B have inaccessible states.
Thus every state of D′ is equivalent to some state of B. To see this, let p be
some state of D′. Then, as D′ has no inaccessible states, there is some word
σ1 . . . σm which gives a path from the start state of D′ to p. But now the same
word gives a path from the start state of B to some state q in B (as B is on
the same alphabet as D′), and these states are thus equivalent via Lemma 2.45
(as the start states of D′ and B are equivalent, since L(D′) = L(B)).
Now, since B has fewer states than D′, then by the pigeonhole principle there

must be two different states of D′ which are equivalent to the same state of B.
Thus these two states of D′ are equivalent to each other. But two equivalent
states of D′ must be the same state (Lemma 2.50); a contradiction. So A must
have at least as many states as D′.
If A has the same number of states as D′, then again we see that it cannot

have any inaccessible states (and neither does D′). Also, neither A nor D′

can have any equivalent states, by the first part of the theorem. Thus, in the
disjoint union DFA of A and D′ (as defined above), each state of A is equivalent
to precisely one state of D′, and vice-versa. As pairs of equivalent states in a
DFA are preserved under the transition function, we have that each state of
A ‘matches’ precisely one state of D′ (same symbols transitioning in, from
matching states; same symbols transitioning out, to matching states). �
Theorem 2.55 (Testing equivalence of regular languages).
There is an algorithm that, on input of DFA’s D1, D2, determines whether or
not they define the same regular language.

Proof. Let D1 = (Q1,Σ1, δ1, q1,0, F1), D2 = (Q2,Σ2, δ2, q2,0, F2) respectively.
Set Li := L(Di) for i = 1, 2. Now replace D1 with a new DFA A1 with:
• Alphabet Σ1 ∪ Σ2.
• States Q1 ⊔ {z1} (some symbol z1 disjoint from Q1).
• Start state q1,0.
• Accept states F1.
• Transition function ρ1 which extends δ1 by defining ρ1(q, σ) := z1 for all
q ∈ Q1 and all σ ∈ Σ2 − Σ1, and ρ1(z1, σ) := z1 for all σ ∈ Σ1 ∪ Σ2.
Replace D2 with a new DFA A2 in an analogous manner, interchanging the

subscripts 1 and 2. Then remove the inaccessible states of each Ai (Theorem
2.53), and call the resulting DFA Bi. It is then immediate that L(Bi) = L(Ai) =
L(Di) = Li for i = 1, 2.
Now form B1/ ∼ and B2/ ∼, and compute if they are equivalent. As they

are on the same alphabet, then by Theorem 2.54 this occurs if and only if
L1 = L2. �
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3. PUSHDOWN AUTOMATA AND CONTEXT-FREE LANGUAGES

Having dealt with finite-state automata, we saw that they were very straight-
forward to work with, but were highly limited in the languages they could
recognise. The reason for this is that they have a bounded memory ; even
though they can recognise arbitrarily long words, in a sense they are only see-
ing a ‘finite number of options’. An example of this is computing the remainder
n mod m, where we only need to keep track of the remainder as we read along
the input word, and this can only take one of a finite number of values.
We now describe a slightly more general finite-state machine; one with an

unbounded ‘memory stack’, which can compute not only languages, but also
sentences with some form of structure. This new form of computation is still
weaker than register machines, but can do more than DFA’s.

3.1. Context-free grammars and context-free languages.
We will start in the reverse order this time, and will define context-free gram-

mars (akin to regular expressions) as a way to generate languages algebraically.
Later, we will show that these give the same languages as a more general finite-
state machine, known as a pushdown automaton.

Definition 3.1 (Context-free grammar).
We define a context-free grammar (CFG) to be a quadruple (N,Σ, P, S), with

(1) A finite set of nonterminal symbols N .
(2) A finite set of terminal symbols Σ, disjoint from N .
(3) A finite set of productions P ⊂ N × (N ∪ Σ)∗.
(4) A start symbol S ∈ N .

We will often use capital letters A,B,C, . . . for nonterminal symbols, and
lower case letters a, b, c, . . . for terminal symbols. Words in (N ∪Σ)∗ will often
be written with Greek letters α, β, γ, . . ..
We will often write productions (A,α) as A → α, to emphasise that there is

some sort of substitution occurring here. For convenience, we will collect to-
gether productions with the same first (nonterminal) symbol, and use a vertical
bar | to separate all the words associated to that nonterminal. For example, if
we had productions (A,α1), (A,α2), (A,α3), we would write this as

A→ α1 | α2 | α3

Example 3.2. Here is a small example of a CFG:
N = {S}
Σ = {a, b}
P = {(S, aSb), (S, ϵ)}
In later cases we would write P as P = {S → aSb | ϵ}, according to our
convention above.

Later, we will see what this example actually represents.

Definition 3.3 (CFG terminology).
Let G = (N,Σ, P, S) be a CFG.

(1) Let α, β ∈ (N ∪Σ)∗. We say that β is derivable from α in one step if β
can be obtained from α by replacing some nonterminal A occurring in
α with γ ∈ (N ∪ Σ)∗, where (A, γ) ∈ P . That is, there exist α1, α2 ∈
(N ∪ Σ)∗ and production A → γ such that α = α1Aα2 and β = α1γα2
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We write this as

α
1−→
G

β

(indicating that, in the CFG G, we require one such substitution to go
from α to β).

(2) For α, β, γ ∈ (N ∪ Σ)∗, we inductively define the following notation:

α
0−→
G

α for any α.

α
n+1−→
G

β if there exists γ with α
n−→
G

γ and γ
1−→
G

β.

α
∗−→
G

β if there exists n ≥ 0 with α
n−→
G

β.

(3) If α
∗−→
G

β then we say that β is derivable from α.

(4) If β is derivable from α, then a derivation (of length n) of β from α is
a sequence of n steps from α to β. That is, a sequence γ1, . . . , γn−1 ∈
(N ∪ Σ)∗ such that

α
1−→
G

γ1
1−→
G

γ2
1−→
G

. . .
1−→
G

γn−1
1−→
G

β

(5) A word w ∈ (N ∪Σ)∗ which is derivable from the start symbol S is said
to be in sentential form.

(6) A word w ∈ (N ∪ Σ)∗ in sentential form is said to be a sentence if it
contains only terminal symbols. That is, if w ∈ Σ∗.

Definition 3.4 (Language of a CFG).
Let G = (N,Σ, P, S) be a CFG. The language generated by G, L(G), is the set
of all sentences derivable by G. That is,

L(G) := {w ∈ Σ∗ | S ∗−→
G

w}

A language L is a context-free language (CFL) if L = L(G) for some CFG G.

By keeping our convention of writing nonterminals in uppercase (with start
symbol always given by S), and terminals in lowercase, we can fully describe a
CFL from the productions P of a CFG describing it. That is, we don’t need to
specify N,Σ, S explicitly15. For example, we can describe the language of the
CFG from Example 3.2 simply by writing the productions, which are

S → aSb | ϵ

The only terminals that can appear in a CFL are terminals appearing in the
productions, so there is no need to explicitly give the finite alphabet Σ.

Example 3.5. The set X = {anbn | n ≥ 0} is a CFL, generated by the CFG
G from Example 3.2. That is, X is generated by the grammar

S → aSb | ϵ

To see that X ⊆ L(G), we induct on n to show that

S
n+1−→
G

anbn

Conversely, an induction on the length of derivations shows that L(G) ⊆ X.

15This bypasses unused nonterminals and terminals, but we get the same language.
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Note that this language is not a regular language (Example 2.40), and so we
immediately see that CFL’s can be non-regular. On example sheet 4 we will
see that every regular language is a CFL, and thus there is a strict inclusion
(regular language ⇒ CFL) of these types of languages.

Example 3.6. The set X = {w ∈ {a, b}∗ | w = wR} is a CFL, generated by
the CFG G defined by

S → aSa | bSb | a | b | ϵ
The first two productions S → aSa | bSb give the symmetry of X when read
from the left and right sides simultaneously. The next two productions S → a | b
‘finish off’ palindromes of odd length, and the final production S → ϵ ‘finishes
off’ palindromes of even length.

Now we look at a more involved example, which is very important in real-
world computation16. This is the set of balanced parentheses; strings of [’s and
]’s which obey certain containment rules.

Definition 3.7 (Balanced parentheses).
Take any string x ∈ { [ , ] }∗. We define

(1) L(x) := #[(x) = the number of left parentheses [ occurring in x.
(2) R(x) := #](x) = the number of right parentheses ] occurring in x.

We say that x is balanced if

(i) L(x) = R(x).
(ii) For all prefixes y of x, we have that L(y) ≥ R(y).

Lemma 3.8 (A CFG for balanced parentheses).
Let G be the CFG

S → [S] | SS | ϵ
Then L(G) = {x ∈ { [ , ] }∗ | x is balanced}, and so this is a CFL.

A quick application of the pumping lemma for regular languages shows that
the language of balanced parentheses is not regular. Later, we will see another
version of the pumping lemma, this time for CFL’s.
To show that x ∈ L(G) ⇒ x is balanced is an induction on the length of the

shortest possible derivation for x. To show x is balanced ⇒ x ∈ L(G) is an
induction on |x|. We give the proof here in full, but it is long and technical.

Proof. 1. x ∈ L(G) ⇒ x balanced:

We will show that if α ∈ (N ∪ Σ)∗, and S
∗−→
G

α, then α satisfies (i) and (ii)

from Definition 3.7. We do this by induction on the length of this derivation.
Basis:
If S

0−→
G

α, then α = S. But S contains no occurrence of [ or ], and so satisfies

(i) and (ii).
Induction:
Suppose our assumption holds for all k ≤ n, and suppose S

n+1−→
G

α. Then we

have β such that

S
n−→
G

β
1−→
G

α

By induction, we have that β satisfies (i) and (ii). Now, there are three possible
productions that we could apply to β to get α; we show that each preserves (i)

16If you ever want your C++ code to compile.
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and (ii).
If we applied a production of the form S → SS, or S → ϵ, then we are automat-
ically done; neither of these productions changes the ordering of parentheses.
In particular, we have (for either case) some pair β1, β2 ∈ (N ∪ Σ)∗ such that

β = β1Sβ2 and α =

{
β1β2 if we applied S → ϵ
β1Sβ2 if we applied S → SS

In either case, α satisfies (i) and (ii), as β does.
So suppose that instead we applied the production S → [S]. Then there exist
β1, β2 ∈ (N ∪ Σ)∗ such that

β = β1Sβ2 and α = β1[S]β2

Then clearly L(α) = L(β) + 1 = R(β) + 1 = R(α), as (i) holds in β by the
induction hypothesis, and so holds in α also.
Now, to show (ii) holds in α, take any prefix y of α. We consider all the sub
cases:

(1) y is a prefix of β1, in which case y is a prefix of β, so (ii) holds for y by
the induction hypothesis.

(2) y is a prefix of β[S, but not of β1, in which case:

L(y) = L(β1) + 1 ≥ R(β1) + 1 > R(β1) = R(y)

(3) y = β1[S]δ where δ is a prefix of β2, in which case

L(y) = L(β1Sδ) + 1 ≥ R(β1Sδ) + 1 = R(y)

In all these subcases, we have L(y) ≥ R(y), and so (ii) holds in α. So we’re
done.
2. x is balanced ⇒∈ L(G):
We do this by induction on |x|.
Basis:
If |x| = 0, then x = ϵ (which is balanced) and so can be formed from S by the
single production S → ϵ.
Induction:
We break this up into two cases:
Case a): there exists a proper prefix y of x (i.e., 0 < |y| < |x|) satisfying (i) and
(ii). In this case, we have x = yz for some z, with 0 < |z| < |x|, and z satisfies
(i) and (ii) as well, as

L(z) = L(x)− L(y) = R(x)−R(y) = R(z)

and for any prefix w of z we have

L(w) = L(yw)− L(y)

≥ R(yw)−R(y) since yw is a prefix of x and L(y) = R(y)

= R(w)

By induction, we thus have that y, z ∈ L(G) (that is, S
∗−→
G

y and S
n−→
G

z).

So we can derive x from S by first applying the derivation S → SS, and then
using the above derivations, via

S
1−→
G

SS
∗−→
G

yS
∗−→
G

yz = x
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Case b): no such prefix y exists.
Thus x = [z] (exercise: check this), for some z satisfying (i) and (ii). z satisfies
(i) as we have

L(z) = L(x)− 1 = R(x)− 1 = R(z)

and z satisfies (ii) since, for every non-empty prefix u of z, we have

L(u)−R(u) = L([u)− 1−R([u) ≥ 0

(since L([u) − R([u) ≥ 1 as we are in case b) ). By the induction hypothesis,

S
∗−→
G

z. Combining this derivation with the single production S → [S], we get

the following derivation of x:

S
1−→
G

[S]S
∗−→
G

[z] = x

So every balanced word can be derived. �

3.2. The Chomsky normal form.
We give a way of converting any CFG to one of a particular form, called a

Chomsky17 normal form. All our productions will have a particular format,
and this will come in handy for later proofs as we can assume that our CFG is
structured in a way that is easy to work with.

Definition 3.9 (Chomsky normal form).
A CFG G = (N,Σ, P, S) is said to be in Chomsky normal form (CNF) if all
productions are of the form

A→ BC or A→ a

where A,B,C ∈ N and a ∈ Σ.

Example 3.10. The following CFG is in Chomsky normal form:

S → AB | AC | SS, C → SB, A→ [ , B → ]

Later, we will see that this CFG gives the CFL of all balanced parentheses from
Definition 3.7.

Observe that no CFG in CNF can generate the empty word ϵ. We will now
show that this is the only limitation of this normal form, in the sense that every
CFG has at least one corresponding CNF which generates the same language
(minus the empty word ϵ).

Definition 3.11 (ϵ- and unit productions).
Let G = (N,Σ, P, S) be a CFG.

(1) An ϵ-production is a production of the form A→ ϵ, for some A ∈ N .
(2) A unit production is a production of the form A→ B, for some A,B ∈

N .

ϵ- and unit productions are a hindrance to finding CNF’s for CFG’s. We show
that we can always modify a CFG so as to remove all ϵ- and unit productions,
and still end up with exactly the same CFL (minus {ϵ}). Recall that, for sets
A,B we write the set difference A−B to denote the set (A ∪B) \B.

17Named after the linguist, logician, philosopher and political activist Noam Chomsky,
whom you may have seen on the news (but probably not for his mathematical work).
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Theorem 3.12 (Removal of ϵ- and unit productions).
Let G = (N,Σ, P, S) be a CFG. Then we can construct a CFG G′, with no ϵ-
or unit productions, for which L(G′) = L(G)− {ϵ}.

Proof. Let P̂ be the smallest set of productions containing P and closed under
the following rules:

(1) If A→ αBβ and B → ϵ are in P̂ , then A→ αβ is in P̂ .

(2) A→ B and B → γ are in P̂ , then A→ γ is in P̂ .

We can construct P̂ inductively: let P0 = P and in each iteration we take Pi

and form Pi+1 by adding all the productions needed to satisfy (1), (2) above
for Pi. As P is finite, and as the right hand side of each added production is
no longer than the right hand side of an existing production, we get that this
series eventually stabilises in finitely many iterations (i.e., Pn = Pn+1 for some

n). When this occurs, there is nothing to add, so we set P̂ := Pn.

Now define a new CFG Ĝ := (N,Σ, P̂ , S). Since P ⊆ P̂ , every derivation of

G is a derivation of Ĝ, and so L(G) ⊆ L(Ĝ). But now we can conclude that

L(G) = L(Ĝ), as every new production in Pi+1 not in Pi can be simulated by
two productions of the (from (1) or (2) ) in Pi. Thus we can ‘pull back’ (though

the Pi’s) any derivation in Ĝ to a (possibly longer) derivation in G.

We now show that we can remove all the ϵ- and unit productions from P̂ ,
and not change the language of the CFG (apart from removing {ϵ}).
Take any w ∈ Σ∗ with w ̸= ϵ, and consider a minimal length derivation

S
∗−→̂
G

w. Assume that an ϵ-production B → ϵ is used in this derivation, and so

S
∗−→̂
G

γBδ
1−→̂
G

γδ
∗−→̂
G

w

At least one of γ, δ is not ϵ, otherwise w would be. So that particular occurrence
of B must have appeared earlier in the derivation as a production A → αBβ,
and so we have that our minimal-length derivation looks like

S
m−→̂
G

ηAθ
1−→̂
G

ηαBβθ
n−→̂
G

γBδ
1−→̂
G

γδ
k−→̂
G

w

for some m,n, k ≥ 0. But by rule (1), the production A→ αβ is also in P̂ , and
so we have a strictly shorter derivation

S
m−→̂
G

ηAθ
1−→̂
G

ηαβθ
n−→̂
G

γδ
k−→̂
G

w

contradicting the minimality of our original derivation. So we can ‘discard’ all
ϵ-productions from P , and not change L(Ĝ).
Similarly, now assume that a unit production A→ B is used in this minimal-

length derivation of w, say

S
∗−→̂
G

αAβ
1−→̂
G

αBβ
∗−→̂
G

w

Eventually, that particular occurrence of B will be replaced with some produc-
tion B → γ (as B is non-terminal). So we have the derivation

S
m−→̂
G

αAβ
1−→̂
G

αBβ
n−→̂
G

ηBθ
1−→̂
G

ηγθ
k−→̂
G

w
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for some m,n, k ≥ 0. But by rule (2), the production A → γ is also in P̂ , and
so we have a strictly shorter derivation

S
m−→̂
G

αAβ
1−→̂
G

αγβ
n−→̂
G

ηγθ
k−→̂
G

w

contradicting the minimality of our original derivation. So we can ‘discard’ all
unit productions from P , and not change L(Ĝ).
So, by discarding all ϵ- and unit productions from P̂ , we end up with a CFGG′

with no ϵ- or unit productions, for which L(G′) = L(Ĝ)−{ϵ} = L(G)−{ϵ}. �
Lemma 3.13.
Let G = (N,Σ, P, S) be a CFG. Then we can construct a CFG G′ = (N ′,Σ, P ′, S)
with the same terminals Σ, with L(G′) = L(G), and in which every production
is of the form

A→ a or A→ B1 · · ·Bk, k ≥ 1

for some A,B1 . . . Bk ∈ N and a ∈ Σ ∪ {ϵ}.
Proof. For each terminal a ∈ Σ, we add to N a new nonterminal Aa (distinct
from all the existing nonterminals) and a production Aa → a. Call this new set
of nonterminals N ′. Now replace all occurrences of a on the right hand side of
productions in P with Aa, except productions already of the form B → a. Call
the new set of productions P ′; then all productions in this set are of one of two
forms:

A→ a or A→ B1 · · ·Bk, k ≥ 1

for some A,B1 . . . Bk ∈ N ′ and a ∈ Σ ∪ {ϵ}. Now set G := (N ′,Σ, P ′, S); we
show that L(G′) = L(G).
To see that L(G) ⊆ L(G′), observe that a production from P with terminals

and non-terminals in the right hand side can be reproduced by first applying
the corresponding production in P ′ with only nonterminals in the right hand
side, and then applying productions of the form A→ a to recover the terminals.
To see that L(G′) ⊆ L(G), observe that derivations of sentences with P ′ can

be simulated by P . �
Theorem 3.14 (Realising Chomsky normal form).
From a CFG G = (N,Σ, P, S) we can construct an associated CFG GChom in
CNF such that

L(GChom) = L(G)− {e}
Proof. Take G and construct the CFG G′ = (N,Σ, P ′, S) from Theorem 3.12
with no ϵ- and unit productions for which L(G′) = L(G)− {ϵ}. Now apply the
construction of Lemma 3.13 to G′, to get a CFG G′′ = (N ′,Σ, P ′′, S) whose
productions are all of the form

A→ a or A→ B1 · · ·Bk, k ≥ 2

for some A,B1 . . . Bk ∈ N ′ and a ∈ Σ. Observe that, since P ′ has no ϵ- or unit
productions, then we have a ̸= ϵ and k > 1 (this comes from the construction
in Lemma 3.13).
Now, in P ′′, for any production of the form

A→ B1 · · ·Bk

with k ≥ 3 (and thus with each Bi nonterminal), we introduce a new nontermi-
nal C and replace the original production with the following two productions:

A→ B1C and C → B2 · · ·Bk
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Keep re-applying the above step until the right hand side of all productions are
of length at most 2. Call the resulting set of nonterminals N ′′, and the resulting
set of productions P ′′′. Then it is immediate that GChom := (N ′′,Σ, P ′′′, S) is
in CNF, and moreover by the discussion above we have that

L(GChom) = L(G′′) = L(G′) = L(G)− {e}

�

Example 3.15. Take the following CFG from Example 3.8:

S → [S] | SS | ϵ

which gives the language of all balanced parentheses [ ]. We first apply the
construction of Theorem 3.12 to remove all ϵ- and unit productions to get the
CFG

S → [S] | SS | [ ]

(the only ϵ- production was S → ϵ, which we replaced with S → [ ]. Also, there
were no unit productions). This CFG generates the language of all non-empty
balanced parentheses.
Now we follow the construction of Theorem 3.14 to build a CFG in CNF for

this language. First, we add nonterminals A,B and replace the above produc-
tions with

S → ASB | SS | AB, A→ [ , B → ]

Finally, we add a new nonterminal C and replace S → ASB with S → AC and
C → SB. So we have the CFG

S → AC | SS | AB, C → SB, A→ [ , B → ]

which is in CNF and generates the language of all non-empty balanced paren-
theses.

3.3. Parse trees and the pumping lemma for context-free languages.
We will prove a pumping lemma for CFL’s, similar in idea to the pumping

lemma for regular languages. Before we do this, we need a few new ideas. The
first of these helps us understand how a derivation is applied in a CFG to give
a string of terminals.

Definition 3.16 (Parse trees).
Let G be a CFG. A parse tree (or derivation tree) for a word w ∈ L(G) is a
tree representing all the productions applied to S in a derivation of the word w.
That is, a ‘downward’ tree with root (top vertex) S, whose vertices of valence
> 1 are nonterminals of G, and whose leaves (vertices of valence 1) are all
terminals and form w when we ‘read from left to right’.

We build this tree from a derivation S
∗−→
G

w as follows:

(1) Place S as the root.
(2) If S → α1 is the first production in the derivation, then we add |α1|

downward branches to S, and label the new leaves from left to right by
the letters (terminals or nonterminals) of α1.

(3) If the next production is X2 → α2, then we add |α2| downward branches
to the leaf X2, and label the new leaves from left to right by the letters
(terminals or nonterminals) of α2.

(4) We keep doing this for each production in the derivation.
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(5) At the end of this process, we will have no more nonterminals as leaves
in the tree, only terminals.

We adopt the following ‘drawing convention’: when we go down a level of the
tree (applying productions to all nonterminals on level n to bring us to level
n+ 1), we may find that some of the vertices on level n were terminals. So as
to not lose track of them, we add one downward branch for each such terminal,
and duplicate them at level n+ 1 also. Thus, when we finish building the tree
(say with m levels), we can read off the derived word by just reading level m
from left to right.
The depth of a tree is the number of edges of the longest path from the root

to a leaf; a tree of depth n will thus have n+ 1 levels.
Observe that, if G is a CFG in CNF, then a parse tree of G will have at most

2n symbols at level n (the root is at level 0). This is because the number of
symbols can at most double in a CNF derivation, and we start with one symbol
S at level 0.

Theorem 3.17 (The pumping lemma for CFL’s).
Let L be a CFL. Then there exists a constant n (depending on L) such that for
every word z ∈ L with |z| ≥ n we can break up z into 5 words z = uvwxy such
that:

(1) vx ̸= ϵ.
(2) |vwx| ≤ n.
(3) For all k ≥ 0, we have that the word uvkwxky is also in L.

Proof. Let G be a CFG for L in CNF (this exists by Theorem 3.14). Take
n = 2m+1, where m is the number of nonterminals of G. Suppose z ∈ L and
|z| ≥ n. By what we said above, any parse tree for z in G must be of depth at
least m + 1, as level m has at most 2m symbols. Let γ be (a) longest possible
path starting at the root in such a tree. That path must be of length at least
m + 1, and so contains at least m + 1 occurrences of nonterminals (only the
last vertex in the path can be a terminal). As G has only m nonterminals, then
by the pigeonhole principle there is some nonterminal which occurs twice in γ.
Take the first repeated nonterminal X in γ, when reading from the bottom of
the tree up to the root.
Now break z up into substrings uvwxy such that

(1) w is the string of terminals generated by the lower occurrence of X.
(2) vwx is the string of terminals generated by the upper occurrence of X.

Let T be the subtree rooted at the upper occurrence of X, and let t be the
subtree rooted at the lower occurrence of X. Now we can ‘pump’ in two possible
ways:
First way: We can remove the (lower, and thus smaller) subtree t from the
original tree, and replace it with a copy of the (upper, and thus larger) subtree
T . This gives us a valid parse tree for the word uv2wx2y. We can continue
doing this several times, each time removing t and replacing it with a copy of
T , to get a valid parse tree for uviwxiy for every i ≥ 1.
Second way: We can remove the (upper, and thus larger) subtree T from the
original tree, and replace it with a copy of the (lower, and thus smaller) subtree
t. This gives us a valid parse tree for the word uwy.
Observe that vx ̸= ϵ; that is, at least one of v, x are non-null, as we have

taken two occurrences of X at different levels up the path γ, so one ‘side’ of
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the upper occurrence of X leads to terminals. This might be the left side (i.e.,
v), or the right side (i.e., x).
Also, observe that |vwx| ≤ n, as we chose the first repeated occurrence of a

nonterminal reading up the path γ, and so this must happen at height at most
m+ 1. Since γ was chosen to be the longest path in the original tree, then the
subderivation down from this upper occurrence of X gives us a tree of depth
at most m+ 1, and thus has at most 2m+1 = n terminals. �

We can apply the pumping lemma for CFL’s to show that a language is
not a CFL, in a similar way to how we apply the pumping lemma for regular
languages.

Example 3.18. The set A = {anbncn | n ∈ N} is not a CFL.

Proof. Suppose A were a CFL. Take n as in the pumping lemma (Lemma
3.17), and consider the word z = anbncn. Regardless of how we decompose
z = uvwxy with |vwx| ≤ n, we have that vwx either contains no occurrence
of a, or contains no occurrence of c (or no occurrence of either). Thus, when
we pump z to uvkwxky, there will be at least one letter (a or c) for which the
number of occurrences of that letter does not change from uvwxy to uvkwxky.
However, there will be a different letter for which the number of occurrences of
that letter does change from uvwxy to uvkwxky. Thus uvkwxky cannot be of
the form ambmcm, for any k ̸= 1. �

3.4. Nondeterministic pushdown automata.
In the previous chapter on regular languages, we first defined our languages

via certain automata, and then gave an algebraic way to generate them via reg-
ular expressions. Here, we have done the reverse: we first defined our languages
algebraically, and we now give a ‘mechanical’ way to generate them. These ma-
chines work in a very similar way to ϵ-NFA’s, but they have access to a ‘stack’,
where they can store a finite but unbounded amount of extra information about
what has happened so far in the computation.

Definition 3.19 (Nondeterministic pushdown automata).
A nondeterministic pushdown automaton (NPDA) is a structure
M = (Q,Σ,Γ, δ, q0,⊥, F ) consisting of the following:

(1) A finite set of states Q.
(2) A finite input alphabet Σ.
(3) A finite stack alphabet Γ.
(4) A transition function δ : Q× (Σ ∪ {ϵ})× (Γ ∪ {ϵ}) → P(Q× Γ∗) which

is total.
(5) A designated start state q0 ∈ Q.
(6) A designated initial stack symbol ⊥∈ Γ.
(7) A finite set of accept states F ⊆ Q.

Note that our transition function is nondeterministic, and also allows for ϵ-
transitions.
The input of an NPDA is any finite string w = σ1 . . . σk ∈ Σ∗, and a vertical

stack of symbols which initially contains just ⊥. The NPDA takes w, reads the
first symbol σ1 whilst ‘in’ the start state q0, evaluates the transition function
δ(q0, σ1,⊥) and then simultaneously/nondeterministically does all of the follow-
ing: for each (q,B1 · · ·Bm) ∈ δ(q0, σ1,⊥) the NPDA ‘moves to’ the new state
q, removes (pops) the top symbol ⊥ of the stack and replaces it with (pushes)
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B1 · · ·Bm, with Bm going on to the stack first and thus B1 ending up at the
top of the stack. The NPDA then reads the next symbol σ2 of w, and repeats
the process. This continues for the entire word w.

Before we define what it means for an NPDA to accept an input, we need a
way to keep track of the calculation it is performing18.

Definition 3.20 (Configurations of NPDA’s).
Let M = (Q,Σ,Γ, δ, q0,⊥, F ) be an NPDA. A configuration of M is some
(p, w, γ) ∈ Q× Σ∗ × Γ∗, where

(1) p is the state that the NPDA is currently in.
(2) w is the part of the input word which remains to be read.
(3) γ is the contents of the stack (the leftmost letter being at the top; the

rightmost at the bottom).

The start configuration on input w is denoted (q0, w,⊥).
To see how the NPDA moves from one configuration to another, we define the

next configuration relation
1−→
M

:

If (p, a,A) ∈ δ(q, γ), then for any y ∈ Σ∗ and β ∈ Γ we write

(p, ay,Aβ)
1−→
M

(q, y, γβ)

With this, for any configurations C,D,E we inductively define the following
notation:

C
0−→
M

D if C = D.

C
n+1−→
M

D if there exists E with C
n−→
M

E and E
1−→
M

D.

C
∗−→
M

D if there exists n ≥ 0 with C
n−→
M

D.

We can now define acceptance by an NPDA:

Definition 3.21 (Acceptance by an NPDA).
An NPDA M = (Q,Σ,Γ, δ, q0,⊥, F ) is said to accept w by final state if

(q0, w,⊥)
∗−→
M

(q, ϵ, γ) for some q ∈ F and γ ∈ Γ∗. M is said to accept w by

empty stack if (q0, w,⊥)
∗−→
M

(q, ϵ, ϵ) for some q ∈ Q.

We say M accepts by final state to mean that the language of M is given by all
words w which M accepts by final state. That is,

M accepts by final state ⇒ L(M) := {w ∈ Σ∗ | M accepts w by final state}
We say M accepts by empty stack to mean that the language of M is given by
all words w which M accepts by empty stack. That is,

M accepts by empty stack ⇒ L(M) := {w ∈ Σ∗ |M accepts w by empty stack}

We make the following two remarks:

(1) Because of ϵ-transitions, it is possible for an NPDA to enter an infinite
loop and never finish reading the input word; it can just keep modifying
the stack forever, without reading any further symbols of the input
word.

18As we have to worry about the state, the remainder of the tape, and the contents of the
stack.
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(2) If the stack ever becomes empty before the entire input word is read,
then the machine becomes stuck, as there is no transition function to
apply.

3.5. Equivalence of acceptance by final state or empty stack.
It turns out that NPDA’s which accept by final state have exactly the same

computational power as those which accept by empty stack.

Definition 3.22 (Constructing an NPDA where acceptance by final state and
empty stack coincide).
Given an arbitrary NPDA M which accepts by either final state or empty
stack, we can construct an NPDA M ′ with a single accept state for which
acceptance by final state or empty stack coincide. The construction depends
slightly on whether M itself accepts by final state or empty stack; we do the
two constructions together, and point out the places where they differ.
LetM = (Q,Σ,Γ, δ, q0,⊥, F ) be our NPDA that accepts by final state or empty
stack. Take two new symbols u, t not in Q, and � a new stack symbol not in
Γ. Now define

G :=

{
Q if M accepts by empty stack.
F if M accepts by final state.

∆ :=

{
{ �} if M accepts by empty stack.

Γ ∪ { �} if M accepts by final state.

Now define the NPDA M ′ by

M ′ = (Q ∪ {u, t},Σ,Γ ∪ { �}, δ′, u, �, {t})
where we define δ′ as an extension of δ by adding the following:

δ′(u, ϵ, �) := {(q0,⊥ �)}(1)

δ′(q, ϵ, A) := δ(q, ϵ, A) ∪ {(t, A)}, ∀q ∈ G, ∀A ∈ ∆(2)

δ′(t, ϵ, A) := {(t, ϵ)}, ∀A ∈ Γ ∪ { �}(3)

and δ′ := δ for all other inputs.
So our new automaton M ′ has a new start state u, a new initial stack symbol

�, and a new single final state t. It computes as follows:

(1) In its first computational step, it pushes the old initial stack symbol ⊥
on top of � (via an ϵ-transition), then enters the old start state q0.

(2) It then runs precisely like M , as it has all the transitions of M , and has
⊥ on top of its stack.

(3) At some point it might enter state t; its accept state. If it does, then it
proceeds to empty its entire stack (via ϵ-transitions).

(4) The only way M ′ can empty its stack is if it enters state t; no other
state allows it to pop �.

(5) Between reaching state t and emptying its stack, M ′ does not read any
more of its input word.

Thus M ′ accepts by empty stack iff it accepts by final state.

Theorem 3.23 (Accepting by final state and empty stack).
Take an NPDA M , and construct the NPDA M ′ as per Definition 3.22. Then
L(M ′) = L(M).
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Proof. We first show L(M) ⊆ L(M ′):

If M accepts by empty stack, and accepts w, then (q0, w,⊥)
n−→
M

(q, ϵ, ϵ) for

some n. But then we have that

(u,w, �) 1−→
M ′

(q0, w,⊥ �) n−→
M ′

(q, ϵ, �) 1−→
M ′

(t, ϵ, �) 1−→
M ′

(t, ϵ, ϵ)

and so M ′ accepts w.

If, instead, M accepts by final state, and accepts w, then (q0, w,⊥)
n−→
M

(q, ϵ, γ)

for some n, some q ∈ F , and some γ ∈ Γ∗. But then we have that

(u,w, �) 1−→
M ′

(q0, w,⊥ �) n−→
M ′

(q, ϵ, γ �) 1−→
M ′

(t, ϵ, γ �) ∗−→
M ′

(t, ϵ, ϵ)

and so M ′ accepts w.
Thus, in both cases, M ′ accepts19 w if M does. So L(M) ⊆ L(M ′).
We now show L(M ′) ⊆ L(M):

Suppose M ′ accepts w by either mode (finite state or empty stack). Then we
have that

(u,w, �) 1−→
M ′

(q0, w,⊥ �) n−→
M ′

(q, y, γ �) 1−→
M ′

(t, y, γ �) ∗−→
M ′

(t, ϵ, ϵ)

for some q ∈ G, γ ∈ Γ∗. But y = ϵ, since M ′ can’t read any input symbols
once it enters state t (the only transitions involving t are ϵ-transitions; (3) from
Definition 3.22). So by the way M is simulated by M ′, we have

(q0, w,⊥)
n−→
M

(q, ϵ, γ)

Now consider the definitions of G and of ∆, and the transitions of the form (2)
from Definition 3.22 which describe what the first move into state t can be. If
we try and analyse how the transition (q, ϵ, γ �) n−→

M ′
(t, ϵ, γ �) could come about,

then we observe the following:

(1) If M accepts by empty stack, then we must have γ = ϵ.
(2) If M accepts by final state, then we must have q ∈ F .

Either way, the transition (q0, w,⊥)
n−→
M

(q, ϵ, γ) gives that M accepts w. Thus

L(M ′) ⊆ L(M). �

3.6. Equivalence of CFL’s and NPDA’s.
We can now prove that NPDA’s accept precisely the set of CFL’s. We do this

in two parts. We first show that, from an NPDA, we can construct a CFG with
the same accepted language. Then we show that the reverse is also possible:
from a CFG we can construct an NPDA with the same accepted language.
In both constructions, we see that the object we construct (NPDA or CFG)
mimics the operation of the object we started with (CFG or NPDA) in some
controlled way.

Definition 3.24 (Constructing an NPDA from a CFG).
Given a CFG G = (N,Σ, P, S), we construct from it an NPDA which accepts
by empty stack, as follows:
First, we use Lemma 3.13 to re-write G so that all productions are of the form

A→ cB1 . . . Bk

19By either finite state or empty stack, as these are equivalent for M ′.
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where c ∈ Σ ∪ {ϵ} and k ≥ 0. By Lemma 3.13, this new CFG accepts exactly
the same language, and so we will discard our original CFG and call this new
one by the same name ( G = (N,Σ, P, S) ).
Now, from G, we construct an NPDA M = ({q},Σ, N, δ, q, S, ∅), where

(1) q is the sole state of M .
(2) Σ (the terminals of G) is the input alphabet of M .
(3) N (the nonterminals of G) is the stack alphabet of M .
(4) q is the start state of M .
(5) S (the start symbol of G) is the initial stack symbol of M .
(6) ∅ is the set of accept states of M (irrelevant, as M accepts by empty

stack).
(7) δ, the transition function ofM , is defined as follows: for each production

A→ cB1 . . . Bk in P , we include (q,B1 . . . Bk) in the set δ(q, c, A).

Before we prove various facts about this construction, we need to introduce
a particular type of derivation, known as a leftmost derivation.

Definition 3.25 (Leftmost derivation).

Let G be a CFG. A derivation β
∗−→
G

γ is said to be a leftmost derivation if

each production in the derivation is applied to the leftmost nonterminal in the
sentential form.

It is immediate that, if a word w lies in L(G) for some CFG G, then we can

always derive w with a leftmost derivation S
∗−→
G

w, by swapping the order

of some of the productions. To see this, draw a parse tree for the derivation,
then re-order the applications of productions; we still have the same parse tree,

and thus another derivation S
∗−→
G

w. This idea works because we are dealing

with context-free grammars; ones in which we replace one nonterminal with
some other string, and thus the context of this nonterminal (that is, the other
symbols around it) does not matter.
The operation of the NPDA M constructed from the CFG G in Definition

3.24 is closely related to that of G. We will see that leftmost derivations of G
from S to a sentence w of terminals correspond to an accepting computation of
M on input w. More strongly: the sequence of sentential forms in the leftmost
derivation of w corresponds to the sequence of configurations of M on input w.
Thus we see that the machine M , and the CFG G, operate in the same way.

Lemma 3.26 (Operation of the NPDA constructed from a CFG).
Let G be a CFG, and M the NPDA constructed from it in Definition 3.24.
Then, for any y, z ∈ Σ∗, any γ ∈ N∗, and any A ∈ N , we have that

A
n−→
G

zγ via a leftmost derivation ⇔ (q, zy,A)
n−→
M

(q, y, γ)

Proof. We prove this by induction on n.
Basis: If n = 0 then

A
0−→
G

zγ ⇔ A = zγ

⇔ z = ϵ and γ = A

⇔ (q, zy,A) = (q, y, γ)

⇔ (q, zy,A)
0−→
M

(q, y, γ)
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Induction (assuming the statement holds for all k ≤ n):
We break this up into the forward (⇒) implication and the reverse (⇐) impli-
cation.
(⇒):

Suppose A
n+1−→
G

zγ via leftmost derivation. Suppose B → cβ was the last pro-

duction applied in this leftmost derivation, where c ∈ Σ ∪ {ϵ} and β ∈ N∗.
Then

A
n−→
G

uBα
1−→
G

ucβα = zγ

where z = uc and γ = βα. By induction, as A
n−→
G

uBα, we have that

(q, ucy,A)
n−→
M

(q, cy,Bα)

But by the definition of δ for M , we have that (q, β) ∈ δ(q, c, B), as B → cβ is
a production of G. So we get

(q, cy,Bα)
1−→
M

(q, y, βα)

Combining these, we see that

(q, zy,A) = (q, ucy,A)
n−→
M

(q, cy,Bα)
1−→
M

(q, y, βα) = (q, y, γ)

and thus

(q, zy,A)
n+1−→
M

(q, y, γ)

(⇐):

Suppose (q, zy,A)
n+1−→
M

(q, y, γ). Suppose that (q, c, B) 7→ (q, β) was the last

transition taken, where (q, β) ∈ δ(q, c, B). Then z = uc for some u ∈ Σ∗,
γ = βα for some α ∈ Γ∗, and

(q, ucy,A)
n−→
M

(q, cy,Bα)
1−→
M

(q, y, βα)

By induction, as (q, ucy,A)
n−→
M

(q, cy,Bα), we have that A
n−→
G

uBα via

a leftmost derivation in G. Moreover, by construction of M , we have that
B → cβ is a production of G (as (q, β) ∈ δ(q, c, B)). But now we can apply this
production to the sentential form uBα to get

A
n−→
G

uBα
1−→
G

ucβα = zγ

via leftmost derivation. �
Theorem 3.27 (Language of the NPDA constructed from a CFG).
Let G be a CFG, andM the NPDA constructed from it in Definition 3.24. Then
L(G) = L(M).

Proof. Take any word w ∈ Σ∗. The we see that

w ∈ L(G) ⇔ S
∗−→
G

w by a leftmost derivation

⇔ (q, w, S)
∗−→
M

(q, ϵ, ϵ) ( Lemma 3.26 )

⇔ w ∈ L(M) ( as M accepts by empty stack )

�
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We now show that the reverse process is also possible. In fact, we will prac-
tically invert the construction.

Lemma 3.28 (Constructing a CFG from an NPDA with one state).
Let M = ({q},Σ,Γ, δ, q,⊥, ∅) be an NPDA with one state which accepts by
empty stack. Define the CFG G = (Γ,Σ, P,⊥), where P contains the production
A→ cB1 . . . Bk for every case where (q,B1 . . . Bk) ∈ δ(q, c, A), with c ∈ Σ∪{ϵ}.
Then L(G) = L(M).

Proof. This is the exact same argument used in Lemma 3.26 and Theorem 3.27,
as all reasoning used was bi-directional (⇔). �

Of course, there is no immediate reason to assume that every NPDA is equiv-
alent to one that accepts by empty stack and has only one accept state. We
give a construction of this here, and then prove that our new NPDA accepts
the same language as our old one.

Definition 3.29 (NPDA which accepts by empty stack, with 1 accept state).
Take any NPDA K, and use Definition 3.22 and Theorem 3.23 to convert it to
an NPDA M = (Q,Σ,Γ, δ, s,⊥, {t}) which accepts by final state and by empty
stack equivalently, has one final state t, and satisfies L(M) = L(K).
Now, we define the set

Γ′ := Q× Γ×Q

This is our new stack alphabet, and we will use this to ‘simulate’ the action of
M on the stack of our new NPDA. We write elements of Γ′ as ⟨p A q⟩, where
p, q ∈ Q and A ∈ Γ. We now construct our new NPDA M ′ to be

M ′ := ({∗},Σ,Γ′, δ′, ∗, ⟨s ⊥ t⟩, ∅)

with one state ∗, where M ′ accepts by empty stack.
We define the transition function δ′ of M ′ as follows: for each transition

(q0, B1, . . . , Bk) ∈ δ(p, c, A) (where c ∈ Σ ∪ {ϵ}) we, for all possible choices
{q1, . . . , qk} ⊆ Q, include (∗, ⟨q0 B1 q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩) in the set
δ′(∗, c, ⟨p A qk⟩).
Observe that, for k = 0, this reduces to the following: if (q0, ϵ) ∈ δ(p, c, A),

then we include (∗, ϵ) in δ′(∗, c, ⟨p A q0⟩).

The point of this construction is that the new machine M ′ will be able to
scan a word w starting with only ⟨p A q⟩ on its stack and end up with an empty
stack iff M can start scanning w in state p with only A on its stack and end up
in state q with an empty stack.
The idea here is that M ′ simulates M , guessing nondeterministically which

states M will be in at certain future points in the computation, saving those
guesses on the stack, and then verifying later that those guesses were correct.
We now prove that these two NPDA’s operate in an analogous manner.

Lemma 3.30.
Let M ′ be the NPDA constructed from M in Definition 3.29. Then

(p, w,B1 · · ·Bk)
n−→
M

(q, ϵ, ϵ)

iff there exist q0, . . . , qk such that p = q0, q = qk, and

(∗, w, ⟨q0 B1 q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
n−→
M ′

(∗, ϵ, ϵ)
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In particular, we have that

(p, w,B)
n−→
M

(q, ϵ, ϵ) ⇔ (∗, w, ⟨p B q⟩) n−→
M ′

(∗, ϵ, ϵ)

Proof. We show this by induction on n. The base case n = 0 is trivial, as both
sides are then equivalent to the assertion that p = q, w = ϵ, and k = 0. So now
suppose the assertion is true for all l ≤ n.

Firstly, assume we have that (p, w,B1 · · ·Bk)
n+1−→
M

(q, ϵ, ϵ). Let (p, c, B1) 7→
(r, C1 · · ·Cm) be the first transition applied, where c ∈ Σ ∪ {ϵ} and m ≥ 0.
Then we have that w = cy and

(p, w,B1 · · ·Bk)
1−→
M

(r, y, C1 · · ·CmB2 · · ·Bk)

n−→
M

(q, ϵ, ϵ)

By induction, we have that there exist r0, . . . , rm−1, q1, . . . , qk such that r = r0,
q = qk, and

(∗, y, ⟨r0 C1 r1⟩ · · · ⟨rm−1 Cm q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
n−→
M ′

(∗, ϵ, ϵ)

Now, by construction of M ′, we have that

(∗, ⟨r0 C1 r1⟩ · · · ⟨rm−1 Cm q1⟩) ∈ δ′(∗, c, ⟨p B1 q1⟩)
Combining these, we get

(∗, w, ⟨p B1 q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
1−→
M ′

(∗, y, ⟨r0 C1 r1⟩ · · · ⟨rm−1 Cm q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
n−→
M ′

(∗, ϵ, ϵ)

Conversely, suppose we have

(∗, w, ⟨q0 B1 q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
n+1−→
M ′

(∗, ϵ, ϵ)

So let
(∗, c, ⟨q0 B1 q1⟩) 7→ (∗, ⟨r0 C1 r1⟩ · · · ⟨rm−1 Cm q1⟩)

be the first transition applied, where c ∈ Σ∪ {ϵ} and m ≥ 0. Then w = cy and
we have that

(∗, w, ⟨q0 B1 q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
1−→
M ′

(∗, y, ⟨r0 C1 r1⟩ · · · ⟨rm−1 Cm q1⟩⟨q1 B2 q2⟩ · · · ⟨qk−1 Bk qk⟩)
n−→
M ′

(∗, ϵ, ϵ)

By induction, we have that

(r0, y, C1 · · ·CmB2 · · ·Bk)
n−→
M

(qk, ϵ, ϵ)

Also, by construction of M ′, we have that (r0, C1 · · ·Cm) ∈ δ(q0, c, B1)
Combining these, we see that

(q0, w,B1 · · ·Bk)
1−→
M

(r0, y, C1 · · ·CmB2 · · ·Bk)

n−→
M

(qk, ϵ, ϵ)

�



76 PART II AUTOMATA AND FORMAL LANGUAGES

Theorem 3.31. Let M ′ be the NPDA constructed from M in Definition 3.29.
Then L(M ′) = L(M)

Proof. Take w ∈ Σ∗. Then

w ∈ L(M ′) ⇔ (∗, w, ⟨s ⊥ t⟩) ∗−→
M ′

(∗, ϵ, ϵ)

⇔ (s, w,⊥)
∗−→
M

(t, ϵ, ϵ) ( Lemma 3.30 )

⇔ w ∈ L(M)

�
Corollary 3.32. A language L is a CFL iff L = L(M) for some NPDA M .

We can use this to give a (mechanical) proof that every regular language is a
CFL.

Theorem 3.33. Let L be a regular language. Then L is a CFL.

Proof. Take an ϵ-NFA E with L(E) = L. Then we can re-interpret E as
an NPDA which accepts by final state, where we just need to introduce one
dummy stack alphabet symbol ⊥, and have every transition mimic one from E
but where we pop ⊥ from the stack and then push it straight back on again. �
There are more direct ways of proving that every regular language is a CFL,

but we have shown that CFL’s are a true ‘generalisation’ by showing that we
have a more general machine.
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